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Abstract. In his notebooks, Ramanujan gave the values of over 100 class
invariants which he had calculated. Many had been previously calculated
by Heinrich Weber, but approximately half of them had not been heretofore
determined. G. N. Watson wrote several papers devoted to the calculation of
class invariants, but his methods were not entirely rigorous. Up until the past
few years, eighteen of Ramanujan’s class invariants remained to be verified.
Five were verified by the authors in a recent paper. For the remaining class
invariants, in each case, the associated imaginary quadratic field has class
number 8, and moreover there are two classes per genus. The authors devised
three methods to calculate these thirteen class invariants. The first depends
upon Kronecker’s limit formula, the second employs modular equations, and
the third uses class field theory to make Watson’s “empirical method”rigorous.

1. Introduction

So that we may define Ramanujan’s class invariants, set

(a; q)∞ =

∞∏
n=0

(1 − aqn), |q| < 1,

and

χ(q) = (−q; q2)∞.(1.1)

If q = exp(−π√n), the two class invariants Gn and gn are defined by

Gn := 2−1/4q−1/24χ(q) and gn := 2−1/4q−1/24χ(−q).(1.2)

In the notation of Weber [36], Gn =: 2−1/4f(
√−n) and gn =: 2−1/4f1(

√−n). It is
well–known that Gn and gn are algebraic; for example, see Cox’s book [11, p. 214,
Theorem 10.23; p. 257, Theorem 12.17].

At scattered places in his first notebook [23], Ramanujan recorded the values for
107 class invariants. On pages 294–299 in his second notebook [23], Ramanujan
gave a table of values for 77 class invariants, three of which are not found in the
first notebook. Since the second notebook is an enlarged revision of the first, it is
unclear why Ramanujan failed to record 33 class invariants that he offered in the
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first notebook. By the time Ramanujan wrote his paper [22], [24, pp. 23–39], he
was aware of Weber’s work [36], and so his table of 46 class invariants in [22] does
not contain any that are found in Weber’s book [36]. Except for G325 and G363, all
of the remaining values are found in Ramanujan’s notebooks.

In two papers [30], [31], G. N. Watson proved 24 of Ramanujan’s class invariants
from [22]. In the first [30], Watson devised an “empirical process” to calculate 14
of the 24 invariants, while in the second [31], he employed modular equations to
prove 10 invariants. In another paper [29], Watson established Ramanujan’s value
for G1353, communicated by him in his first letter to Hardy [24, p. xxix], and also
stated in [22]. Watson wrote four further papers [32]–[35] on the calculation of
class invariants. Among the dozens of invariants calculated by Watson in these
papers were three previously unproved invariants found in Ramanujan’s paper [22],
as well as 11 invariants of Ramanujan that had been previously verified. Thus,
after Watson’s work, 18 invariants of Ramanujan from his paper and notebooks
[23] remained to be verified.

The authors established five of these invariants in [4]. For each of these five val-
ues, n is a multiple of 9, and proofs were effected by formulas relating G9n with Gn

and g9n with gn. As a bonus, the latter two formulas led to closed form evaluations
of Ramanujan’s cubic continued fraction at the arguments ± exp(−π√n).

The purpose of this paper is to establish the remaining 13 values, each forGn, n =
65, 69, 77, 141, 145, 205, 213, 217, 265, 301, 445, 505, 553, claimed by Ramanujan.
Quite remarkably, the class number for each of the 13 imaginary quadratic fields
Q(
√−n) equals 8. Moreover, there are precisely two classes per genus in each case.

Our first proofs employ the Kronecker limit formula, which is used to find repre-
sentations for certain products of Dedekind eta–functions in terms of fundamental
units; see Theorems 3.1, 3.2, and 5.2. Each of the 13 values of n is a product of
a small prime (3, 5, or 7) and a larger prime. Thus, our proofs, given in Sections
2–4, also crucially employ certain modular equations of Ramanujan of degrees 3, 5,
and 7. It is highly unlikely that Ramanujan was familiar with the Kronecker limit
formula and the arithmetic of quadratic fields, and so our proofs certainly are not
those found by Ramanujan. However, Ramanujan obviously discerned some unique
arithmetical properties in these instances, and it would be fascinating to discover
Ramanujan’s approach.

To make clearer the connection between modular equations and class invariants,
we first give a precise definition of a modular equation. Let K,K ′, L, and L′

denote complete elliptic integrals of the first kind associated with the moduli k,
k′ :=

√
1− k2, `, and `′ :=

√
1− `2, respectively, where 0 < k, ` < 1. Suppose that

n
K ′

K
=
L′

L
(1.3)

for some positive rational number n. If n is a positive integer, a relation between
k and ` induced by (1.3) is called a modular equation of degree n. Following Ra-
manujan, set

α = k2 and β = `2.

We often say that β has degree n over α. As usual, in the theory of elliptic functions,
set

q := exp(−πK ′/K).(1.4)
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Note that if K ′/K =
√
n (where n is not necessarily the degree of the modular

equation), then

q = exp(−π√n),(1.5)

which is the value of q in our definition (1.2) of Gn. Since χ(q) =
21/6{α(1 − α)q}−1/24 [1, p. 124], it follows from (1.1), (1.2), and (1.5) that

Gn = {4α(1− α)}−1/24.(1.6)

Lastly, we recall that if

ϕ(q) =

∞∑
n=−∞

qn
2

, |q| < 1,

then [1, p. 102]

ϕ(q) =
π

2
K(
√
α),(1.7)

when q is given by (1.4).
Ramanujan used modular equations to calculate only a couple of simple invari-

ants in [22]. This fact and the sentence, “The values of Gn and g2n are got from the
same modular equation.” [22], [24, p. 25] are the only clues to his methods that Ra-
manujan provided for us. It would seem that if Ramanujan had employed another
type of reasoning, he would have dropped some hint about it. As mentioned earlier,
Watson [31] used modular equations to establish some of Ramanujan’s invariants.
However, for his calculations of Gn, it was important that n be a square or a simple
multiple of a square. We have been able to prove six of the thirteen values for Gn,
namely, for n = 65, 69, 77, 141, 145, 213, by using modular equations. As will be
seen in our proofs in Section 6, we need some new ideas to effect proofs of these
six invariants via modular equations. To prove the remaining seven invariants by
employing modular equations, we would need modular equations of degrees 31, 41,
43, 53, 79, 89, and 101. Apparently, only for degree 31 did Ramanujan derive a
modular equation, for he recorded no modular equations for the other six degrees
in his notebooks. Thus, Ramanujan’s methods appear to be even more elusive.

Watson [30, p. 82] opined that “I believe that fourteen were obtained by Ra-
manujan by means of the empirical process which I described in the discussion of
G1353.” As indicated in our paper [4], we believe that Ramanujan found some of
these values by the method of [4]. We are not so confident that Ramanujan used this
empirical process, for which Watson offered little explanation. In fact, Watson’s
“empirical process” is not rigorous. However, in Section 7 we shall use class field
theory to make Watson’s procedure rigorous for a large class of invariants including
those 13 invariants examined in this paper, and we use the process to calculate two
new invariants as well.

2. Kronecker’s Limit Formula and Background

Let Q(u, v) := y−1(u + vz)(u + vz̄), where z = x + iy with y > 0. The Epstein
zeta–function ζQ(s) is defined for σ = Re s > 1 by

ζQ(s) :=
∑
u,v

{Q(u, v)}−s,(2.1)

where the sum is over all pairs of integers (u, v) except (0, 0). It is well known that
ζQ(s) can be analytically continued to the entire complex s−plane, where ζQ(s) is
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analytic except for a simple pole at s = 1. The Kronecker limit formula provides
the constant term in the Laurent expansion about s = 1. More precisely,

ζQ(s) =
π

s− 1
+ 2π

(
γ − log 2− log

(√
y|η(z)|2))+O(s− 1),(2.2)

where γ denotes Euler’s constant, and η(z) is the Dedekind eta–function defined
by

η(z) := q1/24(q; q)∞ =: q1/24f(−q), q = e2πiz, y > 0,(2.3)

where the notation f(−q) is that used by Ramanujan in his notebooks [23].
Next, let K be an algebraic number field over the rational numbers. Let N(A)

denote the norm of an ideal A. Then the Dedekind zeta–function for K is defined
by

ζK(s) :=
∑
A

(N(A))
−s

, σ > 1,

where the sum is over all non–zero integral ideals A of K. Let CK denote the ideal
class group of K. Then the Dedekind zeta–function for an ideal class A of CK is
defined by

ζ(s, A) :=
∑
A∈A

(N(A))
−s

, σ > 1.

If χ denotes an ideal class character, then the L−series for K is given, for σ > 1,
by

LK(s, χ) :=
∑
A

χ(A) (N(A))
−s

=
∑
A

χ(A)ζ(s, A),(2.4)

where the former sum is over all non–zero integral ideals A of K, and the latter
sum is over all ideal classes A of CK .

In the sequel we assume that K is a quadratic field. It is well known that [27,
p. 58]

lim
s→1

(s− 1)ζK(s) = hκ,(2.5)

where h is the class number of K, i.e., h = |CK |, and where

κ :=


2π

w
√−d, if K is imaginary,

2 log ε√
d

, if K is real.

(2.6)

Here w is the number of roots of unity in K, d is the discriminant of K, and ε is
the fundamental unit in K.

Let

Ld(s) :=

∞∑
n=1

(
d

n

)
n−s, σ > 1,

where
(
d
n

)
is the Kronecker symbol. Then [27, p. 58]

ζK(s) = ζ(s)Ld(s),(2.7)

where ζ(s) denotes the Riemann zeta–function.
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Now let d = d1d2, where d1 > 1 and, for i = 1, 2, di ≡ 1 (mod 4) or di ≡ 0
(mod 4). Let P denote a prime ideal in K. Then a Gauss genus character χ is
defined by

χ(P) =


(

d1

N(P)

)
, if N(P) - d1,(

d2

N(P)

)
, if N(P)|d1,

where
(

di
N(P)

)
again denotes the Kronecker symbol. Note that N(P) - d2 if

N(P)|d1. This definition can be extended to all ideals of K by multiplicativity. It
is well known that the genus characters form an abelian group, denoted by G(K),
of order 2k−1, where k is the number of distinct prime divisors of d.

Next define

G0 := {A ∈ CK : χ(A) = 1, χ ∈ G(K)},
which is named the principal genus. Clearly, G0 is a subgroup of CK , and CK/G0

is called the genus group. Furthermore, CK/G0
∼= G(K). Obviously, A1 and A2

are in the same genus if and only if χ(A1) = χ(A2) for each χ ∈ G(K).
Kronecker [27, p. 62, Theorem 4] proved that, for a genus character χ of K

corresponding to the decomposition d = d1d2,

LK(s, χ) = Ld1(s)Ld2(s).(2.8)

Thus, by (2.4) and (2.8),

Ld1(s)Ld2(s) =
∑
A∈CK

χ(A)ζ(s, A).

For a fixed non–zero integral ideal B ∈ A−1,

ζ(s, A) = N(B)s
∑
A∈A

(N(AB))−s = N(B)s
∑

λ∈B/U

(N(λ))−s, σ > 1,(2.9)

where U is the group of units in K. Now assume that K = Q(
√−m) is an imaginary

quadratic field, and so m is a squarefree positive integer. Recalling that w is the
number of roots of unity in K, we see that, from (2.9),

ζ(s, A) =
N(B)s

w

∑
λ∈B
λ6=0

(N(λ))−s, σ > 1.(2.10)

Let

Ω =

{√−m, if −m ≡ 2, 3 (mod 4),

(1 +
√−m)/2, if −m ≡ 1 (mod 4).

Then

d =

{−4m, if −m ≡ 2, 3 (mod 4),

−m, if −m ≡ 1 (mod 4).

It is known [15] that each ideal class contains primitive ideals which are Z–modules
of the form B = [a, b+Ω], where a and b are rational integers, a > 0, a|N(b+Ω), |b| ≤
a/2, a is the smallest positive integer in B, and N(B) = a.
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Let z = (b+ Ω)/a. Then, for λ = ua+ v(b+ Ω),

N(λ) = (ua+ v(b+ Ω))(ua + v(b + Ω̄))

= a2(u+ vz)(u+ vz̄)

=
a
√|d|
2

(√|d|
2a

)−1

(u + vz)(u+ vz̄).

(2.11)

Thus, for z = (b+ Ω)/a and y = Im z =
√|d|/(2a),

Q(u, v) =

(√|d|
2a

)−1

(u+ vz)(u+ vz̄).

And, from (2.1), (2.10), and (2.11),

ζ(s, A) =
1

w

(
2√|d|
)s

ζQ(s).

Thus, from (2.2),

ζ(s, A) =
1

w

(
2√|d|
)s(

π

s− 1
+ 2πγ − 2π log 2 +

π

2
log
√
|d|
)

− 2π

w

(
2√|d|
)s(

−1

2
log(2a) + log |η(z)|2

)
+O(s− 1).

(2.12)

Since, for any nonprincipal genus character χ,∑
A∈CK

χ(A) = 0,

it follows from (2.4) and (2.12) that

LK(s, χ) = −2π

w

(
2√|d|
)s ∑

A∈CK
χ(A)

(
−1

2
log a+ log |η(z)|2

)
+O(s− 1).

(2.13)

Recall that in the decomposition d = d1d2 we assume that d1 > 1 and d2 < 0.
Let Ki = Q(

√
di), i = 1, 2. By (2.7),

lim
s→1

(s− 1)ζKi(s) = Ldi(1), i = 1, 2.

Then, by (2.5) and (2.6),

Ld1(1) =
2h1 log ε1√

d1

(2.14)

and

Ld2(1) =
2h2π

w2

√|d2|
,(2.15)

where hi is the class number of Ki, i = 1, 2, ε1 is the fundamental unit of K1, and
w2 is the number of roots of unity in K2. Thus, setting s = 1 in (2.13) and using
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(2.8), we deduce that

Ld1(1)Ld2(1) = − 4π

w
√|d| ∑

A∈CK
χ(A)

(
−1

2
log a + log |η(z)|2

)
.(2.16)

Thus, setting

F (A) = |η(z)|2/√a,(2.17)

where z = (b + Ω)/a, with [a, b + Ω] ∈ A−1, we conclude from (2.14)–(2.17) that,
for χ nonprincipal [27, p. 72],

wh1h2 log ε1
w2

= −
∑
A∈CK

χ(A) logF (A),

or

ε
wh1h2/w2

1 =
∏

A∈CK
F (A)−χ(A).(2.18)

We remark that (2.18) was utilized by K. G. Ramanathan [17], [18], [19], [20], [21]
to calculate class invariants, values of the Rogers–Ramanujan continued fraction,
and certain other invariants of Ramanujan.

3. Two Primary Theorems

Let τ =
√−m. Then, by (1.1) and (1.2), it is easily seen that∣∣∣∣∣∣∣∣

η

(
τ + 1

2

)
η(τ)

∣∣∣∣∣∣∣∣ = 21/4Gm.(3.1)

Equalities (2.18) and (3.1) are the key ingredients for deriving formulas that will
enable us to calculateGm. In this section, we consider two different genus structures,
and the two theorems that we prove can be utilized to determine Gm for m = 65,
69, 77, 141, 145, 205, 213, 265, 301, 445, 505. For m = 217, 553, the genus
structure is of a third type, and this type will be examined in Section 5. In each
case, K = Q(

√−m) has class number 8, and the number of genera equals 4. Thus,
each genus contains exactly two ideal classes. Also note that A and A−1 are clearly
in the same genus.

Throughout this paper, for simplicity, we use the notation for a primitive ideal
to denote the ideal class containing it; this abuse of notation should not cause
difficulty.

Theorem 3.1. Let m ≡ 1 (mod 4), where m is a positive squarefree integer with
prime divisor p. Let K = Q(

√−m) be an imaginary quadratic field such that each
genus contains exactly two ideal classes and such that the principal genus G0 con-
tains the classes [1,Ω] and [2p, p + Ω]. Let G1 be a nonprincipal genus containing
the two classes [2, 1 + Ω] and [p,Ω]. Then(

Gm

Gm/p2

)h/2
=

∏
χ(G1)=−1

ε
wh1h2/w2

1 ,

where h, h1, and h2 are the class numbers of K,Q(
√
d1), and Q(

√
d2), respectively,

w and w2 are the numbers of roots of unity in K and Q(
√
d2), respectively, ε1 is the
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fundamental unit in Q(
√
d1), and the product is over all characters χ (with χ(G1) =

−1), associated with the decomposition d = d1d2, and therefore d1, d2, h1, h2, w2,
and ε1 are dependent on χ.

Proof. Each of the ideals [1,Ω], [2p, p + Ω], [2, 1 + Ω], and [p,Ω] is ambiguous. If
A ∈ A is any one of these ideals, then A ∼ A−1, A = A−1, and A ∈ A−1.

For any ideal class B /∈ G0 ∪G1, it is not difficult to see that [20, p. 77]∑
χ(G1)=−1

χ(B) = 0,

which implies that ∏
χ(G1)=−1

F (B)−χ(B) = 1,

where F (B) is defined by (2.17). Therefore, by (2.18),

∏
χ(G1)=−1

ε
wh1h2/w2

1 =
∏

χ(G1)=−1

∏
A∈G0∪G1

F (A)−χ(A) =
∏

A∈G0∪G1

F (A)−χ(A)h/4,

(3.2)

since the number of genus characters equals h/2, and so the number of genus char-
acters with χ(G1) = −1 is h/4.

Let A0 = [1,Ω], A′0 = [2p, p+Ω], A1 = [2, 1+Ω], and A′1 = [p,Ω]. Then, by (3.2),∏
χ(G1)=−1

ε
wh1h2/w2

1 =

(
F (A1)/F (A0)

F (A′0)/F (A′1)

)h/4
.(3.3)

By (2.17) and (3.1),

F (A1)

F (A0)
=

η2(Ω+1
2 )/

√
2

η2(Ω)
= G2

m.(3.4)

Let Ω′ = Ω/p =
√−m/p2. Again, by (2.17) and (3.1),

F (A′0)
F (A′1)

=
η2(Ω+p

2p )/
√

2p

η2(Ω
p )

=
η2(Ω′+1

2 )/
√

2

η2(Ω′)
= G2

m/p2 .(3.5)

The theorem now follows from (3.3)–(3.5).

Theorem 3.2. Let m ≡ 1 (mod 4), where m is a positive squarefree integer with
prime divisor p. Let K = Q(

√−m) be an imaginary quadratic field such that each
genus contains exactly two ideal classes and such that the principal genus G0 con-
tains the classes [1,Ω] and [p,Ω]. Let G1 be a nonprincipal genus containing the
two classes [2, 1 + Ω] and [2p, p+ Ω]. Then(

GmGm/p2
)h/2

=
∏

χ(G1)=−1

ε
wh1h2/w2

1 ,

where h, h1, and h2 are the class numbers of K,Q(
√
d1), and Q(

√
d2), respectively,

w and w2 are the numbers of roots of unity in K and Q(
√
d2), respectively, ε1 is the

fundamental unit in Q(
√
d1), and the product is over all characters χ (with χ(G1) =

−1), associated with the decomposition d = d1d2, and therefore d1, d2, h1, h2, w2,
and ε1 are dependent on χ.
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The proof of Theorem 3.2 is analogous to that for Theorem 3.1, and so we omit
it.

We say that m is of the first kind or second kind according as it satisfies the
conditions of Theorem 3.1 or Theorem 3.2, respectively.

It is not difficult to show that [1,Ω], [2, 1 + Ω], [p,Ω], and [2p, p + Ω] are repre-
sentatives of different ideal classes [15].

Before commencing our calculations we need three modular equations of Ra-
manujan [1, pp. 231, 282, 315].

Lemma 3.3 (Modular Equation of Degree 3). Let

P = {16αβ(1− α)(1 − β)}1/8 and Q =

(
β(1 − β)

α(1 − α)

)1/4

.

Then

Q+
1

Q
+ 2

√
2

(
P − 1

P

)
= 0.

Lemma 3.4 (Modular Equation of Degree 5). Let

P = {16αβ(1− α)(1 − β)}1/12 and Q =

(
β(1− β)

α(1− α)

)1/8

.

Then

Q+
1

Q
+ 2

(
P − 1

P

)
= 0.

Lemma 3.5 (Modular Equation of Degree 7). Let

P = {16αβ(1− α)(1 − β)}1/8 and Q =

(
β(1 − β)

α(1 − α)

)1/6

.

Then

Q+
1

Q
+ 7 = 2

√
2

(
P +

1

P

)
.

Let q = exp(−π/√n). Since Gn = G1/n [22], [24, p. 23], by (1.6), Gn =

{4α(1 − α)}−1/24. If β has degree p over α, then Gn/p2 = Gp2/n =

{4β(1− β)}−1/24. In summary, we can express the equalities of Lemmas 3.3–3.5 in
terms of Gn and Gn/p2 , p = 3, 5, 7, respectively, by employing the formulas

Gn = {4α(1− α)}−1/24 and Gn/p2 = {4β(1− β)}−1/24.(3.6)

The class numbers cited below for |d| < 500 can be found in tables in the texts
of Borevich and Shafarevich [6, pp. 422–426], H. Cohen [10, pp. 503–509], and for
0 < d < 10, 000 in the book of D.A. Buell [8, pp. 224–234]. Lists of fundamental
units can be found in [6] (for d ≤ 101), the book by M. Pohst and H. Zassenhaus
[16, pp. 432–435] (up to d ≤ 299), and the tables of R. Kortum and G. McNiel [14]
(up to d = 10, 000). In Cohen’s book [10, pp. 262–274], there is a table providing

the ideal class structure for Q(
√−d), d ≤ 97 and for Q(

√
d), d ≤ 97.
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4. Calculations of 11 Class Invariants

Theorem 4.1.

G65 =

(√
13 + 3

2

)1/4(√
5 + 1

2

)1/4
√9 +

√
65

8
+

√
1 +

√
65

8

1/2

.

Proof. The following table summarizes the needed information about ideal classes
and their characters.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −260 χ0 G0
[1,Ω]

[10, 5 + Ω]
1 1
1 1

5 −52 χ1 G1
[2, 1 + Ω]

[5,Ω]
1 −1
−1 1

1 2 2

√
5 + 1

2

13 −20 χ2 G2
[3, 1 + Ω]

[3,−1 + Ω]
1 −1
1 −1

1 2 2

√
13 + 3

2

65 −4 χ3 G3
[6, 1 + Ω]

[6,−1 + Ω]
1 1
−1 −1

Note that 65 is of the first kind. Applying Theorem 3.1 with h = 8 and w = 2,
we find that (

G65

G13/5

)4

=

(√
5 + 1

2

)2(√
13 + 3

2

)2

.(4.1)

Let Q = (G65/G13/5)
3 and P = (G65G13/5)

−2. Then, by (4.1),

Q =

(√
5 + 1

2

)3/2(√
13 + 3

2

)3/2

= (
√

5 + 2)1/2(5
√

13 + 18)1/2.(4.2)

By Lemma 3.4,

P−1 =
(Q +Q−1) +

√
(Q +Q−1)2 + 16

4
.(4.3)

Now, by (4.2),

(Q+Q−1)2 + 16 = Q2 +Q−2 + 18

= (
√

5 + 2)(5
√

13 + 18) + (
√

5− 2)(5
√

13− 18) + 18

= (5 +
√

65)2,

(4.4)

and, by (4.4),

Q+Q−1 =

√
74 + 10

√
65.(4.5)

Thus, by (4.3) and (4.4),

P−1 =
1

4

√
74 + 10

√
65 +

1

4
(5 +

√
65).(4.6)
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Thus, by (4.2) and (4.6),

G65 = Q1/6P−1/4

=

(√
5 + 1

2

)1/4(√
13 + 3

2

)1/4(
1

4

√
74 + 10

√
65 +

1

4
(5 +

√
65)

)1/4

.

Thus, it remains to show that

1

4

√
74 + 10

√
65 +

1

4
(5 +

√
65) =

√9 +
√

65

8
+

√
1 +

√
65

8

2

,

which is easily shown by a routine calculation.

Theorem 4.2.

G69 =

(
5 +

√
23√

2

)1/12(
3
√

3 +
√

23

2

)1/8
√6 + 3

√
3

4
+

√
2 + 3

√
3

4

1/2

.

Proof. We summarize the needed information in the following table.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −276 χ0 G0
[1,Ω]

[6, 3 + Ω]
1 1
1 1

92 −3 χ1 G1
[2, 1 + Ω]

[3,Ω]
1 −1
1 −1

1 1 6 24 + 5
√

23

69 −4 χ2 G2
[5, 1 + Ω]

[5,−1 + Ω]
1 −1
−1 1

1 1 4
25 + 3

√
69

2

12 −23 χ3 G3
[7, 1 + Ω]

[7,−1 + Ω]
1 1
−1 −1

We apply Theorem 3.1 with h = 8 and w = 2, as 69 is of the first kind. Thus,(
G69

G23/3

)4

= (24 + 5
√

23)1/3

(
25 + 3

√
69

2

)1/2

.(4.7)

Let Q = (G69/G23/3)
6 and P = (G69G23/3)

−3. By (4.7),

Q =(24 + 5
√

23)1/2

(
25 + 3

√
69

2

)3/4

=

(
5 +

√
23√

2

)
(36

√
3 + 13

√
23)1/2 =

(
5 +

√
23√

2

)(
3
√

3 +
√

23

2

)3/2

.

(4.8)

By Lemma 3.3,

P−1 =
1

4
√

2
(Q +Q−1) +

1

4
√

2

√
(Q +Q−1)2 + 32.(4.9)

From (4.8),

Q +Q−1 =
√
Q2 +Q−2 + 2 =

√
16(187 + 108

√
3),(4.10)
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and, from (4.10),

(Q+Q−1)2 + 32 = 16(9 + 6
√

3)2.

Putting these calculations in (4.9), we find that

P−1 =
1√
2

√
187 + 108

√
3 +

1√
2
(9 + 6

√
3).(4.11)

By (4.8),

G69 = Q1/12P−1/6 =

(
5 +

√
23√

2

)1/12(
3
√

3 +
√

23

2

)1/8

P−1/6,

and thus, by (4.11), it remains to show that√6 + 3
√

3

4
+

√
2 + 3

√
3

4

3

=
1√
2

√
187 + 108

√
3 +

1√
2
(9 + 6

√
3).

This can be achieved by a straightforward computation.

Theorem 4.3.

G77 = (8 + 3
√

7)1/8

(√
11 +

√
7

2

)1/8
√6 +

√
11

4
+

√
2 +

√
11

4

1/2

.

Proof. We compose the following table giving needed information about ideal classes
and characters.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −308 χ0 G0
[1,Ω]

[14, 7 + Ω]
1 1
1 1

28 −11 χ1 G1
[2, 1 + Ω]

[7,Ω]
1 −1
1 −1

1 1 2 8 + 3
√

7

77 −4 χ2 G2
[3, 1 + Ω]

[3,−1 + Ω]
1 −1
−1 1

1 1 4
9 +

√
77

2

44 −7 χ3 G3
[6, 1 + Ω]

[6,−1 + Ω]
1 1
−1 −1

We see from the table that 77 is of the first kind. Thus, by Theorem 3.1, since
h = 8 and w = 2,

Q :=

(
G77

G11/7

)4

= (8 + 3
√

7)

(
9 +

√
77

2

)1/2

= (8 + 3
√

7)

(√
11 +

√
7

2

)
.(4.12)

If P = (G77G11/7)
−3, then, from Lemma 3.3,

P−1 =
Q+Q−1 + 7 +

√
(Q+Q−1 + 7)2 − 32

4
√

2
.(4.13)

Now

Q+Q−1 + 7 = 8
√

11 + 28 = 2
√

2(2
√

22 + 7
√

2).
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Using this in (4.13), we find that

P−1 =
1

2

(
2
√

22 + 7
√

2 +

√
182 + 56

√
11

)
.(4.14)

By (4.12),

G77 = Q1/8P−1/6 = (8 + 3
√

7)1/8

(√
11 +

√
7

2

)1/8

P−1/6,

and thus by (4.14) it remains to show that√6 +
√

11

4
+

√
2 +

√
11

4

3

=
1

2

(
2
√

22 + 7
√

2 +

√
182 + 56

√
11

)
,

which is readily shown by a straightforward calculation.

Theorem 4.4.

G141 = (4
√

3 +
√

47)1/8

(
7 +

√
47√

2

)1/12
√18 + 9

√
3

4
+

√
14 + 9

√
3

4

1/2

.

Proof. We record the necessary information in the following table.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −564 χ0 G0
[1,Ω]

[6, 3 + Ω]
1 1
1 1

188 −3 χ1 G1
[2, 1 + Ω]

[3,Ω]
1 −1
−1 1

1 1 6 48 + 7
√

47

141 −4 χ2 G2
[5, 2 + Ω]

[5,−2 + Ω]
1 −1
1 −1

1 1 4 95 + 8
√

141

12 −47 χ3 G3
[10, 3 + Ω]

[10,−3 + Ω]
1 1
−1 −1

We see that 141 is again of the first kind. Applying Theorem 3.1, we find that,
since h = 8 and w = 2,(

G141

G47/3

)4

= (48 + 7
√

47)1/3(95 + 8
√

141)1/2.(4.15)

Let Q = (G141/G47/3)
6. Then, by (4.15),

Q = (48 + 7
√

47)1/2(95 + 8
√

141)3/4 =

(
7 +

√
47√

2

)
(4
√

3 +
√

47)3/2

= (48 + 7
√

47)1/2(756
√

3 + 191
√

47)1/2.(4.16)

Let P = (G141G47/3)
−3. Then, by Lemma 3.3,

P−1 =
(Q +Q−1) +

√
(Q +Q−1)2 + 32

4
√

2
.(4.17)
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From the last representation of Q in (4.16),

Q2 +Q−2 + 34 =
(
36(7 + 4

√
3)
)2

,

and so

Q+Q−1 =
√
Q2 +Q−2 + 2 = 4

√
7855 + 4536

√
3.

Using these calculations in (4.17), we deduce that

P−1 =
1√
2

√
7855 + 4536

√
3 +

9√
2
(7 + 4

√
3).(4.18)

Hence, by (4.16) and (4.18),

G141 = Q1/12P−1/6 =

(
7 +

√
47√

2

)1/12

(4
√

3 +
√

47)1/8

×
(

1√
2

√
7855 + 4536

√
3 +

9√
2
(7 + 4

√
3)

)1/6

.

It thus remains to show that√18 + 9
√

3

4
+

√
14 + 9

√
3

4

3

=
1√
2

√
7855 + 4536

√
3 +

9√
2
(7 + 4

√
3),

which is a straightforward, albeit laborious, task.

Theorem 4.5.

G145 = (
√

5 + 2)1/4

(√
29 + 5

2

)1/4
√17 +

√
145

8
+

√
9 +

√
145

8

1/2

.

Proof. We compose the following table.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −580 χ0 G0
[1,Ω]
[5,Ω]

1 1
1 1

29 −20 χ1 G1
[2, 1 + Ω]
[10, 5 + Ω]

1 −1
1 −1

1 2 2

√
29 + 5

2

5 −116 χ2 G2
[7, 3 + Ω]

[7,−3 + Ω]
1 −1
−1 1

1 6 2

√
5 + 1

2

145 −4 χ3 G3
[11, 3 + Ω]

[11,−3 + Ω]
1 1
−1 −1

Thus, 145 is of the second kind. Thus, by Theorem 3.2, since h = 8 and w = 2,

(G145G29/5)
4 =

(√
29 + 5

2

)2(√
5 + 1

2

)6

=

(√
29 + 5

2

)2

(
√

5 + 2)2.

Hence,

P−1 := (G145G29/5)
2 =

(√
29 + 5

2

)
(
√

5 + 2).(4.19)
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By Lemma 3.4, with Q = (G145/G29/5)
3, we have

Q = P−1 − P +
√

(P−1 − P )2 − 1.(4.20)

By (4.19), we readliy find that

P−1 − P = 2
√

29 + 5
√

5,

and so, by (4.20),

Q = 2
√

29 + 5
√

5 +

√
240 + 20

√
145.(4.21)

Thus, by (4.19) and (4.21),

G145 = P−1/4Q1/6 =

(√
29 + 5

2

)1/4

(
√

5 + 2)1/4

×
(

2
√

29 + 5
√

5 +

√
240 + 20

√
145

)1/6

.

Hence, it remains to show that

2
√

29 + 5
√

5 +

√
240 + 20

√
145 =

√17 +
√

145

8
+

√
9 +

√
145

8

3

,

which is readily shown.

Theorem 4.6.

G205 =

(√
5 + 1

2

)(
3
√

5 +
√

41

2

)1/4
√7 +

√
41

8
+

√√
41− 1

8

 .

Proof. We record the following table.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −820 χ0 G0
[1,Ω]
[5,Ω]

1 1
1 1

5 −164 χ1 G1
[2, 1 + Ω]
[10, 5 + Ω]

1 −1
1 −1

1 8 2

√
5 + 1

2

205 −4 χ2 G2
[11, 2 + Ω]

[11,−2 + Ω]
1 −1
−1 1

2 1 4
43 + 3

√
205

2

41 −20 χ3 G3
[13, 4 + Ω]

[13,−4 + Ω]
1 1
−1 −1

Note that 205 is of the second kind. Applying Theorem 3.2 with h = 8 and
w = 2, we deduce that

P−2 := (G205G41/5)
4 =

(√
5 + 1

2

)8(
43 + 3

√
205

2

)

=

(
7 + 3

√
5

2

)2(
3
√

5 +
√

41

2

)2

.

(4.22)
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Letting Q = (G205/G41/5)
3, we deduce from Lemma 3.4 that

Q = (P−1 − P ) +
√

(P−1 − P )2 − 1.(4.23)

From (4.22),

P−1 − P =
45 + 7

√
41

2
.

Thus, from (4.23),

Q =
1

2

(
45 + 7

√
41 +

√
4030 + 630

√
41

)
.(4.24)

If follows from (4.22) and (4.24) that

G205 = P−1/4Q1/6 =

(√
5 + 1

2

)(
3
√

5 +
√

41

2

)1/4

×
(

1

2

(
45 + 7

√
41 +

√
4030 + 630

√
41

))1/6

.

It thus remains to show that

1

2

(
45 + 7

√
41 +

√
4030 + 630

√
41

)
=

√7 +
√

41

8
+

√√
41− 1

8

6

.

This is more readily accomplished if we first note that√7 +
√

41

8
+

√√
41− 1

8

2

=

√
41 + 3

4
+

√
17 + 3

√
41

8
.

Theorem 4.7.

G213 =

(
5
√

3 +
√

71

2

)1/8(
59 + 7

√
71√

2

)1/12
√21 + 12

√
3

2
+

√
19 + 12

√
3

2

1/2

.

Proof. We have the following table.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −852 χ0 G0
[1,Ω]

[6, 3 + Ω]
1 1
1 1

284 −3 χ1 G1
[2, 1 + Ω]

[3,Ω]
1 −1
1 −1

1 1 6 3480 + 413
√

71

213 −4 χ2 G2
[7, 2 + Ω]

[7,−2 + Ω]
1 −1
−1 1

1 1 4
73 + 5

√
213

2

12 −71 χ3 G3
[14, 5 + Ω]

[14,−5 + Ω]
1 1
−1 −1
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Observe that 213 is of the first kind. Applying Theorem 3.1 with h = 8 and
w = 2, we find that

Q2/3 :=

(
G213

G71/3

)4

= (3480 + 413
√

71)1/3

(
73 + 5

√
213

2

)1/2

=

(
59 + 7

√
71√

2

)2/3(
5
√

3 +
√

71

2

)
,

so that

Q =

(
59 + 7

√
71√

2

)(
5
√

3 +
√

71

2

)3/2

=

(
59 + 7

√
71√

2

)
(180

√
3 + 37

√
21)1/2.

(4.25)

Let P = (G213G71/3)
−3. Then, by Lemma 3.3,

P−1 =
1

4
√

2

(
(Q +Q−1) +

√
(Q +Q−1)2 + 32

)
.(4.26)

By (4.25) and moderate calculations,

(Q+Q−1)2 + 32 =
(
12(87 + 50

√
3)
)2

and

1

4
√

2
(Q+Q−1) =

1

4
√

2

√
Q2 +Q−2 + 2 =

√
1

2
(135619 + 78300

√
3).

Thus, by (4.26),

P−1 =

√
1

2
(135619 + 78300

√
3) +

3√
2
(87 + 50

√
3).(4.27)

Thus, by (4.25) and (4.27),

G213 = Q1/12P−1/6 =

(
5
√

3 +
√

71

2

)1/8(
59 + 7

√
71√

2

)1/12

×
(√

1

2
(135619 + 78300

√
3) +

3√
2
(87 + 50

√
3)

)1/6

.

Hence, it remains to show that

√
1

2
(135619 + 78300

√
3) +

3√
2
(87 + 50

√
3) =

√21 + 12
√

3

2
+

√
19 + 12

√
3

2

3

,

which is accomplished by a direct calculation.

Theorem 4.8.

G265 = (
√

5 + 2)1/4

(√
53 + 7

2

)1/4
√89 + 5

√
265

8
+

√
81 + 5

√
265

8

1/2

.

Proof. The following table is easily verified.
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d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −1060 χ0 G0
[1,Ω]

[10, 5 + Ω]
1 1
1 1

5 −212 χ1 G1
[2, 1 + Ω]

[5,Ω]
1 −1
−1 1

1 6 2

√
5 + 1

2

53 −20 χ2 G2
[7, 1 + Ω]

[7,−1 + Ω]
1 −1
1 −1

1 2 2

√
53 + 7

2

265 −4 χ3 G3
[14, 1 + Ω]

[14,−1 + Ω]
1 1
−1 −1

Note that 265 is of the first kind. Applying Theorem 3.1 with h = 8 and w = 2,
we find that

Q4/3 :=

(
G265

G53/5

)4

=

(√
5 + 1

2

)6(√
53 + 7

2

)2

,

so that

Q =

(√
5 + 1

2

)9/2(√
53 + 7

2

)3/2

= (38 + 17
√

5)1/2(182 + 25
√

53)1/2.(4.28)

Let P = (G265G53/5)
−2. Then, by Lemma 3.4,

P−1 =
(Q +Q−1) +

√
(Q +Q−1)2 + 16

4
.(4.29)

By using (4.28) and the identity Q+Q−1 =
√
Q2 +Q−2 + 2 in (4.29), we find that

P−1 =
1

2
√

2

√
6917 + 425

√
265 +

1

4
(85 + 5

√
265).(4.30)

By (4.28) and (4.30),

G265 = Q1/6P−1/4 =(
√

5 + 2)1/4

(√
53 + 7

2

)1/4

×
(

1

2
√

2

√
6917 + 425

√
265 +

1

4
(85 + 5

√
265)

)1/4

.

Hence, it remains to show that

1

2
√

2

√
6917 + 425

√
265 +

1

4
(85 + 5

√
265) =

√89 + 5
√

265

8
+

√
81 + 5

√
265

8

2

,

which is easy to establish.

Theorem 4.9.

G301 = (8 + 3
√

7)1/8

(
23
√

43 + 57
√

7

2

)1/8
√46 + 7

√
43

4
+

√
42 + 7

√
43

4

1/2

.

Proof. We compose the following table.
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d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −1204 χ0 G0
[1,Ω]

[14, 7 + Ω]
1 1
1 1

28 −43 χ1 G1
[2, 1 + Ω]

[7,Ω]
1 −1
−1 1

1 1 2 8 + 3
√

7

301 −4 χ2 G2
[5, 2 + Ω]

[5,−2 + Ω]
1 −1
1 −1

1 1 4
22745 + 1311

√
301

2

172 −7 χ3 G3
[10, 3 + Ω]

[10,−3 + Ω]
1 1
−1 −1

Thus, 301 is of the first kind. Applying Theorem 3.1 with h = 8 and w = 2, we
find that

Q :=

(
G301

G43/7

)4

= (8 + 3
√

7)

(
22745 + 1311

√
301

2

)1/2

= (8 + 3
√

7)

(
23
√

43 + 57
√

7

2

)
.(4.31)

Let P = (G301G43/7)
−3. Then, by Lemma 3.5 and (4.31),

P−1 =
1

4
√

2
(Q +Q−1 + 7) +

1

4
√

2

√
(Q +Q−1 + 7)2 − 32

=
1√
2
(301 + 46

√
43) +

1√
2

√
7(25941 + 3956

√
43).

(4.32)

Therefore, by (4.31) and (4.32),

G301 = Q1/8P−1/6 =(8 + 3
√

7)1/8

(
23
√

43 + 57
√

7

2

)1/8

×
(

1√
2
(301 + 46

√
43) +

1√
2

√
7(25941 + 3956

√
43)

)1/6

.

It remains to show that

1√
2
(301 + 46

√
43) +

1√
2

√
7(25941 + 3956

√
43)

=

√46 + 7
√

43

4
+

√
42 + 7

√
43

4

3

,

which is a routine task.

Theorem 4.10.

G445 = (
√

5 + 2)1/2

(√
445 + 21

2

)1/4
√13 +

√
89

8
+

√
5 +

√
89

8

 .

Proof. We form the following table.
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d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −1780 χ0 G0
[1,Ω]
[5,Ω]

1 1
1 1

5 −356 χ1 G1
[2, 1 + Ω]
[10, 5 + Ω]

1 −1
−1 1

1 12 2

√
5 + 1

2

445 −4 χ2 G2
[13, 6 + Ω]

[13,−6 + Ω]
1 −1
1 −1

4 1 4

√
445 + 21

2

89 −20 χ3 G3
[19, 7 + Ω]

[19,−7 + Ω]
1 1
−1 −1

Thus, 445 is of the second kind. Applying Theorem 3.2 with h = 8 and w = 2,
we deduce that

P−2 := (G445G89/5)
4 =

(√
5 + 1

2

)12(√
445 + 21

2

)2

,

so that

P−1 = (9 + 4
√

5)

(√
445 + 21

2

)
.(4.33)

Let Q = (G445/G89/5)
3. Then, by Lemma 3.4 and (4.33),

Q = (P−1 − P ) +
√

(P−1 − P )2 − 1 = 189 + 20
√

89 +

√
71320 + 7560

√
89.

(4.34)

Therefore, by (4.33) and (4.34),

G445 = P−1/4Q1/6 =(9 + 4
√

5)1/4

(√
445 + 21

2

)1/4

×
(

189 + 20
√

89 +

√
71320 + 7560

√
89

)1/6

.

It thus remains to show that

189 + 20
√

89 +

√
71320 + 7560

√
89 =

√13 +
√

89

8
+

√
5 +

√
89

8

6

.

By first squaring the binomial on the right side and then cubing the resulting
expression, we can easily verify the desired equality.

Theorem 4.11.

G505 = (
√

5 + 2)1/2

(√
5 + 1

2

)1/4

(
√

101 + 10)1/4

×
√113 + 5

√
505

8
+

√
105 + 5

√
505

8

1/2

.

Proof. We compose the following table.
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d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −2020 χ0 G0
[1,Ω]
[5,Ω]

1 1
1 1

5 −404 χ1 G1
[2, 1 + Ω]
[10, 5 + Ω]

1 −1
1 −1

1 14 2

√
5 + 1

2

101 −20 χ2 G2
[11, 1 + Ω]

[11,−1 + Ω]
1 −1
−1 1

1 2 2
√

101 + 10

505 −4 χ3 G3
[22, 1 + Ω]

[22,−1 + Ω]
1 1
−1 −1

Hence, 505 is of the second kind. Applying Theorem 3.2 with h = 8 and w = 2,
we find that

P−2 := (G505G101/5)
4 =

(√
5 + 1

2

)14

(
√

101 + 10)2,

so that

P−1 =

(√
5 + 1

2

)7

(
√

101 + 10) = (
√

5 + 2)

(√
5 + 1

2

)4

(
√

101 + 10)

= (
√

5 + 2)

(
7 + 3

√
5

2

)
(
√

101 + 10).(4.35)

Let Q = (G505/G101/5)
3. Then, by Lemma 3.4 and (4.35),

Q = (P−1 − P ) +
√

(P−1 − P )2 − 1

= (130
√

5 + 29
√

101) +

√
169440 + 7540

√
505.(4.36)

Therefore, by (4.35) and (4.36),

G505 = P−1/4Q1/6 =(
√

5 + 2)1/2

(√
5 + 1

2

)1/4

(
√

101 + 10)1/4

×
(

(130
√

5 + 29
√

101) +

√
169440 + 7540

√
505

)1/6

.

Thus, it remains to show that

(130
√

5+29
√

101)+

√
169440 + 7540

√
505=

√113 + 5
√

505

8
+

√
105 + 5

√
505

8

3

,

which is straightforward.

5. G217 and G553

The genus structures for Q(
√−217) and Q(

√−553) are different from those for
the eleven imaginary quadratic fields addressed in Section 4, and so G217 and G553

must be calculated by another means. This we accomplish in this section.
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Lemma 5.1. Let m denote a positive integer with 7|m. Let τ =
√−m/7 and Q =

(Gm/Gm/49)
4. Then

(
η(τ)η

(
τ+1
2

)
η(7τ)η

(
7τ+1

2

))2

− 49

(
η(τ)η

(
τ+1
2

)
η(7τ)η

(
7τ+1

2

))−2

= Q3/2 + 8Q1/2 − 8Q−1/2 −Q−3/2.

(5.1)

Proof. With q = exp(−π√m/7), it follows from (2.3) that(
η(τ)η

(
τ+1

2

)
η(7τ)η

(
7τ+1

2

))2

=
f2(−q2)f2(q)

q3/2f2(−q14)f2(q7)
.(5.2)

Next, by an entry from Ramanujan’s second notebook [2, p. 209, Entry 55],

f2(−q)f2(−q2)
q3/2f2(−q7)f2(−q14) + 49

q3/2f2(−q7)f2(−q14)
f2(−q)f2(−q2) =

f6(−q2)f6(−q7)
q3/2f6(−q)f6(−q14)

− 8
f2(−q2)f2(−q7)

q1/2f2(−q)f2(−q14) − 8
q1/2f2(−q)f2(−q14)
f2(−q2)f2(−q7) +

q3/2f6(−q)f6(−q14)
f6(−q2)f6(−q7) .

Multiplying both sides by q3/2 and then replacing q by −q, we find that

f2(q)f2(−q2)
f2(q7)f2(−q14) − 49

q3f2(q7)f2(−q14)
f2(q)f2(−q2) =

f6(−q2)f6(q7)

f6(q)f6(−q14)
+ 8

qf2(−q2)f2(q7)

f2(q)f2(−q14) − 8
q2f2(q)f2(−q14)
f2(−q2)f2(q7)

− q3f6(q)f6(−q14)
f6(−q2)f6(q7)

.(5.3)

Recall that q = exp(−π√m/7) and recall that Gm/49 is then given by (1.2). Thus,

Gm = 2−1/4q−7/24(−q7; q14)∞. Hence,

(
Gm

Gm/49

)2

=
(−q7; q14)2∞
q1/2(−q; q2)2∞

=
(q2; q2)2∞(−q7;−q7)2∞

q1/2(−q;−q)2∞(q14; q14)2∞
=

f2(−q2)f2(q7)

q1/2f2(q)f2(−q14) .
(5.4)

Dividing (5.3) by q3/2 and substituting (5.2) and (5.4) into the resulting equality,
we deduce (5.1) to complete the proof.

Theorem 5.2. Let m be a squarefree positive integer with 7|m and m ≡ 1 ( mod 4).
Let K = Q(

√−m) be an imaginary quadratic field such that each genus contains
exactly two classes and such that the principal genus G0 comprises [1,Ω] and [2, 1+
Ω], while [7,Ω] and [14, 7 + Ω] form a nonprincipal genus G1. Then{

1√
7

(
η(τ)η

(
τ+1
2

)
η(7τ)η

(
7τ+1

2

))}h/2

=
∏

χ(G1)=−1

ε
wh1h2/w2

1 ,(5.5)

where h, h1, and h2 are the class numbers of K,Q(
√
d1), and Q(

√
d2), respectively,

w and w2 are the numbers of roots of unity in K and Q(
√
d2), respectively, ε1 is the

fundamental unit in Q(
√
d1), and the product is over all characters χ (with χ(G1) =

−1), associated with the decomposition d = d1d2, and therefore d1, d2, h1, h2, w2,
and ε1 are dependent on χ.
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Proof. Let A0 = [1,Ω], A′0 = [2, 1 + Ω], A1 = [7,Ω], and A′1 = [14, 7 + Ω]. Then by
the same reasoning that we used in the proof of Theorem 3.1,(

F (A1)F (A′1)
F (A0)F (A′0)

)h/4
=

∏
χ(G1)=−1

ε
wh1h2/w2

1 .(5.6)

By (2.17),

F (A0) = η2(Ω) = η2(7τ),

F (A′0) = η2

(
Ω + 1

2

)
/
√

2 = η2

(
7τ + 1

2

)
/
√

2,

F (A1) = η2

(
Ω

7

)
/
√

7 = η2 (τ) /
√

7,

and

F (A′1) = η2

(
Ω + 7

14

)
/
√

14 = η2

(
τ + 1

2

)
/
√

14.

Substituting these values into (5.6) and recalling that the number of genus charac-
ters χ with χ(G1) = −1 is equal to h/4, we deduce (5.5) to complete the proof.

Theorem 5.3.

G217 =

√11 + 4
√

7

2
+

√
9 + 4

√
7

2

1/2√16 + 5
√

7

4
+

√
12 + 5

√
7

4

1/2

.

Proof. We set up a table to summarize some information that we need.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −868 χ0 G0
[1,Ω]

[2, 1 + Ω]
1 1
1 1

124 −7 χ1 G1
[7,Ω]

[14, 7 + Ω]
1 −1

−1 1
1 1 2 1520 + 273

√
31

217 −4 χ2 G2
[11, 5 + Ω]

[11,−5 + Ω]
1 1

−1 −1
1 1 4 3844063 + 260952

√
217

28 −31 χ3 G3
[13, 2 + Ω]

[13,−2 + Ω]
1 −1
1 −1

It is clear that Q(
√−217) satisfies the conditions of Theorem 5.2. Thus, since

h = 8 and w = 2, we deduce that

1

72

(
η(τ)η

(
τ+1
2

)
η(7τ)η

(
7τ+1

2

))4

=(1520 + 273
√

31)(3844063 + 260952
√

217)1/2

=(1520 + 273
√

31)(524
√

7 + 249
√

31),

so that (
η(τ)η

(
τ+1
2

)
η(7τ)η

(
7τ+1

2

))2

= 7ε,

where

ε = (1520 + 273
√

31)1/2(524
√

7 + 249
√

31)1/2.(5.7)
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It follows from (5.1) that

Q3/2 + 8Q1/2 − 8Q−1/2 −Q3/2 = 7(ε− ε−1),(5.8)

where Q = (G217/G31/7)
4. By an elementary calculation,

(ε− ε−1)2 = ε2 + ε−2 − 2

= 4(1053643 + 398240
√

7)

= 4(27 + 10
√

7)2(367 + 140
√

7).

Let x = Q1/2 −Q−1/2. Then (5.8) can be recast in the form

x3 + 11x = 14(27 + 10
√

7)

√
367 + 140

√
7

= (367 + 140
√

7)

√
367 + 140

√
7 + 11

√
367 + 140

√
7.

It is now obvious that

x =

√
367 + 140

√
7.(5.9)

Solving (5.9) for Q1/2, we find that

Q1/2 =
1

2

(√
367 + 140

√
7 +

√
371 + 140

√
7

)
=

1

2

(√
367 + 140

√
7 + (14 + 5

√
7)

)

=

√16 + 5
√

7

4
+

√
12 + 5

√
7

4

2

.(5.10)

Now let P = (G217G31/7)
−3. Using Lemma 3.5 and (5.9), we deduce that

P + P−1 =
1

2
√

2

(
Q +Q−1 + 7

)
=

1

2
√

2
(x2 + 9) =

1

2
√

2
(376 + 140

√
7).

Solving for P−1, we find that

P−1 =
94 + 35

√
7√

2
+

√
17409 + 6580

√
7

2

=

√11 + 4
√

7

2
+

√
9 + 4

√
7

2

3

.(5.11)

Thus, from (5.10) and (5.11),

G217 = P−1/6Q1/8 =

√11 + 4
√

7

2
+

√
9 + 4

√
7

2

1/2

×
√16 + 5

√
7

4
+

√
12 + 5

√
7

4

1/2

,

which completes the proof.
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Theorem 5.4.

G553 =

√100 + 11
√

79

4
+

√
96 + 11

√
79

4

1/2

×
√143 + 16

√
79

2
+

√
141 + 16

√
79

2

1/2

.

Proof. We set up the following table to summarize the information that we need.

d1 d2 χ G C
χ(G0) χ(G1)
χ(G2) χ(G3)

h1 h2 w2 ε1

1 −2212 χ0 G0
[1,Ω]

[2, 1 + Ω]
1 1
1 1

28 −79 χ1 G1
[7,Ω]

[14, 7 + Ω]
1 −1

−1 1
1 5 2 8 + 3

√
7

553 −4 χ2 G2
[17, 5 + Ω]

[17,−5 + Ω]
1 −1
1 −1

1 1 4
624, 635, 837, 407

+26, 562, 217, 704
√

553

316 −7 χ3 G3
[19, 6 + Ω]

[19,−6 + Ω]
1 1

−1 −1

It is clear that Q(
√−553) satisfies the hypotheses of Theorem 5.2. Thus, since

h = 8 and w = 2,

1

72

(
η(τ)η

(
τ+1
2

)
η(7τ)η

(
7τ+1

2

))4

= (8 + 3
√

7)5(624, 635, 837, 407+ 26, 562, 217, 704
√

553)1/2,

so that (
η(τ)η

(
τ+1
2

)
η(7τ)η

(
7τ+1

2

))2

= 7ε,(5.12)

where

ε = (514, 088 + 194, 307
√

7)1/2(211, 227
√

7 + 62, 876
√

79)1/2.(5.13)

Then an elementary calculation gives

(ε− ε−1)2 = ε2 + ε−2 − 2

= 4(143, 650, 096, 411+ 16, 161, 898, 544
√

79)

= (391 + 44
√

79)(19170 + 2156
√

79)2.(5.14)

By Lemma 5.1 and (5.12)–(5.14), with Q = (G553/G79/7)
4,

Q3/2 + 8Q1/2 − 8Q−1/2 −Q−3/2 =7(ε− ε−1)

=7

√
391 + 44

√
79(19170 + 2156

√
79).

If x = Q1/2 −Q−1/2, then the foregoing equality may be written in the form

x3 + 11x = 7

√
391 + 44

√
79
(
72(391 + 44

√
79) + 11

)
,
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from which it is obvious that

x = Q1/2 −Q−1/2 = 7

√
391 + 44

√
79.(5.15)

Solving for Q1/2, we readily find that

Q1/2 =
1

2

(
7

√
391 + 44

√
79 + (98 + 11

√
79)

)

=

√100 + 11
√

79

4
+

√
96 + 11

√
79

4

2

.(5.16)

Now let P = (G553G79/7)
−3. Then, by Lemma 3.5 and (5.15),

2
√

2(P + P−1) = Q+Q−1 + 7 = x2 + 9 = 19168 + 2156
√

79.

Solving for P−1, we find that

P−1 =
1√
2

(
4792 + 539

√
79 +

√
45, 914, 421 + 5, 165, 776

√
79

)

=

√143 + 16
√

79

2
+

√
141 + 16

√
79

2

3

.(5.17)

Thus, by (5.16) and (5.17),

G553 = Q1/8P−1/6 =

√100 + 11
√

79

4
+

√
96 + 11

√
79

4

1/2

×
√143 + 16

√
79

2
+

√
141 + 16

√
79

2

1/2

,

and the proof is complete.

6. Class Invariants and Modular Equations

In this section we establish six of Ramanujan’s class invariants by using tools
well known to Ramanujan, in particular, modular equations.

Second Proof of Theorem 4.1. From (1.1) and (2.3) it is easily seen that

f(−q)
f(−q2) = χ(−q).(6.1)

Using this equality, we rewrite two of Ramanujan’s eta–function identities in terms
of χ. Thus [2, pp. 206, 211]

f(−q)f(−q2)

q3/2f(−q13)f(−q26) + 13
q3/2f(−q13)f(−q26)

f(−q)f(−q2) =

(
q−1/2χ(−q13)

χ(−q)
)3

− 4

(
q−1/2χ(−q13)

χ(−q)
)
− 4

(
q1/2

χ(−q)
χ(−q13)

)
+

(
q1/2

χ(−q)
χ(−q13)

)3

(6.2)
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and

f(−q)f(−q2)
q1/2f(−q5)f(−q10) +5

q1/2f(−q5)f(−q10)
f(−q)f(−q2) =

(
q−1/6χ(−q5)

χ(−q)
)3

+

(
q1/6

χ(−q)
χ(−q5)

)3

.

(6.3)

Replace q by −q in (6.2) and then set q = exp(−π√5/13). If

A := e(3π/2)
√

5/13 f(e−π
√

5/13)f(−e−2π
√

5/13)

f(e−π
√

65)f(−e−2π
√

65)
(6.4)

and

B := e(π/2)
√

5/13 χ(e−π
√

65)

χ(e−π
√

5/13)
,(6.5)

then (6.2) can be recast in the form

A− 13A−1 = B3 + 4B − 4B−1 −B−3.(6.6)

Next, replace q by −q in (6.3) and then set q = exp(−π√13/5). If

A′ := e(π/2)
√

13/5 f(e−π
√

13/5)f(−e−2π
√

13/5)

f(e−π
√

65)f(−e−2π
√

65)
(6.7)

and

B′ := e(π/6)
√

13/5 χ(e−π
√

65)

χ(e−π
√

13/5)
,(6.8)

then (6.3) takes the shape

A′ − 5A′−1 = B′3 −B′−3.(6.9)

We shall prove that

B = B′ and A =

√
13

5
A′.(6.10)

Now, by (1.2),

Gn = 2−1/4eπ
√
n/24χ(e−π

√
n) and G1/n = 2−1/4eπ/(24

√
n)χ(e−π/

√
n).

Since Gn = G1/n, we find that

χ(e−π
√
n) = e(π/24)(1/

√
n−√n)χ(e−π/

√
n).(6.11)

(This could also be proved by using (6.1) along with the transformation formula
for f.) In particular, if n = 5/13, (6.11) yields the equality

χ(e−π
√

5/13) = eπ/(3
√

65)χ(e−π
√

13/5).(6.12)

The aforementioned transformation formula for f(−q) is given by [1, p. 43, Entry
27(iii)]

e−a/12a1/4f(−e−2a) = e−b/12b1/4f(−e−2b),(6.13)

where a, b > 0 with ab = π2. If a = π
√

5/13, so that b = π
√

13/5, then we deduce
from (6.13) that

f(−e−2π
√

5/13) = (13/5)1/4e−2π/(3
√

65)f(−e−2π
√

13/5).(6.14)
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First, from (6.5) and (6.12),

B =
e(π/2)

√
5/13χ(e−π

√
65)

eπ/(3
√

65)χ(e−π
√

13/5)
= e(π/6)

√
13/5 χ(e−π

√
65)

χ(e−π
√

13/5)
= B′,

by (6.8). Thus, the first equality of (6.10) has been demonstrated. Second, by

(6.4), (6.1) with q = − exp(−π√5/13), (6.12), (6.14), and lastly (6.1) with q =

exp(−π√13/5),

A = e(3π/2)
√

5/13χ(e−π
√

5/13)f2(−e−2π
√

5/13)

f(e−π
√

65)f(−e−2π
√

65)

=

√
13

5
e(π/2)

√
13/5χ(e−π

√
13/5)f2(−e−2π

√
13/5)

f(e−π
√

65)f(−e−2π
√

65)

=

√
13

5
e(π/2)

√
13/5 f(e−π

√
13/5)f(−e−2π

√
13/5)

f(e−π
√

65)f(−e−2π
√

65)

=

√
13

5
A′,

by (6.7). Thus, the second equality of (6.10) has been established.
Employing (6.10) in (6.9), we find that√

5

13
A−

√
65A−1 = B3 −B−3 = (B −B−1)3 + 3(B −B−1).

Dividing both sides by u := B −B−1(6= 0), we find that
√

65

13
(u2 + 7) = u2 + 3.

Solving for u2, we find that u2 = (
√

65− 1)/2. Thus, since clearly B > 1,

B −B−1 =

√√
65− 1

2
.

Now solving for B, we find that

B =

√√
65− 1

8
+

√√
65 + 7

8
,(6.15)

where in solving the quadratic equation we took the plus sign since B > 0.
If q = exp(−π√13/5), then q5 = exp(−π√65). Hence, from (1.2) and (6.5), we

readily see thatB = G65/G13/5. Furthermore, from (1.6), G13/5 = {4α(1−α)}−1/24.

Hence, if β has degree 5 over α, then G65 = {4β(1− β)}−1/24.
We now employ Lemma 3.4, where it is to be noted that P = (G65G13/5)

−2 and

Q = B−3 = (G65/G13/5)
−3. We already know Q from (6.15). To determine P from

Lemma 3.4, we first calculate

Q+Q−1 = B3 +B−3 = (B +B−1){(B +B−1)2 − 3}

=

√√
65 + 7

2

(√
65 + 7

2
− 3

)
=

√
74 + 10

√
65.(6.16)
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Thus, using (6.16) in Lemma 3.4 and solving for P−1, we find that

P−1 =
1

4

(√
74 + 10

√
65 +

√
90 + 10

√
65

)
,(6.17)

since P > 0.
Hence, by (6.15) and (6.17),

G65 = B1/2P−1/4 =

√√
65 + 7

8
+

√√
65− 1

8

1/2

×
(

1

4

(√
74 + 10

√
65 +

√
90 + 10

√
65

))1/4

.(6.18)

We must show that (6.18) can be transformed into the form of Theorem 4.1. First,

1

2

(√
74 + 10

√
65 +

√
90 + 10

√
65

)1/2

=
1

2

(√
(9 +

√
65)(1 +

√
65)+5+

√
65

)1/2

=

√
9 +

√
65

8
+

√
1 +

√
65

8
.(6.19)

Second, √√
65 + 7

8
+

√√
65− 1

8

2

=
1

4

(
3 +

√
65 +

√
58 + 6

√
65

)

=
1

4

(
3 +

√
65 + 3

√
5 +

√
13
)

=

(√
13 + 3

2

)(√
5 + 1

2

)
.(6.20)

Putting (6.19) and (6.20) in (6.18), we complete the proof.

Before commencing our second proof of Theorem 4.2, we establish a general
principle. Let p and r denote coprime, positive integers. Set q = exp(−π√p/r)
and q′ = exp(−π√pr), and let β have degree r over α. Then, by (1.6),

Gp/r = {4α(1− α)}−1/24 and Gpr = {4β(1− β)}−1/24.(6.21)

Furthermore, from (1.4) and (1.5),

K(
√

1− α)

K(
√
α)

=

√
p

r
,(6.22)

and from the defintion (1.3) of a modular equation,

r
K(
√

1− α)

K(
√
α)

=
K(
√

1− β)

K(
√
β)

.(6.23)

If we solve (6.22) for r and substitute this in (6.23), we find that

p
K(
√
α)

K(
√

1− α)
=

K(
√

1− β)

K(
√
β)

.
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From the last equality we conclude:

If β has degree r over α, then β has degree p over 1− α.(6.24)

Furthermore, from (1.7) and (6.22),

ϕ2(e−π
√
p/r)

ϕ2(e−π
√
r/p)

=
K(
√
α)

K(
√

1− α)
=

√
r

p
.(6.25)

Second Proof of Theorem 4.2. We need two of Ramanujan’s modular equations of
degree 23 [1, p. 411, Entry 15(i), (ii)]. If β has degree 23 over α, then

(αβ)1/8 + {(1− α)(1− β)}1/8 + 22/3{αβ(1 − α)(1 − β)}1/24 = 1(6.26)

and

1+(αβ)1/4 + {(1− α)(1 − β)}1/4 + 24/3{αβ(1 − α)(1 − β)}1/12

=
{

2
(
1 + (αβ)1/2 + {(1− α)(1− β)}1/2

)}1/2

.(6.27)

We also need two of Ramanujan’s modular equations of degree 3. The first is given
by Lemma 3.3, while the second is given by [1, p. 231, Entry 5(ix)]

{α(1− β)}1/2 + {(1− α)β}1/2 = 2{αβ(1 − α)(1− β)}1/8.(6.28)

We shall apply (6.24) with r = 3 and p = 23. Thus, β has degree 23 over (1−α).
Thus, replacing α by (1− α), from (6.26) and (6.27), we find that, respectively,

{(1− α)β}1/8 + {α(1− β)}1/8 + 22/3{αβ(1− α)(1 − β)}1/24 = 1(6.29)

and

1+{(1− α)β}1/4 + {α(1− β)}1/4 + 24/3{αβ(1− α)(1 − β)}1/12

=
{
2
(
1 + {(1− α)β}1/2 + {α(1− β)}1/2

)}1/2

.(6.30)

For brevity, in the remainder of the proof, set

G = G69 and G′ = G23/3.

By (6.21), we can rewrite (6.29) in the form

{(1− α)β}1/8 + {α(1− β)}1/8 = 1−
√

2(GG′)−1.

Setting u = (GG′)−1 and squaring both sides, we deduce that

{(1− α)β}1/4 + {α(1− β)}1/4 = 1 + 2u2 − 2
√

2u−
√

2u3.(6.31)

Substituting (6.31) into (6.30), we find that

2 + 4u2 − 2
√

2u−
√

2u3 =
√

2
(
1 + {(1− α)β}1/2 + {α(1− β)}1/2

)1/2

.(6.32)

Then, using (6.28) in (6.32), we deduce that

2 + 4u2 − 2
√

2u−
√

2u3 =
√

2(1 +
√

2u3)1/2.

Squaring both sides and simplifying, we arrive at

2− 8
√

2u+ 24u2 − 22
√

2u3 + 24u4 − 8
√

2u5 + 2u6 = 0,
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which, with x = u+ 1/u, is equivalent to

22
√

2 = 2(u3 + u−3)− 8
√

2(u2 + u−2) + 24(u+ u−1)

= 2(x3 − 3x)− 8
√

2(x2 − 2) + 24x.

Simplifying, we find that

x3 − 4
√

2x2 + 9x− 3
√

2 = 0.

By inspection, we verify that
√

2 is a root. Now Gn is a monotonically increasing
function of n, and it is not difficult to numerically check that the root that we seek
is greater than

√
2. Thus,

x2 − 3
√

2x+ 3 = 0,

and so x = (3 +
√

3)/
√

2. Since x = u+ 1/u, we find that

1

u
=

√
6 + 3

√
3

4
+

√
2 + 3

√
3

4
,(6.33)

since u < 1.
We now apply Lemma 3.3. Noting that P = u3, we see that we want to calculate

u−3 − u3 =
√

(u−3 + u3)2 − 4

=
√

(x3 − 3x)2 − 4

=

√√√√√(3 +
√

3√
2

)3

− 3

(
3 +

√
3√

2

)2

− 4

=

√
374 + 216

√
3.

Thus, by Lemma 3.3,(
G′

G

)6

+

(
G

G′

)6

= 2
√

2(u−3 − u3) = 2
√

2

√
374 + 216

√
3.

Solving for G/G′, we deduce that

G

G′
=

(√
748 + 432

√
3 +

√
747 + 432

√
3

)1/6

.(6.34)

Thus, by (6.33) and (6.34),

G =

√
G

G′
u−1/2 =

(√
748 + 432

√
3 +

√
747 + 432

√
3

)1/12

×
√6 + 3

√
3

4
+

√
2 + 3

√
3

4

1/2

.

To complete the proof, it suffices to show that(√
748 + 432

√
3 +

√
747 + 432

√
3

)2

=

(
5 +

√
23√

2

)2(
3
√

3 +
√

23

2

)3

,

which is a straightforward task.
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Second Proof of Theorem 4.3. We need two of Ramanujan’s modular equations of
both degrees 7 and 11. If β has degree 7 over α, then [1, pp. 314, 315, Entry 19(i),
(viii)]

(αβ)1/8 + {(1− α)(1 − β)}1/8 = 1(6.35)

and

m− 7

m
= 2

(
(αβ)1/8 − {(1− α)(1 − β)}1/8

)(
2 + (αβ)1/4 + {(1− α)(1 − β)}1/4

)
,

(6.36)

where m = ϕ2(q)/ϕ2(q7). If β has degree 11 over α, then [1, p. 363, Entry 7(i), (ii)]

(αβ)1/4 + {(1− α)(1 − β)}1/4 + 2{16αβ(1− α)(1 − β)}1/12 = 1(6.37)

and

m′− 11

m′
=2
(
(αβ)1/4−{(1− α)(1 − β)}1/4

)(
4 + (αβ)1/4+{(1− α)(1 − β)}1/4

)
,

(6.38)

where m′ = ϕ2(q)/ϕ2(q11).

If q = exp(−π√11/7), by (6.21),

G11/7 = {4α(1− α)}−1/24 and G77 = {4β(1− β)}−1/24.

Thus, setting u = (G77G11/7)
−1, we deduce from (6.35) that(

(αβ)1/8 − {(1− α)(1 − β)}1/8
)2

=
(
(αβ)1/8 + {(1− α)(1 − β)}1/8

)2

− 4{α(1− α)β(1 − β)}1/8

=1− 2
√

2u3

and

(αβ)1/4 + {(1− α)(1 − β)}1/4 =
(
(αβ)1/8 + {(1− α)(1 − β)}1/8

)2

− 2{α(1− α)β(1 − β)}1/8

=1−
√

2u3.

Thus, from (6.36),

m− 7

m
= 2

(
1− 2

√
2u3
)1/2

(3 −
√

2u3),(6.39)

where m = ϕ2(e−π
√

11/7)/ϕ2(e−π
√

77).

Let q = exp(−π√7/11), and note that u = (G77G11/7)
−1 = (G77G7/11)

−1.
Thus, by (6.37),

(αβ)1/4 + {(1− α)(1 − β)}1/4 = 1− 2u2

and (
(αβ)1/4 − {(1− α)(1 − β)}1/4

)2

=
(
(αβ)1/4 + {(1− α)(1 − β)}1/4

)2

− 4{α(1− α)β(1 − β)}1/4

=(1− 2u2)2 − 2u6.
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Hence, from (6.38),

m′ − 11

m′
= 2

(
(1− 2u2)2 − 2u6

)1/2
(5− 2u2),(6.40)

where m′ = ϕ2(e−π
√

7/11)/ϕ2(e−π
√

77).
From (6.25), we see that

m′ =

√
11

7
m.

Since

m− 7

m
=

√
7

11
m′ −

√
11

7

7

m′
=

√
7

11

(
m′ − 11

m′

)
,

we deduce from (6.39) and (6.40) that

2
(
1− 2

√
2u3
)1/2

(3−
√

2u3) =

√
7

11
2
(
(1− 2u2)2 − 2u6

)1/2
(5− 2u2).

Squaring both sides and simplifying, we find that

4u10 − 11
√

2u9 − 98u8 + 327u6 − 322u4 − 66
√

2u3 + 210u2 − 19 = 0.

Isolating the terms involving
√

2 on one side of the equation, squaring both sides,
simplifying, and factoring, we deduce that

(u8 − 8u6 + 7u4 − 8u2 + 1)

× (196u12 − 1418u10 + 6044u8 − 13262u6 + 13073u4 − 5092u2 + 361) = 0.

(6.41)

Now x := u2 is an algebraic integer (see Lemma 7.2) and so must be a root of
a monic irreducible polynomial. The latter polynomial in (6.41) is irreducible,
and so x must be a root of the former polynomial in (6.41). Alternatively, we used
Mathematica to numerically determine the roots of the latter polynomial and found
that u is not one of these roots. Thus,

x4 − 8x3 + 7x2 − 8x+ 1 = x2
(
(x+ 1/x)2 − 8(x+ 1/x) + 5

)
= 0.

Since x+ 1/x > 1,

x+
1

x
= 4 +

√
11.

Thus,

u+
1

u
=

√
x+

1

x
+ 2 =

√
6 +

√
11.

Since u < 1, we find that

1

u
=

√
6 +

√
11

4
+

√
2 +

√
11

4
.(6.42)
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Lastly, we apply Lemma 3.5. Since P = u−3, we deduce, by (6.42), that

Q+Q−1 = 2
√

2(u−3 + u3)− 7

= 2
√

2
(
(u + u−1)3 − 3(u+ u−1)

)− 7

= 2
√

2(3 +
√

11)

√
6 +

√
11− 7

= 2(3 +
√

11)(1 +
√

11)− 7

= 21 + 8
√

11.

Hence,

1

Q
=

21 + 8
√

11

2
+

√
1141 + 326

√
11

2
=

21

2
+ 4

√
11 +

√
7

2
(8 + 3

√
11)

= (8 + 3
√

7)

(√
11 +

√
7

2

)
.

(6.43)

In conclusion, by (6.42) and (6.43),

G77 = Q−1/8u−1/2

= (8 + 3
√

7)1/8

(√
11 +

√
7

2

)1/8
√6 +

√
11

4
+

√
2 +

√
11

4

1/2

,

and the proof is complete.

Second Proof of Theorem 4.4. We need two of Ramanujan’s modular equations,
one of degree 3 and one of degree 47. If β has degree 3 over α [1, p. 231, En-
try 5(ix)],

{α(1− β)}1/2 + {β(1− α)}1/2 = 2{αβ(1 − α)(1− β)}1/8.(6.44)

If β is of degree 47 over α [1, p. 444, Entry 23(i)],

2

(
1

2

(
1+(αβ)1/2 + {(1− α)(1 − β)}1/2))1/2

= 1 + (αβ)1/4 + {(1− α)(1 − β)}1/4

+ 41/3{αβ(1 − α)(1 − β)}1/24
(
1 + (αβ)1/8 + {(1− α)(1− β)}1/8

)
.

(6.45)

Let q = exp(−π√47/3). Then, by (6.21),

G′ := G47/3 = {4α(1− α)}−1/24 and G := G141 = {4β(1− β)}−1/24.

Applying (6.24) with r = 3 and p = 47, we find that β has degree 47 over (1 − α)
when β has degree 3 over α. Thus, by (6.45),

2

(
1

2

(
1 + {(1− α)β}1/2 + {α(1− β)}1/2))1/2

=1 + {(1− α)β}1/4 + {α(1 − β)}1/4(6.46)

+ 41/3{α(1− α)β(1 − β)}1/24
(
1 + {(1− α)β}1/8 + {α(1− β)}1/8

)
.
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If u := (GG′)−1, by (6.44),

{α(1− β)}1/2 + {β(1− α)}1/2 =
√

2u3.(6.47)

Hence,({α(1− β)}1/4 + {β(1− α)}1/4)2
= {α(1− β)}1/2 + {β(1 − α)}1/2 + 2{α(1− α)β(1 − β)}1/4

=
√

2u3 + u6(6.48)

and({α(1− β)}1/8 + {β(1− α)}1/8)2
= {α(1− β)}1/4 + {β(1 − α)}1/4 + 2{α(1− α)β(1 − β)}1/8(6.49)

=
(√

2u3 + u6
)1/2

+
√

2u3.

Substituting (6.47)–(6.49) into (6.46), we find that

2

(
1

2
(1 +

√
2u3)

)1/2

= 1 + (
√

2u3 + u6)1/2 +
√

2u

(
1 +

(
(
√

2u3 + u6)1/2 +
√

2u3
)1/2

)
.

(6.50)

Using Gröbner bases, A. Strzebonski denested (6.50) and obtained a polynomial of
degree 48 for u. The value of u that we seek is a root of the factor u8 − 32u6 +
15u4 − 32u2 + 1 of this 48th degree polynomial. If x = u2, then

x4 − 32x3 + 15x2 − 32x+ 1 = x2
(
(x+ 1/x)2 − 32(x+ 1/x) + 13

)
= 0.

Since x+ 1/x > 1, we find that

x+
1

x
= 16 + 9

√
3.

Hence,

u+
1

u
=

√
18 + 9

√
3,

so that

1

u
=

√
18 + 9

√
3

4
+

√
14 + 9

√
3

4
.(6.51)

Lastly, we apply Lemma 3.3 with P = u3 and Q = (G′/G)6 to deduce, from
(6.51), that

Q+
1

Q
= 2

√
2(u−3 − u3)

= 2
√

2
(
(u−1 − u)3 + 3(u−1 − u)

)
= 2

√
2(14 + 9

√
3)1/2(17 + 9

√
3).

Solving for 1/Q, we find that

1

Q
=
√

2(14 + 9
√

3)1/2(17 + 9
√

3) +

√
31419 + 18144

√
3.(6.52)
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Thus, by (6.51) and (6.52),

G141 = Q−1/12u−1/2 =

(√
2(14 + 9

√
3)1/2(17 + 9

√
3) +

√
31419 + 18144

√
3

)1/12

×
√18 + 9

√
3

4
+

√
14 + 9

√
3

4

1/2

.

It remains to show that

√
2(14 + 9

√
3)1/2(17 + 9

√
3)+

√
31419 + 18144

√
3=(4

√
3 +

√
47)3/2

(
7 +

√
47√

2

)
,

which is easily accomplished via Mathematica.

Second Proof of Theorem 4.5. We need two modular equations, one of degree 5 and
the other of degree 29. The first is found in Ramanujan’s second notebook. If β
has degree 5 over α, then [1, p. 281, Entry 13(x)]

{α(1− β)}1/4 + {β(1 − α)}1/4 = 22/3{αβ(1− α)(1 − β)}1/24.(6.53)

The second is found in Ramanujan’s first notebook, but curiously not in his second.
R. Russell [26] established this modular equation in 1890, but his formulation is
imprecise; in particular, it has a sign ambiguity. We give Ramanujan’s formulation.
Let

P =1−
√
αβ −

√
(1− α)(1 − β),

Q =64
{√

αβ +
√

(1 − α)(1 − β)−
√
αβ(1 − α)(1 − β)

}
,

and

R = 32
√
αβ(1 − α)(1 − β).

Then, if β has degree 29 over α,
√
P (P 2 + 17PR1/3 − 9R2/3) = R1/6(9P 2 +Q− 13PR1/3 + 15R2/3).(6.54)

Let q = exp(−π√29/5), so that we may apply (6.21) and (6.24) with r = 5 and
p = 29. If u = (G145G29/5)

−1, then, by (6.53),

{α(1− β)}1/2 + {β(1 − α)}1/2 =
(
{α(1− β)}1/4 + {β(1− α)}1/4

)2

− 2{α(1− α)β(1 − β)}1/4(6.55)

=2u2 − u6.

Thus, by (6.55), with α replaced by (1 − α),

P = 1− 2u2 + u6,

Q = 128u2 − 64u6 − 16u12,

and

R = 8u12.
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Substitute these values into (6.54), square both sides, simplify, and factor, with the
help of Mathematica. We then find that

(u2 + 1)(u4 − u2 − 1)(u4 − u2 + 1)(u8 − 20u6 − 43u4 − 20u2 + 1)

× (u12 − 9u10 + 181u8 − 126u6 − 181u4 − 9u2 − 1) = 0.

In numerically checking the roots of each of these polynomials, we find that x := u2

is a root of

x4 − 20x3 − 43x2 − 20x+ 1 = x2
(
(x+ 1/x)2 − 20(x+ 1/x)− 45

)
= 0.

Thus, x+ 1/x = 10 +
√

145, and so u− 1/u =
√

8 +
√

145. Hence,

1

u
=

√
8 +

√
145

4
+

√
12 +

√
145

4
.(6.56)

Lastly, we apply Lemma 3.4 with P = u2 and Q = (G29/5/G145)
3. Then

Q +
1

Q
= 2

(
1

P
− P

)
= 2

(
1

u
+ u

)(
1

u
− u

)
= 2

√
12 +

√
145

√
8 +

√
145

= 2

√
241 + 20

√
145.

Hence,

1

Q
=

√
241 + 20

√
145 +

√
240 + 20

√
145.(6.57)

From (6.56) and (6.57),

G145 = Q−1/6u−1/2 =

(√
241 + 20

√
145 +

√
240 + 20

√
145

)1/6

×
√12 +

√
145

4
+

√
8 +

√
145

4

1/2

.

To complete the proof, we must show that

(
√

5 + 2)

(√
29 + 5

2

)
=

√12 +
√

145

4
+

√
8 +

√
145

4

2

and √17 +
√

145

8
+

√
9 +

√
145

8

3

=

√
241 + 20

√
145 +

√
240 + 20

√
145.

Both equalities are easily verified.

Second Proof of Theorem 4.7. In addition to the modular equation of degree 3
given by (6.44), we need Ramanujan’s modular equation of degree 71. If β has
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degree 71 over α, then [1, p. 444, Entry 23(ii)]

1 + (αβ)1/4+{(1− α)(1− β)}1/4 −
(

1

2

(
1 + (αβ)1/2 + {(1− α)(1 − β)}1/2

))1/2

=(αβ)1/8 + {(1− α)(1 − β)}1/8 − {αβ(1− α)(1 − β)}1/8

+ 22/3{αβ(1 − α)(1 − β)}1/24
(
1− (αβ)1/8 − {(1− α)(1− β)}1/8

)
.

(6.58)

Let r = 3 and p = 71 in equalities (6.21) and principle (6.24). Thus, β has
degree 71 over (1−α). Replacing α by 1−α in (6.58) and employing (6.47)–(6.49),
but now with u = (G213G71/3)

−1, we deduce that

1 +
(√

2u3 + u6
)1/2

−
(

1

2
(1 +

√
2u3)

)1/2

=

((√
2u3 + u6

)1/2

+
√

2u3

)1/2

− 1√
2
u3 +

√
2u

(
1−

((√
2u3 + u6

)1/2

+
√

2u3

)1/2
)

=

((√
2u3 + u6

)1/2

+
√

2u3

)1/2

(1−
√

2u)− 1√
2
u3 +

√
2u.

(6.59)

Using resultants, Strzebonski and M. Trott denested (6.59) and found a polyno-
mial that factors into several polynomials of degrees 8, 12, and 28. Numerically
eliminating all factors except one, we find that u satisfies

u8 − 80u6 − 126u4 − 80u2 + 1 = 0.

Letting u2 =: x, and solving for x+ 1/x, we find that x+ 1/x = 40 + 24
√

3. It then

follows that u+ 1/u =
√

42 + 24
√

3. Hence,

1

u
=

√
21 + 12

√
3

2
+

√
19 + 12

√
3

2
.(6.60)

Lastly, we invoke Lemma 3.3 with P =(G213G71/3)
−3 =u3 andQ=(G71/3/G213)

6.
So, by Lemma 3.3 and (6.60),

Q+
1

Q
= 2

√
2(u−3 − u3) = 4(19 + 12

√
3)1/2(41 + 24

√
3).

Solving for 1/Q, we find that

1

Q
= 2(19 + 12

√
3)1/2(41 + 24

√
3) +

√
542, 475 + 313, 200

√
3.(6.61)
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Hence, by (6.60) and (6.61),

G213 =Q−1/12u−1/2

=

(
2(19 + 12

√
3)1/2(41 + 24

√
3) +

√
542, 475 + 313, 200

√
3

)1/12

×
√21 + 12

√
3

2
+

√
19 + 12

√
3

2

1/2

.

It thus remains to show that

2(19 + 12
√

3)1/2(41 + 24
√

3)+

√
542, 475 + 313, 200

√
3

=

(
5
√

3 +
√

71

2

)3/2(
59 + 7

√
71√

2

)
,

which can be verified via Mathematica.

7. Watson’s Empirical Process

In [30], Watson employed an “empirical process” to evaluate 14 of Ramanujan’s
class invariants. Motivated by Watson’s idea, we succeeded in formulating theorems
which give rigorous evaluations of Gpq and Gp/q when p and q are distinct primes
satisfying pq ≡ 1 (mod 4) and h(

√−pq) = 8.
Let K = Q(

√−m) (m squarefree) be an imaginary quadratic field, and let OK

be its ring of integers. By class field theory [13, p. 191, Theorem 13.1], there exists
an everywhere unramified extension K(1)|K such that the Galois group

Gal(K(1) | K) ' CK .

The field K(1) is known as the Hilbert class field of K. A Hilbert class field of K is
usually defined as the maximal unramified abelian extension of K.

Let a = [τ1, τ2] be an OK-ideal. Define

j(a) = j([τ1, τ2]) = 1728
g3
2([τ1, τ2])

g3
2([τ1, τ2])− 27g2

3([τ1, τ2])
,

where

g2([τ1, τ2]) = 60

∞∑
m,n=−∞

(m,n) 6=(0,0)

1

(mτ1 + nτ2)4

and

g3([τ1, τ2]) = 140

∞∑
m,n=−∞

(m,n) 6=(0,0)

1

(mτ1 + nτ2)6
.

It is clear from the definitions of g2([τ1, τ2]) and g3([τ1, τ2]) that

j([τ1, τ2]) = j([1, τ ]) =: j(τ),

where τ = τ2/τ1. We will also let

γ2(τ) = 3
√
j(τ)

with the cube root being real-valued when j(a) is real.



2164 BRUCE C. BERNDT, HENG HUAT CHAN, AND LIANG–CHENG ZHANG

It is well known that K(1) = K(j(OK)) [11, p. 220, Theorem 11.1]. If DK is the
discriminant of K and 3 - DK , then K(1) = K(γ2(τK)) [11, p. 249, Theorem 12.2],
where

τK =


√−m, DK ≡ 0 (mod 4),

3 +
√−m
2

, DK ≡ 1 (mod 4).

Lemma 7.1. Let a and b be two OK-ideals. Define σa(j(b)) by

σa(j(b)) = j(āb),(7.1)

where aā is a principal ideal. Then σa is a well-defined element of Gal(K(1) | K),
and a 7→ σa induces an isomorphism

CK −→ Gal(K(1) | K).

Proof. See [11, p. 240, Corollary 11.37].

Lemma 7.2. Let K = Q(
√−pq), where p and q are two distinct primes satisfying

pq ≡ 1 (mod 4), and let

γ =

{
4, if 3 - pq,
12, if 3 | pq.

Then Gγ
pq is a real unit generating the field K(1).

Proof. From [5, p. 290], we find that G12
pq is a real unit of K(1). Since [11, p. 257,

Theorem 12.17]

j(OK) = j(
√−pq) =

(16G24
pq − 4)3

G24
pq

,(7.2)

we conclude that

K(1) = K(G12
pq).(7.3)

Next, suppose that 3 - pq. Then 3 - DK and γ2(τK) generates K(1). From the
equality [11, p. 257, Theorem 12.17]

γ2(
√−pq) =

16G24
pq − 4

G8
pq

(7.4)

and (7.3), we find that G8
pq ∈ K(1). Hence, G4

pq ∈ K(1), by (7.3).

Remarks. In [5, p. 290], B. J. Birch quoted M. Deuring’s results [12, p. 43] and
indicated that Gpq is a unit when pq ≡ 1 (mod 4). A more elaborate proof of this
statement can be found in [9, Corollary 5.2]. In fact, from the treatment given in
[9], one can show that Gp/q is also a unit. This fact will be needed in our main
theorem.

From class field theory, we know that if H is a subgroup of CK , then there exists
an abelian and everywhere unramified extension L|K such that

Gal(K(1)|L) ' H.

In particular, when H = C2
K := the subgroup of squares in CK , the corresponding

field M |K is known as the genus field of K. One can show that M is the maximal
unramified extension of K which is abelian over Q [11, p. 122].
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Theorem 7.3. Let K and γ be defined as in Lemma 7.2. If the order of CK is 8,
then

αp,q := (GpqGp/q)
γ + (GpqGp/q)

−γ

and

βp,q :=

(
Gpq

Gp/q

)γ
+

(
Gpq

Gp/q

)−γ
are algebraic integers which belong to the real quadratic field R, where R ∈ {Q(

√
p),

Q(
√
q),Q(

√
pq)}, and where R is a field such that none of the prime ideals (2), (p),

or (q) are inert.

Proof. From the hypothesis, we deduce that a1 = [1,
√−pq], a2 = [q,

√−pq],
a3 = [2, 1 +

√−pq], and a4 = [2q, q +
√−pq] are OK-ideals lying in distinct equiv-

alence classes (see Section 2). This implies that CK contains the Klein-four group
generated by the ideal classes [ai] and [aj] for i > j > 1. Using the isomorphism

described in Lemma 7.1, we conclude that Gal(K(1) | K) contains a Klein four–
group V generated by σai and σaj for i > j > 1. To show that αp,q and βp,q belong
to a field with degree 2 over K, it suffices to show that σai and σaj fix αp,q and
βp,q. More precisely, if F := Fix(V ) is the field fixed by V , then by Galois theory

[25, p. 49, Theorem 63], |F : K| = |Gal(K(1) | K) : V | = 2 (since |CK | = 8), which
implies that F is of degree 2 over K. Since αp,q and βp,q are real numbers in F ,
they belong to R := F ∩R, and R is clearly a real quadratic field over Q. The fact
that they are algebraic integers follows from the fact that Gγ

pq and Gγ
p/q are units

(see Lemma 7.2).
At this stage, we will assume that 3 | pq. From [11, p. 257, Theorem 12.17], we

have

j(a2) = j(
√
−p/q) =

(16G24
p/q − 4)3

G24
p/q

.(7.5)

By Lemma 7.1, we find that

σa2(j(a1)) = j(a2a1) = j(a2).(7.6)

From (7.2), (7.5), and (7.6), we find that

(16σ2
a2

(G12
pq)− 4)3

σ2
a2

(G12
pq)

=
(16G24

p/q − 4)3

G24
p/q

.(7.7)

Simplifying (7.7), we deduce that

(a− b)(a+ b)
{
64(a2 + b2)a2b2 − 48a2b2 + 1

}
= 0,

where a = σa2(G
12
pq) and b = G12

p/q. But

64(a2 + b2)a2b2 − 48a2b2 + 1 6= 0,

for otherwise it would contradict the fact that a and b are algebraic integers. Thus,
we deduce that

σa2(G
12
pq) = ±G12

p/q.(7.8)

Similarly, corresponding to (7.8), we have

σa2(G
12
p/q) = ±G12

pq or σa2(G
12
p/q) = ∓G12

pq,
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i.e., σa2(G
12
p/q) may have the same or opposite sign as σa2(G

12
pq). Since σ2

a2
= 1, the

latter is inadmissible. Hence,

σa2(G
12
p/q) = ±G12

pq.(7.9)

From (7.8) and (7.9), it is now clear that

σa2(αp,q) = αp,q

and

σa2(βp,q) = βp,q.

Next, by [11, p. 263], we find that

j(a3) = j

(
3 +

√−pq
2

)
= G24

pq

(
16

G24
pq

− 4

)3

(7.10)

and

j(a4) = j

(
3 +

√−p/q
2

)
= G24

p/q

(
16

G24
p/q

− 4

)3

.(7.11)

Now, applying Lemma 7.1 again, we have

σa3 (j(a1)) = j(a3).

By (7.10) and (7.2), we find that

(16σ2
a3

(G12
pq)− 4)3

σ2
a3

(G12
pq)

= G24
pq

(
16

G24
pq

− 4

)3

,

which implies that

σa3(G
12
pq) = ±G−12

pq .

Similarly, since a3a2 is equivalent to a4, we have

σa3(G
12
p/q) = ±G−12

p/q or ∓G−12
p/q

by (7.11) and (7.5), i.e., σa3(G
12
p/q) may have the same or opposite sign as σa3(G

12
pq).

We will show that the latter case is inadmissible. If

σa2(G
12
p/q) = ±G12

pq and σa3(G
12
p/q) = ∓G−12

p/q ,

then

σa2σa3(G
12
pq) = ±G−12

p/q and σa3σa2(G
12
pq) = ∓G−12

p/q .

This is clearly a contradiction since σa2σa3 = σa3σa2 . Hence,

σa3(αp,q) = αp,q

and

σa3(βp,q) = βp,q.

Collecting our results, we see that both σa2 and σa3 fix αp,q and βp,q, and this
implies that αp,q and βp,q are real quadratic algebraic integers.

The proof for the case when 3 - pq is similar. In this case, G4
pq generates K(1),

and so σai(G
4
pq) is well defined for i > 1. Hence, we may deduce from (7.7) that

16
(
σa2(G

8
pq)
)2 − 4

σa2(G
8
pq)

= 16G16
p/q −

4

G8
p/q

.(7.12)
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Simplifying (7.12), we have

(a− b)(4a2b+ 4ab2 + 1) = 0,

where a = σa2(G
8
pq) and b = G8

p/q. But

4a2b+ 4ab2 + 1 6= 0,

for otherwise it would contradict the fact that a and b are algebraic integers. Hence,
we deduce that

σa2(G
8
pq) = G8

p/q.

Now, since σa2 ∈ Gal(K(1)|K) and G4
pq generates K(1) (see Lemma 7.2), we have

σa2(G
4
pq) = ±G4

p/q.

The rest of the arguments are similar to those of the previous case, and we shall
omit them.

We have already seen that αp,q and βp,q lie in a real quadratic field R. Our next
task is to give a necessary condition for R. First, we observe that R = F ∩R, where
F = Fix(V ) is an abelian, everywhere unramified extension ofK (see the paragraph
before the statement of Theorem 7.3). Hence, R ∈ {Q(

√
p),Q(

√
q),Q(

√
pq)}. Next,

we will show that none of the prime ideals (2), (p) or (q) are inert in R. Suppose
the contrary holds. Then without loss of generality, we may assume that (p) is
inert in R. This implies that p in K is inert in F, where p|(p) and the Frobenius

automorphism

[
F |K

p

]
has order 2 (see [11, pp. 106–107] or [13, pp. 126–127]).

On the other hand, we know that the Frobenius automorphism σp =

[
K(1)|K

p

]
has order 2 and that

[
K(1)|K

p

] ∣∣∣∣
E

= 1, where

E = Fix

([
K(1)|K

p

])
.

Since [13, p. 127, Property 2.3][
E|K

p

]
=

[
K(1)|K

p

] ∣∣∣∣
E

,

we find that

[
E|K

p

]
has order 1. Consequently,[

F |K
p

]
=

[
E|K

p

] ∣∣∣∣
F

= 1.

This clearly contradicts the last statement of the previous paragraph. Thus, (p) is
not inert in R.

Our next step is to determine αp,q and βp,q using the numerical values of Gpq

and Gp/q. To achieve this, we need the following result.

Theorem 7.4. Let R = Q(
√
m) be the field which contains αp,q and βp,q. If

2αp,q = a1 + a2

√
m(7.13)
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and

2βp,q = b1 + b2
√
m,(7.14)

then a1, a2, b1, and b2 are positive integers.

Proof. Let [a] ∈ A := {[a2], [a3], [a4]}, and let H be the group generated by [a].
From the paragraph before the statement of Theorem 7.3, we know that there
exists an abelian and everywhere unramified extension L|K such that

Gal(K(1)|L) ' H.

In fact, from the isomorphism of Lemma 7.1, we find that L = Fix(σa). Since
Gal(K(1)|K) ' Z2 ⊕ Z4, the group

Gal(L|K) ' Z2 ⊕ Z2 or Z4.

The first case can only happen for exactly one element in A, and the field L in
this case is the genus field M of K. As for the second case, Gal(L|Q) ' D8, the
dihedral group of eight elements, since L is generalized dihedral over Q [11, p. 191].
Hence, Gal(L|Q) is non-abelian.

Now, rewrite (7.13) as

2(η + η−1) = a1 + a2

√
m,(7.15)

where η = (GpqGp/q)
γ . Note that σa2 fixes η and σa3(η) = η−1. Therefore, the field

L := K(η) = Fix(〈σa2〉) is of degree 4 over K.
Suppose L is the genus field of K. Since σa2 |L = 1, we conclude that the ideal

[a2] lies in an ideal class belonging to the principal genus. Hence, by Theorem 3.2,
we may write

η =
∏

χ(G1)=−1

εe11 ,(7.16)

where

e1 =

{
wh1h2/w2, if 3 - pq,
3wh1h2/w2, if 3|pq.

Since w = 2 and

w2 =

{
2 or 4, if 3 - pq,
2, 4 or 6, if 3|pq,

we conclude that e1 must be of the form e′1/2, where e′1 ∈ N. Hence, we may rewrite
(7.16) as

η =
∏

χ(G1)=−1

ε
e′1/2
1 .(7.17)

Now, it is known that a fundamental unit of a real quadratic field takes the form

u + v
√
d with u, v > 0 [6, p. 133]. Furthermore, if

√
u+ v

√
d = u′

√
d1 + v′

√
d2,

then u′, v′ ≥ 0. Collecting these observations, we deduce that η is of the form
u1 + u2

√
p + u3

√
q + u4

√
pq, where ui ≥ 0 for each i. Using (7.15) and (7.17), we

conclude that a1 and a2 are positive integers.
Next, suppose L is not the genus field. Then from the beginning of our discussion,

Gal(L|Q) ' D8 is non-abelian. We claim that there exists an element σ inGal(L|K)
such that σ(η) is complex. Suppose the contrary holds. Then L∩R = Q(η) would
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be Galois over Q, and hence Gal(L|Q(η)) is a normal subgroup of Gal(L|Q). On the
other hand, Gal(Q(η)|Q) ' Gal(L|K), a normal subgroup of Gal(L|Q) [11, p. 191].
Hence, Gal(L|Q) is isomorphic to the direct sum of Gal(L|Q(η)) and Gal(Q(η)|Q)
and is therefore an abelian group, and this contradicts our initial assumption.

Next, we will show that σ(
√
m) = −√m. Suppose that the contrary holds. Then

σ(η) + σ(η)−1 = η + η−1,

and therefore

σ(η) = η or η−1.

This shows that σ(η) is real, which contradicts our choice of σ. Now, applying σ
to (7.15), we deduce that

2(σ(η) + σ(η)−1) = a1 − a2

√
m.(7.18)

From (7.15), (7.18), and the fact that σ(η) is complex, we find that

(a1 + a2

√
m)2 ≥ 16

and

(a1 − a2

√
m)2 < 16.

This implies that 4a1a2
√
m > 0. Since η > 0, we deduce that a1 and a2 are positive.

The integrality of a1 and a2 follows easily from Theorem 7.3. In a similar way, we
can show that b1 and b2 are positive integers in (7.14).

Remark. The argument given here for the case when Gal(L|Q) is non-abelian is
due to H. Weber [11, p. 269].

Let RK be the subset of {Q(
√
p), Q(

√
q),Q(

√
pq)} satisfying the last statement

in Theorem 7.3. Note that, since |RK | is finite and 2αp,q and 2βp,q lie in a discrete
subset of the ring Z(

√
m) for some Q(

√
m) ∈ RK , we can therefore determine their

exact values, based on the numerical values of Gpq and Gp/q, in a finite number of
steps. This will in turn lead to exact values of Gpq.

Remark. Except for K = Q(
√−217) and Q(

√−553), in all of our calculations,
|RK | = 1.

We illustrate our computations with two examples.
Before we proceed with the examples, we let u := GpqGp/q, v := Gpq/Gp/q,

Ui := (ui + u−i)2, and Vj := (vj + v−j)2.

Example 1. Let p = 5 and q = 13. In this case, γ = 4. By Theorem 7.3, α5,13

and β5,13 are real quadratic algebraic integers. Since the primes 2, 5, and 13 are

not inert in Q(
√

65), we deduce that they are in Q(
√

65).
Now, evaluating u and v using the product representation of Gn (see (1.2)),

we find that α5,13 = 81.311288... and β5,13 = 57.186772.... We know that these

numbers are of the form a+ b
√

65, and, by Theorem 7.4, we conclude that

α5,13 =
41 + 5

√
65

2
and β5,13 =

33 + 3
√

65

2
.

Therefore,

U2 =
45 + 5

√
65

2
and V2 =

37 + 3
√

65

2
,
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which implies that

U1 =

√
65 + 9

2
and V1 =

√
65 + 7

2
.

This further implies that

u =

√√
65 + 9

8
+

√√
65 + 1

8
and v =

√√
65− 1

8
+

√√
65 + 7

8
.

Hence,

G65 =

√√
65 + 9

8
+

√√
65 + 1

8

1/2√√
65 + 7

8
+

√√
65− 1

8

1/2

and

G13/5 =

√√
65 + 9

8
+

√√
65 + 1

8

1/2√√
65 + 7

8
−
√√

65− 1

8

1/2

.

Example 2. Let p = 3 and q = 23. In this case, γ = 12. Using the numerical
values of u and v and Theorems 7.3 and 7.4, we find that

U6 = 281344 + 162432
√

3 and V6 = 2992 + 1728
√

3.

The first equality implies that

u6 + u−6 = 8(47 + 27
√

3).

Since

(u2 + u−2)3 − 3(u2 + u−2) = u6 + u−6

= 8(47 + 27
√

3)

= (4 + 3
√

3)3 − 3(4 + 3
√

3),

we conclude that

u2 + u−2 = 4 + 3
√

3 and U1 = 6 + 3
√

3.

Collecting our results and simplifying, we deduce that

G69 =

(√
748 + 432

√
3 +

√
747 + 432

√
3

)1/12
√6 + 3

√
3

4
+

√
2 + 3

√
3

4

1/2

.

The following table summarizes our further calculations. The values for G697

and G793 are new.
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n = 77 U1 = 6 +
√

11 V2 = 23 + 8
√

11

Gn =

√6 +
√

11

4
+

√
2 +

√
11

4

1/2√23 + 8
√

11

4
+

√
19 + 8

√
11

4

1/4

n = 141 U1 = 18 + 9
√

3 V6 = 125680 + 72576
√

3

Gn =

√ 18 + 9
√

3

4
+

√
14 + 9

√
3

4

1/2 (√
31420 + 18144

√
3 +

√
31419 + 18144

√
3
)1/12

n = 145 U1 = 12 +
√

145 V1 =
17 +

√
145

2

Gn =

√17 +
√

145

8
+

√
9 +

√
145

8

1/2√ 12 +
√

145

4
+

√
8 +

√
145

4

1/2

n = 205 U2 =
2025 + 315

√
41

2
V1 =

25 + 3
√

41

2

Gn =

√ 2025 + 315
√

41

8
+

√
2017 + 315

√
41

8

1/4√ 25 + 3
√

41

8
+

√
17 + 3

√
41

8

1/2

n = 213 U1 = 42 + 24
√

3 V6 = 2169904 + 1252800
√

3

Gn =

√ 21 + 12
√

3

2
+

√
19 + 12

√
3

2

1/2 (√
542476 + 313200

√
3 +

√
542475 + 313200

√
3
)1/12

n = 217 U1 = 22 + 8
√

7 V1 = 16 + 5
√

7

Gn =

√22 + 8
√

7

4
+

√
18 + 8

√
7

4

1/2√ 16 + 5
√

7

4
+

√
12 + 5

√
7

4

1/2

n = 265 U1 =
89 + 5

√
265

2
V1 = 16 +

√
265

Gn =

√ 89 + 5
√

265

8
+

√
81 + 5

√
265

8

1/2√ 16 +
√

265

4
+

√
12 +

√
265

4

1/2

n = 301 U1 = 46 + 7
√

43 V2 = 1199 + 184
√

43

Gn =

√46 + 7
√

43

4
+

√
42 + 7

√
43

4

1/2√ 1199 + 84
√

43

4
+

√
1195 + 84

√
43

4

1/4

n = 445 U2 = 71325 + 7560
√

89 V1 =
85 + 9

√
89

2

Gn =

√71325 + 7560
√

89

4
+

√
71321 + 7560

√
89

4

1/4√85 + 9
√

89

8
+

√
77 + 9

√
89

8

1/2

n = 505 U1 = 292 + 13
√

505 V1 =
113 + 5

√
505

2

Gn =

√292 + 13
√

505

4
+

√
288 + 13

√
505

4

1/2√ 113 + 5
√

505

8
+

√
105 + 5

√
505

8

1/2

n = 553 U1 = 286 + 32
√

79 V2 = 19163 + 2156
√

79

Gn =

√ 286 + 32
√

79

4
+

√
282 + 32

√
79

4

1/2√19163 + 2156
√

79

4
+

√
19159 + 2156

√
79

4

1/4
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n = 697 U1 =
769 + 29

√
697

2
V1 =

661 + 25
√

697

2

Gn =

√ 769 + 29
√

697

8
+

√
761 + 29

√
697

8

1/2√661 + 25
√

697

8
+

√
653 + 25

√
697

8

1/2

n = 793 U1 = 704 + 25
√

793 V1 = 452 + 16
√

793

Gn =

√ 704 + 25
√

793

4
+

√
700 + 25

√
793

4

1/2√452 + 16
√

793

4
+

√
448 + 16

√
793

4

1/2

The authors are grateful to Jerry Keiper, Adam Strzebonski, and Michael Trott
of Wolfram Research for help in denesting two equations with radicals. We also
thank Steve Ullom and David Cox for their valuable suggestions and comments on
the material in Section 7.

While this paper was being written, Jerry Keiper died tragically at the age of
41. Jerry was a very unselfish, unassuming talented mathematician and computer
scientist. I frequently sought his advice on computational matters, and when I
asked him a question about the denesting of two equations for this paper, he and
his colleagues e-mailed me the denestings later on the same day. This was typical
of Jerry; he was never too busy to help others, whether they be mathematicians or
people living in Haiti or Nigeria, where he taught for three years. (BCB)
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