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anniversary of his birth.

Ramanujan (sometimes under the alternative spelling Ramanujam) submitted
58 problems to the Journal of the Indian Mathematical Society. Approximately ten
of them involve equalitiés between radicals. For example [16, p. 334],
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Establishing equalities among exotic radicals was very common in Ramanujan’s
day, especially in Great Britain and its empire. For example, see the then popular
texts by H. S. Hall and S. R. Knight [12, Chap. 8] and G. Chrystal [10, Chap. 11],
the latter being well-known to Ramanujan. Was Ramanujan’s keen interest in
radical equalities merely a consequence of their popularity in his time, or were
there other reasons? The answer can be found in his notebooks [15] and in one of
his most important papers [14], [16, pp. 23-39].

Scattered among the pages in Ramanujan’s first notebook are the values of 107
class invariants, or polynomials satisfied by them. As we shall see, these invariants
frequently take the shapes of interesting radicals, and often to put the radical
expressions in their most attractive forms, difficult radical equalities need to be
established. So that we may define Ramanujan’s class invariants, set

x(q) = ﬁ (1+g%).
k=0

For any positive rational number n, set

q = exp(—m/n),
and define the two class invariants G, and g, by
G, =2"q""¥x(q) and  g,=2"q"¥x(=q). (1

As we shall see, we are able to calculate G, for certain odd values of »n and g, for
certain even values of n.

At the beginning of the twentieth century, these invariants were extensively
studied by H. Weber [21], who used the notations G, =:27'/*§(Y—n) and
g, = 27*§,(V— n). Weber [21] proved that G, and g, are algebraic. In fact, G,,
271G, and 274G, are units in some algebraic number field according as
n=1(mod4), n =3 (mod 8), and n = 7 (mod 8), respectively. If n = 2 (mod 4),
then g, is a unit. Weber’s study of G, and g, was motivated by the construction of
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the Hilbert class field H,, the maximal unramified abelian extension of the imagi-
nary quadratic field K, == Q(Y— n). It can be shown that H, = K,(j(w,)), where

V-n, if n =1 (mod 4),

0, ={3+V"n

2 b

and j is the famous modular j-invariant, so-called because it is invariant under

transformations from the modular group. Weber [21] asserted that certain small

powers of G, and g, can be used to replace j(w,) as generators of H, over K,.

Perhaps for these reasons, Weber called G, and g, class invariants, and computed

a total of 105 class invariants or the monic, irreducible polynomials satisfied by

them. The excellent text of D. A. Cox [11] provides an accessible account of
Weber’s work on invariants.

Before proceeding further, we give some examples that Ramanujan calculated:

1 +‘/§)1/4

if n = 3 (mod 4),
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The value of G, was only recently verified for the first time by the authors [7].
In our calculation of Gy, we used the equality

/6 6 + 3V3 2+3/3
(188 + 1083 + /(188 + 108V3)" ~ 1 =\/_4— +\/T’

which is the special case, a = (4 + 3v3) /4, of the more general equality

(32a3—6a+\/(32a3—6a)2—1)1/6=‘/a+% +ya-1,

which we also used in the dedication at the beginning of this paper and in
calculations of further class invariants.

The value of G;;; was communicated by Ramanujan [16, p. xxix, eq. (23)], [8,
p. 62] in his second letter, dated 27 February 1913, to G. H. Hardy and was first
established (unrigorously) by G. N. Watson [18]. In a letter of 1 October 1930 to
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B. M. Wilson [8, pp. 237, 238], Watson confided, ... but 23 which deals with the
singular modulus associated with 1353 is included; I was pleased at getting this out,
because the bulk of the singular moduli in the Notebooks can be obtained in the
same way ... You will be interested to hear how Ramanujan got no. 23,
particularly when you look at the length of the answer. I am absolutely convinced
that he guessed it.” (Calculating a singular modulus, which we do not define here,
is equivalent to calculating a class invariant.) The reader is undoubtedly astonished
to learn that Ramanujan first “guessed” his formula for G,;;;. We do not agree
with Watson! We think that Watson’s proof, which is not rigorous, could not have
been given without his knowing the formula in advance. The first rigorous proof
was given recently by Chan [9].

On pages 294-299 in his second notebook [15], Ramanujan gave a table of
values for 77 class invariants, three of which are not found in the first notebook.
Since the second notebook is an enlarged revision of the first, it is unclear why
Ramanujan failed to record 33 class invariants that he offered in the first
notebook. Four further results are found in scattered places in the second
notebook. After arriving in Cambridge, Ramanujan learned of Weber’s work [21],
and so when he wrote his paper [14], [16, pp. 23-39], the table of 46 class
invariants that he included did not contain any that are found in Weber’s
book [21]. Except for G;,; and G, all of the remaining values are found in
Ramanujan’s notebooks. To the best of our reckoning, Ramanujan calculated a
total of 116 class invariants, or monic, irreducible polynomials satisfied by them.

Why did Ramanujan calculate such a large number of class invariants? Ramanu-
jan did not share Weber’s interest in generating Hilbert class fields, but he did
have applications. First, as the title of his paper [14] indicates, Ramanujan used
class invariants to find excellent approximations to 7. For example, from (1) and
(3), we find that

24

7=~ (10gGyy + Hog2) = 3.1415926536032.. .,

which agrees with the value of 7 through nine decimal places.
Second, Ramanujan used class invariants to determine explicitly particular
values of the theta function ¢(q) defined by

e(q) = L q*.
k=—x
For example, Ramanujan probably used his value of G, to show that [3]

e (e7™) V134 VT +V7+3V7
oX(e ™) 14

(28)'". (4)

The value

( B ) 7Tl/-t
ple” ") = =37
r(s)

is well known [1, p. 103], and so (4) provides an explicit evaluation for ¢(e™"™).
The theta function ¢ is intimately connected with elliptic functions and inte-
grals. An elliptic function is a function of a complex variable with two linearly
independent periods, in contrast to the familiar trigonometric functions, which
have just one linearly independent period. The complete elliptic integral of the
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first kind associated with the modulus k, 0 < k < 1, is defined by

K-k~ [ R 5)
0 1 — k2sin?0

The complementary modulus k' is defined by k' = V1 — k?; set K' = K(k'). If
q = exp(—7K'/K), then one of the central theorems in the theory of elliptic
functions asserts that

2(q) =~ [ R 2 K(k) (6)
(P = — —_—_, = — .
1 TJ, V1 — kZsin?%0 ™

By (6), an explicit determination of ¢(g) for a certain value of g also yields an
explicit value for K(k).
A second classical theta function is the Dedekind eta-function n(z) defined by

f(=g)=q"¥n(z) = TT(1=¢") = T (=D'q"* "2 ()

k=1 k=—x
where g = exp(2miz) and |gq| < 1. The exponents k(3k — 1)/2 are called penta-

gonal numbers, and the second equality in (7) constitutes Euler’s pentagonal
number theorem. From (1) and (7), we easily see that

o (@) ig s T

f(-4%) f(-4*)’
when g = exp(—m/n). Ramanujan likely used his values of class invariants to
calculate explicitly certain products of eta-functions in both his first and lost
notebooks [15], [17]. For example, he probably used the values of G5 and G5 g
to prove that

G, =21 and g, =27 (8)

_,—6m/5
67T/Sf( e )=a+b’ 9)
f(—e ™) a—b>b
where a = (60)'/* and b =2 — V3 + 5.

Ramanujan also used class invariants to determine values of the celebrated
Rogers-Ramanujan continued fraction R(q), defined by

1/5 2 3
q a9 9 4q
R =—"T T4 T s+ 4. ld<t

The behavior of R(q) for |g| = 1 is not completely understood, but if you have had
a course in elementary number theory, perhaps you have shown that

V5 -1
—

R(1) =

Using the value of Gj, given in (2), we can show that

RS(e—Zw/ﬁ) = \/(__5‘/?; i

: 55 + 11

2
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To offer another example [4], Ramanujan undoubtedly used (9) to show that

R(e ®™) =Ver+1 —c,

where

a+b

a-b 5.

Ramanujan calculated several further values of R(q) in his lost notebook [17], and
many of these can be found in the authors’ paper [6].

In the remainder of the paper, we briefly describe some attempts and methods
used to establish Ramanujan’s class invariants.

In two papers [19], [20], Watson proved the 24 class invariants from Ramanujan’s
paper [14] that cannot be found in Ramanujan’s second notebook. In the first [19],
Watson devised an “empirical process” to calculate 14 of the 24 invariants, while in
the second [20], he employed modular equations, which we define later in this
paper, to prove 10 invariants. Watson [18] also used his empirical process to
establish Ramanujan’s value for G35;. In the introduction to [19], Watson re-
marked, “It is intended to publish the calculations involved in the construction of
the set N + Q (the invariants appearing in both Ramanujan’s paper [14] and the
second notebook) as part of the commentary on the note-books by Dr. B. M.
Wilson and myself.” Although Watson and Wilson’s efforts to edit Ramanujan’s
notebooks have been preserved in the library at Trinity College, Cambridge,
Watson’s calculations of these twenty-one invariants are not found there. The
twenty-one values of n are: 65, 69, 77, 81, 117, 141, 145, 147, 153, 205, 213, 217,
265, 289, 301, 441, 445, 505, 553, 90, and 198. Watson wrote four further papers on
the calculation of class invariants, and in those he verified three additional class
invariants determined by Ramanujan, namely, those for n = 81, 147, and 289.
Thus, after Watson’s work, and up until recent times, 18 of Ramanujan’s class
invariants remained to be verified.

For five of the values, n is a multiple of 9, namely, n = 117, 153, 441, 90, and
198. The authors [5] found proofs for these values by using formulas relating G,
with G, and g,, with g,, which we established by using one of Ramanujan’s
modular equations of degree 3. All of the remaining 13 values are for G,, n = 65,
69, 77, 141, 145, 205, 213, 217, 265, 301, 445, 505, and 553. Note that each value of
n is the product of a small prime (3, 5, or 7) and a larger prime. Quite remarkably,
the class number for each of the 13 imaginary quadratic fields Q(V — n ) equals 8.
Moreover, there are precisely two classes per genus in each case. This is amazing!
It is extremely unlikely that Ramanujan had any knowledge of imaginary quadratic
fields, genus theory, or class numbers. However, Ramanujan must have recognized
some arithmetical properties shared by these fields, although he would have
expressed his ideas in a language very different from what we use today. How did
Ramanujan calculate these 116 class invariants? He left no clues in his notebooks.
Since Weber’s methods were highly algebraic, it is very unlikely that Ramanujan
journeyed along Weber’s paths.

In his paper [14], Ramanujan used modular equations to calculate only a couple
of simple invariants. This fact and the sentence, “The values of G, and g,, are got
from the same modular equation.”[14], [16, p. 25] are the only clues to his methods
that Ramanujan provided for us. It would seem that if Ramanujan had employed
another type of reasoning, he would have dropped some hint about it.

Having mentioned modular equations three times already in this paper, a
definition of a modular equation is overdue.

2c=1+
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With the elliptic integral K defined by (5), let K, K', L, and L denote complete
elliptic integrals of the first kind associated with the moduli ,%’,/, and
I' == V1 — I?, respectively, where 0 < k, [ < 1. Suppose that

K L 0

ng I (10)
for some positive integer n. A relation between k and / induced by (10) is called a
modular equation of degree n. In fact, modular equations are algebraic equations. A
modulus can be expressed in terms of classical theta functions. Although we
suppress all details, this fact, (10), and (6) are the primary ingredients needed to
show that a modular equation can alternatively be expressed as an identity relating
theta functions with argument g and theta functions with argument g".

As mentioned above, Watson [20] used modular equations to establish some of
Ramanujan’s invariants. We have been able to prove six of the remaining thirteen
values for G,, namely, for n = 65, 69, 77, 141, 145, and 213, by using modular
equations of degrees p and g, where n = pg, but our approach is necessarily
different from that of Watson. To prove the remaining seven invariants by
employing modular equations, we would need modular equations of degrees 31, 41,
43, 53, 79, 89, and 101. Apparently, only for degree 31 did Ramanujan derive a
modular equation, for he recorded no modular equations for the other six degrees
in his notebooks. Some of the modular equations that we employed are very
complicated, and so we had to use Mathematica to effect some of our calculations.
In conclusion, it seems unlikely that Ramanujan used only modular equations in
these elusive computations.

In order to prove the remaining class invariants of Ramanujan, we devised two
methods [7].

The first uses Kronecker’s limit formula. In order to give a brief description of
this formula, we need to define the Epstein zeta-function. Let Q(u,v) =y "(u +
vz)u + vz), where z =x +iy with y > 0. The Epstein zeta-function (,(s) is
defined for o = Re s > 1 by

Go(s) = LAQ(u,0)}

where the sum is over all pairs of integers (u, v) except (0, 0). It is well known that
¢o(s) can be analytically continued to the entire complex s-plane, where {,(s) is
analytic except for a simple pole at s = 1. The Kronecker limit formula provides
the constant term in the Laurent expansion about s = 1. This constant term
involves the Dedekind eta-function, which we defined in (7). The Kronecker limit
formula then leads to representations for certain products of Dedekind eta-func-
tions in terms of fundamental units. By (8), these representations allow us to
calculate G,. Our methods extend those of K. G. Ramanathan [13] who calculated
some of Ramanujan’s class invariants but required that Q(vy — n ) contains only one
class per genus. Zhang [22], [23] has further extended the method to give rigorous
proofs of the invariants of Ramanujan that Watson [19] had “empirically” calcu-
lated.

Our second method takes Watson’s ideas and employs class field theory to put
the “empirical” process on a firm foundation [7]. It has been further extended by
Chan to determine several new invariants [9].

It is highly doubtful that Ramanujan had any acquaintance with Kronecker’s
limit formula, the arithmetic of quadratic fields, or class field theory. Thus,
Ramanujan’s ideas still remain hidden behind an opaque curtain.
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In this paper, we have made many claims without proofs (as did Ramanujan),

but complete proofs or references for all our assertions can be found in [2].
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