ENGLISH

宋健

  研究领域:Stochastic Partial Differential Equations, Random Matrix Theory, Statisctal Mechanical 

           Models.


  


  txjsong@hotmail.com










2006.8 -- 2010.5

堪萨斯大学  理学博士学位



2018-10--至今 数学与交叉科学研究中心

2013.1 -- 2018.8 香港大学

2010.9 -- 2012.12  Rutgers University at New Brunswick


 


[1]  . Hyperbolic Anderson Model 2: Strichartz Estimates and Stratonovich Setting.  2023.

[2]  . HITTING PROBABILITIES OF GAUSSIAN RANDOM FIELDS AND COLLISION OF EIGENVALUES OF RANDOM MATRICES.  2023.

[3]  . Recent advances on eigenvalues of matrix-valued stochastic processes.  Journal of Multivariate Analysis,  188,  2022.

[4]  . Skorohod and Stratonovich integrals for controlled processes.  随机过程及其应用,  150,  569-595, 2022.

[5]  . ENTROPY FLOW AND DE BRUIJN'S IDENTITY FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRA.  PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES,  35,  369, 2021.

[6]  . High-dimensional central limit theorems for a class of particle systems.  ELECTRONIC JOURNAL OF PROBABILITY,  26,  2021.

[7]  . Fractional stochastic wave equation driven by a Gaussian noise rough in space.  BERNOULLI,  26,  2699, 2020.

[8]  . HIGH-DIMENSIONAL LIMITS OF EIGENVALUE DISTRIBUTIONS FOR GENERAL WISHART PROCESS.  ANNALS OF APPLIED PROBABILITY,  30,  1642, 2020.

[9]  . Scaling limit of a directed polymer among a Poisson field of independent walks.  Journal of Funtional Analysis,  281,  2021.

[10]  . On collision of multiple eigenvalues for matrix-valued Gaussian processes.  JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Journal,  502,  2021.

[11]  . HOLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE.  Acta Mathematica Scientia,  39,  717, 2019.

[12]  . Limit theorems for functionals of two independent Gaussian processes.  Stochastic Processes and their Applications,  129,  4791, 2019.

[13]  . Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise.  ELECTRONIC JOURNAL OF PROBABILITY,  24,  2019.

[14]  . Second order Lyapunov exponents for parabolic and hyperbolic Anderson models.  BERNOULLI,  25,  3069, 2019.

[15]  Ding, Jian. A new correlation inequality for Ising models with external fields.  PROBABILITY THEORY AND RELATED FIELDS,  2022.

[16]  Choi, Michael C. H.. ENTROPY FLOW AND DE BRUIJN'S IDENTITY FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRA.  PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES,  35,  369, 2021.

[17]  Shen, Hao. Scaling limit of a directed polymer among a Poisson field of independent walks.  Journal of Funtional Analysis,  281,  2021.

[18]  宋健. High-dimensional central limit theorems for a class of particle systems.  ELECTRONIC JOURNAL OF PROBABILITY,  26,  2021.

[19]  宋健. On collision of multiple eigenvalues for matrix-valued Gaussian processes.  JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Journal,  502,  2021.

[20]  宋健. SPDEs with Colored Gaussian Noise: A Survey.  Communications in Mathematics and Statistics,  6,  481, 2018.

[21]  宋健. HIGH-DIMENSIONAL LIMITS OF EIGENVALUE DISTRIBUTIONS FOR GENERAL WISHART PROCESS.  ANNALS OF APPLIED PROBABILITY,  30,  1642, 2020.

[22]  宋健. Fractional stochastic wave equation driven by a Gaussian noise rough in space.  BERNOULLI,  26,  2699, 2020.

[23]  宋健  and Balan, Raluca M.. HOLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE.  Acta Mathematica Scientia,  39,  717, 2019.

[24]  宋健  and Balan, Raluca M.. Second order Lyapunov exponents for parabolic and hyperbolic Anderson models.  BERNOULLI,  25,  3069, 2019.

[25]  宋健. Limit theorems for functionals of two independent Gaussian processes.  Stochastic Processes and their Applications,  129,  4791, 2019.

[26]  宋健  and Balan, Raluca M.. Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise.  ELECTRONIC JOURNAL OF PROBABILITY,  24,  2019.

[27]  宋健. NONLINEAR FEYNMAN-KAC FORMULAS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH SPACE-TIME NOISE.  SIAM JOURNAL ON MATHEMATICAL ANALYSIS,  51,  955, 2019.

[28]  宋健. SPDEs with Colored Gaussian Noise: A Survey.  Communications in Mathematics and Statistics,  2018.

[29]  X. Chen , Y. Hu , J. Song  and X. Song. Temporal asymptotics for fractional parabolic Anderson model.  Electron. J. Probab. 23 (2018) No. 14, 39pp,

[30]  R. M. Balan  and J. Song. Hyperbolic Anderson Model with space-time homogeneous Gaussian noise.  ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017), no. 2, 799-849.,

[31]  On a class of stochastic partial differential equations.  Stochastic Processes and Their Applications, 127 (2017), no. 1, 37-79.,

[32]  G. Han  and J. Song. Extensions of the I-MMSE Relation..  IEEE Transactions on Information Theory, 62 (2016), no. 10, 5422-5445.,

[33]  C. Lee  and J. Song. On drift parameter estimation for reflected fractional Ornstein- Uhlenbeck processes.  Stochastics 88 (2016), no. 5, 751-778,

[34]  X. Chen , Y. Hu , J. Song  and F. Xing. Exponential asymptotics for time-space Hamiltonians..  Ann. Inst. Henri Poincar Probab. Stat. 51 (2015), no. 4, 1529-1561.,

[35]  Y. Hu , C. Lee , M. Lee  and J. Song. Parameter estimation for reflected Ornstein-Uhlenbeck processes with discrete observations.  Statistical Inference for Stochastic Processes, 18 (2015), no. 3, 279-291.,

[36]  Y. Hu  and J. Song. Parameter estimation for fractional Ornstein-Uhlenbeck processes with discrete observations..  Malliavin calculus and stochastic analysis, 427-442, Springer Proc. Math. Stat., 34, Springer, New York, 2013.,

[37]  Y. Hu , D. Nualart  and J. Song. The 4/3-variation of the derivative of the self-intersection Brownian local time and related process.  J. Theoret. Probab., 27 (2014), no. 3, 789-825.,

[38]  Y. Hu , D. Nualart  and J. Song. A nonlinear stochastic heat equation: H ̈older continuity and smoothness of the density of the solu.  Stochastic Processes and their Applications, Vol 123, Issue 3, March 2013, Pages 1083-1103.,

[39]  Y. Han , Y. Hu  and J. Song. Maximum principle for controlled systems driven by fractional brownian motions.  Appl. Math. Optim. 67 (2013), no. 2, 279-322,

[40]  Asymptotic behavior of the solution of heat equation driven by fractional white noise..  Statistics and Probability Letters 2012. 82 no. 3, 614-620.,

[41]  Y. Hu , D. Nualart  and J. Song. Fractional martingales and characterization of the fractional Brownian motion.  The Annals of Probability 2009, Vol. 37, No. 6, 2404-2430,

[42]  Y. Hu , D. Ocone  and J. Song. Some results on backward stochastic differential equations driven by fractional Brownian motions.  Stochastic analysis and applications to fi- nance, 225-242,

[43]  J. Song , D. Nualart  and Y. Hu. Feynman-Kac formula for heat equation driven by a fractional white noise.  The Annals of Probability 2011, Vol. 39, No. 1, 291-326.,

[44]  Y. Hu , D. Nualart  and J. Song. Integral representation of renormalized self-intersection local times.  Journal of Functional Analysis,  2507-2532, 2008.

 


[1]复杂随机系统控制相关问题研究,2023/12/01,2028/11/30,

[2]伊辛模型的数学理论,2023/01/01,2024/12/31,

[3](包干项目)拟独立序列的极限定理及其在金融中的应用,2021/12/23,2024/12/31,

[4]部分可观测平均场正倒向随机系统的控制与博弈,2020/12/16,2023/12/31,

[5]关于矩阵值随机过程特征值的若干研究,2020/09/18,2024/12/31,

[6]非线性随机系统的控制与对策,2019/11/18,2024/12/31,


版权所有 © 山东大学数学国家高层次人才培养中心鲁ICP备案 05001952号

宋健

  研究领域:Stochastic Partial Differential Equations, Random Matrix Theory, Statisctal Mechanical 

           Models.


  


  txjsong@hotmail.com










2006.8 -- 2010.5

堪萨斯大学  理学博士学位



2018-10--至今 数学与交叉科学研究中心

2013.1 -- 2018.8 香港大学

2010.9 -- 2012.12  Rutgers University at New Brunswick


 


[1]  . Hyperbolic Anderson Model 2: Strichartz Estimates and Stratonovich Setting.  2023.

[2]  . HITTING PROBABILITIES OF GAUSSIAN RANDOM FIELDS AND COLLISION OF EIGENVALUES OF RANDOM MATRICES.  2023.

[3]  . Recent advances on eigenvalues of matrix-valued stochastic processes.  Journal of Multivariate Analysis,  188,  2022.

[4]  . Skorohod and Stratonovich integrals for controlled processes.  随机过程及其应用,  150,  569-595, 2022.

[5]  . ENTROPY FLOW AND DE BRUIJN'S IDENTITY FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRA.  PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES,  35,  369, 2021.

[6]  . High-dimensional central limit theorems for a class of particle systems.  ELECTRONIC JOURNAL OF PROBABILITY,  26,  2021.

[7]  . Fractional stochastic wave equation driven by a Gaussian noise rough in space.  BERNOULLI,  26,  2699, 2020.

[8]  . HIGH-DIMENSIONAL LIMITS OF EIGENVALUE DISTRIBUTIONS FOR GENERAL WISHART PROCESS.  ANNALS OF APPLIED PROBABILITY,  30,  1642, 2020.

[9]  . Scaling limit of a directed polymer among a Poisson field of independent walks.  Journal of Funtional Analysis,  281,  2021.

[10]  . On collision of multiple eigenvalues for matrix-valued Gaussian processes.  JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Journal,  502,  2021.

[11]  . HOLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE.  Acta Mathematica Scientia,  39,  717, 2019.

[12]  . Limit theorems for functionals of two independent Gaussian processes.  Stochastic Processes and their Applications,  129,  4791, 2019.

[13]  . Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise.  ELECTRONIC JOURNAL OF PROBABILITY,  24,  2019.

[14]  . Second order Lyapunov exponents for parabolic and hyperbolic Anderson models.  BERNOULLI,  25,  3069, 2019.

[15]  Ding, Jian. A new correlation inequality for Ising models with external fields.  PROBABILITY THEORY AND RELATED FIELDS,  2022.

[16]  Choi, Michael C. H.. ENTROPY FLOW AND DE BRUIJN'S IDENTITY FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRA.  PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES,  35,  369, 2021.

[17]  Shen, Hao. Scaling limit of a directed polymer among a Poisson field of independent walks.  Journal of Funtional Analysis,  281,  2021.

[18]  宋健. High-dimensional central limit theorems for a class of particle systems.  ELECTRONIC JOURNAL OF PROBABILITY,  26,  2021.

[19]  宋健. On collision of multiple eigenvalues for matrix-valued Gaussian processes.  JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Journal,  502,  2021.

[20]  宋健. SPDEs with Colored Gaussian Noise: A Survey.  Communications in Mathematics and Statistics,  6,  481, 2018.

[21]  宋健. HIGH-DIMENSIONAL LIMITS OF EIGENVALUE DISTRIBUTIONS FOR GENERAL WISHART PROCESS.  ANNALS OF APPLIED PROBABILITY,  30,  1642, 2020.

[22]  宋健. Fractional stochastic wave equation driven by a Gaussian noise rough in space.  BERNOULLI,  26,  2699, 2020.

[23]  宋健  and Balan, Raluca M.. HOLDER CONTINUITY FOR THE PARABOLIC ANDERSON MODEL WITH SPACE-TIME HOMOGENEOUS GAUSSIAN NOISE.  Acta Mathematica Scientia,  39,  717, 2019.

[24]  宋健  and Balan, Raluca M.. Second order Lyapunov exponents for parabolic and hyperbolic Anderson models.  BERNOULLI,  25,  3069, 2019.

[25]  宋健. Limit theorems for functionals of two independent Gaussian processes.  Stochastic Processes and their Applications,  129,  4791, 2019.

[26]  宋健  and Balan, Raluca M.. Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise.  ELECTRONIC JOURNAL OF PROBABILITY,  24,  2019.

[27]  宋健. NONLINEAR FEYNMAN-KAC FORMULAS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH SPACE-TIME NOISE.  SIAM JOURNAL ON MATHEMATICAL ANALYSIS,  51,  955, 2019.

[28]  宋健. SPDEs with Colored Gaussian Noise: A Survey.  Communications in Mathematics and Statistics,  2018.

[29]  X. Chen , Y. Hu , J. Song  and X. Song. Temporal asymptotics for fractional parabolic Anderson model.  Electron. J. Probab. 23 (2018) No. 14, 39pp,

[30]  R. M. Balan  and J. Song. Hyperbolic Anderson Model with space-time homogeneous Gaussian noise.  ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017), no. 2, 799-849.,

[31]  On a class of stochastic partial differential equations.  Stochastic Processes and Their Applications, 127 (2017), no. 1, 37-79.,

[32]  G. Han  and J. Song. Extensions of the I-MMSE Relation..  IEEE Transactions on Information Theory, 62 (2016), no. 10, 5422-5445.,

[33]  C. Lee  and J. Song. On drift parameter estimation for reflected fractional Ornstein- Uhlenbeck processes.  Stochastics 88 (2016), no. 5, 751-778,

[34]  X. Chen , Y. Hu , J. Song  and F. Xing. Exponential asymptotics for time-space Hamiltonians..  Ann. Inst. Henri Poincar Probab. Stat. 51 (2015), no. 4, 1529-1561.,

[35]  Y. Hu , C. Lee , M. Lee  and J. Song. Parameter estimation for reflected Ornstein-Uhlenbeck processes with discrete observations.  Statistical Inference for Stochastic Processes, 18 (2015), no. 3, 279-291.,

[36]  Y. Hu  and J. Song. Parameter estimation for fractional Ornstein-Uhlenbeck processes with discrete observations..  Malliavin calculus and stochastic analysis, 427-442, Springer Proc. Math. Stat., 34, Springer, New York, 2013.,

[37]  Y. Hu , D. Nualart  and J. Song. The 4/3-variation of the derivative of the self-intersection Brownian local time and related process.  J. Theoret. Probab., 27 (2014), no. 3, 789-825.,

[38]  Y. Hu , D. Nualart  and J. Song. A nonlinear stochastic heat equation: H ̈older continuity and smoothness of the density of the solu.  Stochastic Processes and their Applications, Vol 123, Issue 3, March 2013, Pages 1083-1103.,

[39]  Y. Han , Y. Hu  and J. Song. Maximum principle for controlled systems driven by fractional brownian motions.  Appl. Math. Optim. 67 (2013), no. 2, 279-322,

[40]  Asymptotic behavior of the solution of heat equation driven by fractional white noise..  Statistics and Probability Letters 2012. 82 no. 3, 614-620.,

[41]  Y. Hu , D. Nualart  and J. Song. Fractional martingales and characterization of the fractional Brownian motion.  The Annals of Probability 2009, Vol. 37, No. 6, 2404-2430,

[42]  Y. Hu , D. Ocone  and J. Song. Some results on backward stochastic differential equations driven by fractional Brownian motions.  Stochastic analysis and applications to fi- nance, 225-242,

[43]  J. Song , D. Nualart  and Y. Hu. Feynman-Kac formula for heat equation driven by a fractional white noise.  The Annals of Probability 2011, Vol. 39, No. 1, 291-326.,

[44]  Y. Hu , D. Nualart  and J. Song. Integral representation of renormalized self-intersection local times.  Journal of Functional Analysis,  2507-2532, 2008.

 


[1]复杂随机系统控制相关问题研究,2023/12/01,2028/11/30,

[2]伊辛模型的数学理论,2023/01/01,2024/12/31,

[3](包干项目)拟独立序列的极限定理及其在金融中的应用,2021/12/23,2024/12/31,

[4]部分可观测平均场正倒向随机系统的控制与博弈,2020/12/16,2023/12/31,

[5]关于矩阵值随机过程特征值的若干研究,2020/09/18,2024/12/31,

[6]非线性随机系统的控制与对策,2019/11/18,2024/12/31,


版权所有 © 山东大学数学国家高层次人才培养中心鲁ICP备案 05001952号