ENGLISH

胡龙

  研究领域:偏微分方程控制理论,特别是双曲系统的镇定性、能控性和同步性


  0531-88369817


  hul@sdu.edu.cn




 





2006年9月 — 2010年6月中国海洋大学数学与应用数学理学学士学位;

2010年9月— 2015年6月复旦大学应用数学理学博士学位;

2013年9月 — 2015年9月法国巴黎第六大学数学类博士。


 


2015年11月至今 山东大学数学学院


 

国家自然科学基金优秀青年科学基金获得者



 

 

[1] Long Hu and Guillaume Olive. The minimal control time for the exact controllability by internal controls of 1D linear hyperbolic balance laws. 2024, preprint, submitted. https://arxiv.org/abs/2403.20113.


[2] Xiaomin Xue, Juanjuan Xu, Huanshui Zhang and Long Hu. LQ Optimal Control of First-Order Hyperbolic PDE Systems with Final State Constraints. 2024, preprint, submitted. https://arxiv.org/abs/2402.04537.


[3] Long Hu and Qing Zhang. Boundary stabilization of linear hyperbolic integro-differential equation with time-dependent coefficients. 2024, preprint, submitted.


[4] Long Hu and G. Olive. Minimal null control time of some 1D hyperbolic balance laws with constant coefficients and properties of related kernel equations. 2023, preprint, submitted. https://hal.science/hal-04318642.


[5] Long Hu and Guillaume Olive. Equivalent one-dimensional first-order linear hyperbolic systems and range of the minimal null control time with respect to the internal coupling matrix. J. Differential Equations 336 (2022), 654–707.


[6] Long Hu and Guillaume Olive. Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 × 2 linear hyperbolic systems. ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 96, 18 pp.  


[7] Long Hu and Guillaume Olive. Minimal time for the exact controllability of one-dimensional first-order linear hyperbolic systems by one-sided boundary controls. J. Math. Pures Appl. (9) 148 (2021), 24–74.  


[8] Jean-Michel Coron, Long Hu, Guillaume Olive and Peipei Shang. Boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space. J. Differential Equations 271 (2021), 1109–1170.  


[9] Long Hu, Rafael Vazquez, Florent Di Meglio and Miroslav Krstic. Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems. SIAM J. Control Optim. 57 (2019), no. 2, 963–998.  


[10] Florent Di Meglio, Federico Bribiesca Argomedo,  Long Hu and Miroslav Krstic. Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems. Automatica J. IFAC 87 (2018), 281–289.  


[11] Jean-Michel Coron, Long Hu and Guillaume Olive. Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation. Automatica J. IFAC 84 (2017), 95–100.  


[12] Long Hu, Florent Di Meglio, Rafael Vazquez and Miroslav Krstic. Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans. Automat. Control 61 (2016), no. 11, 3301–3314.  


[13] Long Hu, Tatsien Li and Peng Qu. Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations. ESAIM Control Optim. Calc. Var. 22 (2016), no. 4, 1163–1183.  


[14] Jean-Michel Coron, Long Hu and Guillaume Olive. Stabilization and controllability of first-order integro-differential hyperbolic equations. J. Funct. Anal. 271 (2016), no. 12, 3554–3587.


[15] Long Hu and Zhiqiang Wang. On boundary control of a hyperbolic system with a vanishing characteristic speed. ESAIM Control Optim. Calc. Var. 22 (2016), no. 1, 134–147.  


[16] Long Hu. Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems. SIAM J. Control Optim. 53 (2015), no. 6, 3383–3410.


[17] Long Hu and Florent Di Meglio. Finite-time backstepping boundary stabilization of 3×3 hyperbolic systems, in Proceedings of the European Control Conference (ECC) (July 2015) 67–72.


[18] Tatsien Li, Bopeng Rao and Long Hu. Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM Control Optim. Calc. Var. 20 (2014), no. 2, 339–361.  


[19] Long Hu, Tatsien Li and Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Commun. Pure Appl. Anal. 13 (2014), no. 2, 881–901.  


[20] Long Hu, Fanqiong Ji and Ke Wang. Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations. Chinese Ann. Math. Ser. B 34 (2013), no. 4, 479–490.


 

   

一、双曲型偏微分方程的控制理论,国家自然科学基金优秀青年基金,2022-2024,主持;


二、基于边界能控性与镇定性下的耦合双曲系统的最优时间,国家自然科学基金面上基金,2021-2024,主持;


三、控制缺失下的双曲系统的能控性,山东省重点研发计划(软科学),2019-2021,主持;


四、一维非线性耦合双曲系统的边界同步性,国家自然科学基金青年基金,2017-2019,主持;


五、首届山东省青年人才托举工程,山东省科学技术协会,2018-2020,主持;


六、首届博士后创新人才支持计划,人力资源和社会保障部、全国博士后管理委员会,2016-2018,主持


 

版权所有 © 山东大学数学国家高层次人才培养中心鲁ICP备案 05001952号

胡龙

  研究领域:偏微分方程控制理论,特别是双曲系统的镇定性、能控性和同步性


  0531-88369817


  hul@sdu.edu.cn




 





2006年9月 — 2010年6月中国海洋大学数学与应用数学理学学士学位;

2010年9月— 2015年6月复旦大学应用数学理学博士学位;

2013年9月 — 2015年9月法国巴黎第六大学数学类博士。


 


2015年11月至今 山东大学数学学院


 

国家自然科学基金优秀青年科学基金获得者



 

 

[1] Long Hu and Guillaume Olive. The minimal control time for the exact controllability by internal controls of 1D linear hyperbolic balance laws. 2024, preprint, submitted. https://arxiv.org/abs/2403.20113.


[2] Xiaomin Xue, Juanjuan Xu, Huanshui Zhang and Long Hu. LQ Optimal Control of First-Order Hyperbolic PDE Systems with Final State Constraints. 2024, preprint, submitted. https://arxiv.org/abs/2402.04537.


[3] Long Hu and Qing Zhang. Boundary stabilization of linear hyperbolic integro-differential equation with time-dependent coefficients. 2024, preprint, submitted.


[4] Long Hu and G. Olive. Minimal null control time of some 1D hyperbolic balance laws with constant coefficients and properties of related kernel equations. 2023, preprint, submitted. https://hal.science/hal-04318642.


[5] Long Hu and Guillaume Olive. Equivalent one-dimensional first-order linear hyperbolic systems and range of the minimal null control time with respect to the internal coupling matrix. J. Differential Equations 336 (2022), 654–707.


[6] Long Hu and Guillaume Olive. Null controllability and finite-time stabilization in minimal time of one-dimensional first-order 2 × 2 linear hyperbolic systems. ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 96, 18 pp.  


[7] Long Hu and Guillaume Olive. Minimal time for the exact controllability of one-dimensional first-order linear hyperbolic systems by one-sided boundary controls. J. Math. Pures Appl. (9) 148 (2021), 24–74.  


[8] Jean-Michel Coron, Long Hu, Guillaume Olive and Peipei Shang. Boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space. J. Differential Equations 271 (2021), 1109–1170.  


[9] Long Hu, Rafael Vazquez, Florent Di Meglio and Miroslav Krstic. Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems. SIAM J. Control Optim. 57 (2019), no. 2, 963–998.  


[10] Florent Di Meglio, Federico Bribiesca Argomedo,  Long Hu and Miroslav Krstic. Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems. Automatica J. IFAC 87 (2018), 281–289.  


[11] Jean-Michel Coron, Long Hu and Guillaume Olive. Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation. Automatica J. IFAC 84 (2017), 95–100.  


[12] Long Hu, Florent Di Meglio, Rafael Vazquez and Miroslav Krstic. Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans. Automat. Control 61 (2016), no. 11, 3301–3314.  


[13] Long Hu, Tatsien Li and Peng Qu. Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations. ESAIM Control Optim. Calc. Var. 22 (2016), no. 4, 1163–1183.  


[14] Jean-Michel Coron, Long Hu and Guillaume Olive. Stabilization and controllability of first-order integro-differential hyperbolic equations. J. Funct. Anal. 271 (2016), no. 12, 3554–3587.


[15] Long Hu and Zhiqiang Wang. On boundary control of a hyperbolic system with a vanishing characteristic speed. ESAIM Control Optim. Calc. Var. 22 (2016), no. 1, 134–147.  


[16] Long Hu. Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems. SIAM J. Control Optim. 53 (2015), no. 6, 3383–3410.


[17] Long Hu and Florent Di Meglio. Finite-time backstepping boundary stabilization of 3×3 hyperbolic systems, in Proceedings of the European Control Conference (ECC) (July 2015) 67–72.


[18] Tatsien Li, Bopeng Rao and Long Hu. Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM Control Optim. Calc. Var. 20 (2014), no. 2, 339–361.  


[19] Long Hu, Tatsien Li and Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Commun. Pure Appl. Anal. 13 (2014), no. 2, 881–901.  


[20] Long Hu, Fanqiong Ji and Ke Wang. Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations. Chinese Ann. Math. Ser. B 34 (2013), no. 4, 479–490.


 

   

一、双曲型偏微分方程的控制理论,国家自然科学基金优秀青年基金,2022-2024,主持;


二、基于边界能控性与镇定性下的耦合双曲系统的最优时间,国家自然科学基金面上基金,2021-2024,主持;


三、控制缺失下的双曲系统的能控性,山东省重点研发计划(软科学),2019-2021,主持;


四、一维非线性耦合双曲系统的边界同步性,国家自然科学基金青年基金,2017-2019,主持;


五、首届山东省青年人才托举工程,山东省科学技术协会,2018-2020,主持;


六、首届博士后创新人才支持计划,人力资源和社会保障部、全国博士后管理委员会,2016-2018,主持


 

版权所有 © 山东大学数学国家高层次人才培养中心鲁ICP备案 05001952号