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A B S T R A C T  

In this paper, we explain the existence of certain modular equations 
discovered by S. Ramanujan via function field theory. We will prove some 
of these modular equations and indicate how new equations analogous to 
those found in Ramanujan's notebooks can be constructed. 

w I n t r o d u c t i o n  

Let 
~ (a)k(b)k z k 

2F1 (a, b; c; z) := 
k--0 (c)k k!' 

where (a)k = (a)(a + 1)-. .  (a + k - 1), and [z I < 1. We say that the m o d u l u s / 3  
has degree n over the m o d u l u s  a when 

1 1 1 c~ 
2F1 (~ ,  ~ ; 1 ; I -  ~ )  2F1 ( ~ , ~ ; 1 ; 1 -  / 

: n  

(1.1) 2 1 F ( 1~,~;1 1;/3) 2 F l ( ~  1;1;c~) 
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(1.3) 

with 

A m o d u l a r  e qua t i on  of  degree  n is a relation between a and ~ which is 

induced by (1.1). 

In his notebooks [11], S. Ramanujan recorded many modular equations of 

various degrees without proofs. Most of these modular equations, together with 

their proofs, can now be found in [1] and [2]. Among these identities, there is 

a collection of modular equations which can easily be interpreted as relations 

between products of Dedekind r/-functions, where 
oo  

(1.2) ~(T) := e 2~ir/24 I I ( 1  - e2~rm~). 
r L : I  

For example, the modular equation (of degree 3) [1, p. 231, Entry 5 (xii)] 

Q 1 + ~ + 2 ~  P1- =0, 

(1.4) 

where 

{Z(1 - Z)) 1/~ 
Pl -- {16~Z(1  - ~ ) (1  - Z)} 1/s and Q,  = \ ~ ( 1  T )  ' 

is equivalent (via [1, Chapter 17, Entry 12]) to the identity 

1 8 
- Q + ~  - - P + ~ ,  

P -  r/3(~-)rl3(3~-) and Q -  ~16(T)~6(6T) 
r] 3 (2~-)773 (67) 776 (2~-)rl 6 (3T) 

Many modular equations similar to that of (1.3) can be found in [2, Chapter 
25] and they are very useful in the evaluations of q-continued fractions [3] and 

Ramanujan-Weber class invariants [4]. 
In Section 2, we present results from function field theory and theory of mod- 

ular forms which are required for the proofs of Ramanujan's modular equations. 

In Section 3, we illustrate our method with two of Ramanujan's modular equa- 

tions, one of which is (1.4). We then proceed to discuss most of the modular 

equations of this type found in [2, Chapter 25]. We mention here that the proofs 

of Entries 3.14-3.18 presented in [2, Chapter 25, pp. 236 244] also involve mod- 

ular forms but they require the knowledge of the modular equations in advance. 

In Section 4, we will first discuss a way to construct new modular identities and 

identify Ramanujan's modular equations as a special case of such construction. 

We then indicate some significant features in all the equations discussed in Section 

3 and proceed to construct new modular equations analogous to those found by 

Ramanujan. 
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w Resu l t s  f rom func t ion  field t h e o r y  and  t h e o r y  of  m o d u l a r  fo rms  

A symbol 7r = 1-Ire1 t~ is a genera l ized  p e r m u t a t i o n  if I is a finite subset of 

N and rt E Z. To each generalized permutation 7r, we associate a function 

~(~)  = 1-I ~(t~)~,. 
tEI 

Throughout this paper, we will write I ] te l  as [I, keeping in mind that our 

product is taken over a finite set I. 

Next, suppose 

P0(N) :=  { ( ;  : ) E S L 2 ( Z ) [ e = 0  ( m o d N ) }  

where N is a positive integer. If e]lN, we call the matrix 

(2.1) We = cN de ' a,b,c,d E Z, det(We) = e 

an A t k i n - L e h n e r  involu t ion  of r0(N). 
Given a generalized permutation 7r = [[ t ~ and an Atkin-Lehner involution 

We of r0(N),  set 

(2.2) ~(~)lwo := 1-I~(twe'Y ~. 

In order to simplify each term in the product of (2.2), we require the following 

two results. 

THEOREM2.1 ([8' p" 51' The~ 2]): Let M = ( a c bd)ESL2(Z)" Then 

7I(M~-) = un(M)(c'r + d)'/2~/(r), 

where 

~.(M) = { 

Here, 

c exp ]--~((a + d)e - bd(c 2 - 1) - 3c) ire is odd, 

C ) . exp  - - ~ ( ( a + d ) c - b d ( c 2 - 1 ) + 3 d - 3 - 3 c d )  i fd isodd.  

= c and e = c (_l)(sgnc_l)(sgnd_l)/4 ' 

From Theorem 2.1, we easily deduce 
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COROLLARY 2.2: Let We be an Atkin-Lehner involution of Fo(N). Let t > 0 be 

such that t iN. Suppose T C N, where H is the upper half plane of C. Then 

( aew+bel =v'rl(M) (cNT-j-de)l/2 (e~2) 
rl(tWer) = ~ t c N  r + -- ~ r 

where 5 = (e, t) and 

Proof: Simply set 

a5 bt/5"~ 
M =  cNS/et de~S/ e SLy(Z). 

a5 b t /5~  
M =  cNS/e t  d e l l ]  

in Theorem 2.1. 
We will also need the following results in the sequel. 

THEOREM 2.3 ([10]): Let ~r = 1~ tT~ be a generalized permutation. Suppose 

(1) E r t  = O, 

(2) ~ trt -- 0 (mod 24), and 

(3) I-I tl~l is a square. 

Choose N so that 

(4) rt = O i f t ~ N ,  and 

(5) E N Trt =~- 0 (mod 24). 
Then ,In(z) is invariant under ro(X). 

THEOREM 2.4 ([9]): Let zr be a generalized permutation and let F be a discrete 

subgroup of SL2(Z) containing Fo(N) for some N such that F\H* is of genus O. 

Suppose 

(1) E t r t  = -24, 

(2) r/,:(T) is invariant under the action ofF, 

0 • I n E Z  , a n d  

(4) ~- = oo is the unique pole of ~ among all inequivalent cusps of F. 

Then ~,:(z) generates the function field of F\H* over C, i.e., ~ is a bijection 

from F\H* ----+ C U {oo} and every meromorphic function invariant under F can 
be expressed as a rational function of ~r. 

([6, p. 49, Lemma 3.5]): Let A = ( :  THEOREM 2.5 
\ 

1-I tT' be a generalized permutation. Suppose 

bt 
(to 0 1 ) ( ;  : ) =  ( ; :  d r ) ( 0  t 

b d l  E SL2(Z) and 7r 

~t  ' 
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where (~t = (t, c) and c~tSt = t. Set h --- lcmte1(St). Then 

tbr = C(eT + d)E rt/2exp \ - ~  ~ t  g(z), 

where C is a constant and g(T) is a holomorphic function of e 2v i r /h  in some 
neighbourhood of T = OO. 

Since [6] is not readily available, we sketch a proof of Theorem 2.5. 

Sketch of proof [6, p. 49]: We have 

(aT + b ~ ~ ~1 at bt at 
7~ \ c ~  J = I~t [ ( ( et dr) ( 0  

where 

{ o, )} 
z +  

(~z (~,e)2r,) g(z), 
= c ' " ( e z  + d)E~r'/2exp \ 12 ~ t 

"q(z)=--1]t [fi{1-exp(27rin(eetz-+- \ (~t 

and each of the C', C" and C'" can be worked out explicitly. Now, g(z) is a 
holomorphic function of e 2~z/h, with h = lcmtci(6t), in some neighbourhood of 

z = c~. Hence the result. 

w Ramanujan's modular equations 

We begin our discussion with the functions 

P -  73(T)73(3T) and Q -  76('r)76(6~-) 
73 (2~-)73 (6T) 76 (2~')76 (3~') 

Note that P/Q and PQ are invariant under F0(6), by Theorem 2.3. Using The- 

orem 2.4, we check that P/Q is a generator for the function field of r0(6)\~*. 

Let W3 be the Atkin-Lehner involution (36 13). Then by Theorem 2.2, we 

find that 

P 
(3.1) PQIw3 = 
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Hence P Q  is also a generator for the function field of F0(6)\]HI*. Therefore, 

a + b P / Q  
(3.2) P Q  - 

c + d P / Q  

for some a, b, c, d E 2]. By (3.1) and (3.2), we find that 

P a - bPQ 

Q c - d P Q '  

which implies that 

(3.3) p Q  _ a + c P / Q  
b + d P / Q  

Comparing (3.3) with (3.2), we deduce that b = c. 

Next, observe that 

P Q  = 1 - 9q + O(q 2) 

and 

From (3.2), we find that 

P 1 
- -  = - + 3 + O ( q ) .  
c2 q 

( ) b 
( 1 -  9q + O(q2)) c + d + 3d + = a + - + 3b + O(q), 

q q 

which implies that b = d and a = -8d ,  after comparing coefficients of q-1 and 

the constant term. Hence 
- 8  + P/Q 

P Q -  
1 + P / Q  ' 

which gives (1.4) after some simple rearrangements. 

Using the above procedures, we are able to establish several modular equations 

of Ramanujan. We shall state these identities with their proofs omitted. 

E N T R Y  3.1: / f  

then 

n~(~) n~(2~) 
P -  ~2(3T) and Q -  ~2(6~.), 

9 

P Q  § P--5 = + ' 
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ENTRY 3.2: / f  

then 

ENTRY 3.3: If 

p _  ~(2~) and Q -  ~(~) 
~(3~-) ~(6r)' 

(pQ)2  - - 8 . 

P =  ~2(T)~2(5T) and Q -  ~3(2T)~3(DT) 
~2(27)~2(10T) ~3(T)~3(107)' 

then 

ENTRY 3.4: / f  

then 

ENTRY 3.5: / f  

then 

1 4 
Q - - ~  = P +- - f .  

P -  ~(~) and Q -  ~(~) 
z](5r) u(lOw)' 

P Q + K ~  = + 

p _  v(2~) and Q -  v(~) 
~](5T) rl(10r) ' 

PQ p - Q -  - 4  

Remark:  The groups involved in the first two and the last three modular 

equations are Fo(6) and F0(10), respectively. Note that both the Riemann 

surfaces associated with the groups Fo(6) and Fo(10) have genus 0 (see [6, p. 
107] or Section 5). 

Next, consider the following modular equation of degree 7 [1, Entry 19 (ix)]. 

The proof of this identity requires more work. 

ENTRY 3.6: / f  

,3(~),3(7~) ~(2~)~(7~)  
P =  @(2T)U3(14T) and Q -  U4(w)U4(14T) , 

then 

Proo~ 

1 8 Q+~=p+~+7. 
By Theorem 2.3, we check that P and Q are both invariant under F0(14). 
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7 3 7 )  By Theorem 2.2, we check Let W7 be the Atkin Lehner involution 14 ' 

that  Q[w7 = Q-1 and Plw7 = P" Hence Q + Q-1 and P are invariant under the 

group F :=< F0(14), W7 >, where 

W~ := \ cU/x/-e dv~  ] ' 

since Ptw~ = PIW~. Moreover, P is a generator for the fimction field of F\H* 

(by Theorem 2.4). Hence, 
Q + Q-1 _ n(P) 

d(P) '  

where n(P)  and d(P) are polynomials in P. 

Now, the cusps of F are (1, 0) and (14, 1), and the values p~ = 1/14 and 

P2 = 0/1 are both poles of Q. Furthermore, Q has no zero in the upper half 

plane. It follows that the only poles of Q + Q-1 are pl and p2. Since P has a 

pole at PI and a zero at P2, we conclude that d(P) = pe for some e. Now, by 

Theorem 2.5, 

(3.4) Q]~._;~ = cq -1/7 + " "  

and 

(3.5) P[~=;~ = dq 1/7 + ' "  , 

where c and d are some constants. From (3.4) and (3.5), we deduce that P has 

a zero at p2, e = 1, and 
1 n(P) Q +  - - -  
Q P 

We will next show that the degree of the polynomial n(P)  is 2. Suppose 
/ 

biP r and let W2=- (i84 ~ ) .  Then by Theorem 2.2, we find that n ( P )  ~ 
k / 

P[w~ = s i p  and Q]w~ = 1/Q. Hence, under the transformation of W2, we find 

that 

1 Ei~o b~ Pi Q +  - 
Q P 

(3.6) 

becomes 

(3.7) 
1 Ei~O bi(8/P) i 

Q + Q s / p  
P2bo/8 + b~P + 8b2 + ~ i>2  b~(8/P) i-1 

P 
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Again, from (3.4) and (3.5), we conclude that bi = 0 when i > 2. From (3.6) and 

(3.7), we also deduce that bo = 8b2. 

Next, observe that  

Q = ~(1 + 4q + O(q2)), 

P = 1(1 - 3q + O(q2)), 
q 

Q-1 = q(1 - 4q + O(q2)), 

and p - 1  = q(1 + 3q + O(q2)). 

Comparing the coefficients of q- l ,  and the constant term after substituting the 

above expansions into (3.7), we deduce that b2 = 1 and bl = 7. Hence 

Q+ 1 p 2 + 7 P + 8  

Q P 

which is Entry 3.6. 

Ramanujan possessed several modular equations similar to that of Entry 3.6. 

We state these modular equations and briefly mention the groups that are 

involved. 

ENTRY 3.7: / f  
P -  ~/('r) and Q-~/(2-r) 

,(25~-) ,(50~-)' 
then 

P Q + -fi--~ = - 4  - 4  + 

ENTRY 3.8: / f  

P -  U(3T)U(5T) and Q - U(6T)U(10T) 
U(T)~(15T) U(2T)U(307)' 

then 

ENTRY 3.9: / f  

PQ+ ~ - -  + +4 .  

p _  ,(6~)n(5~) a.d Q -  
~(27)V(15T) 

~(3T)~(107) 

U(T)~(30T)' 

then 1( )2 
P Q + V ~  = + - 1 .  
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ENTRY 3.10: I f  

then 

ENTRY 3.11: /f  

then 

ENTRY 3.12: /f  

then 

(pQ)3 

ENTRY 3.13: /f  

P -  ~l('r) and Q -  7/(5w) 
71(37 ) rl(15T) ' 

9 (~_)3 ( ~ ) 3  
(pQ)2 + ( p ~ ) 2  - - - 5. 

P -  ~/3(7) and Q -  'r/3(3'r-----~) 
~/3 (5~-) ~/3(15T) ' 

125 (~)2 Q_9~_ (Q)2 
P Q  +-~--~ = - 9  7 

p _  ~(3r ~nd Q -  ,/(~) 
, (5r , (15~)'  

( p ~ ) 3 - ( - ~ ) 4 + ( - ~ ) 2 - 9 ( ~ ) 2 - 8 1 ( ~ )  4. 

p - ,(T)r/(2T) and Q -  ,(37)~j(6T) 
$1(5~-)r/(10T) r](157)r/(307) ' 

then 

ENTRY 3.14: /f  

then 

ENTRY 3.15: /f  

then 

25 2 "Q  - 3 ~ +  - 6 .  P Q  + - - ~  = - 3 ~  

P -  ~(r ~ .d  Q -  ~j(3r 
~/(7~-) ~/(21~-) ' 

P Q  + -p----~ = + - 3 .  

P -  '(~-) ~.a Q -  ~(7,-) 
r/(3"r) 'q(21T) ' 

27 4 2 2 4 
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ENTRY 3.16: / f  

then 

ENTRY 3.17: I f  

then 

(PQ)~ - 5 + - -  

ENTRY 3.18: I f  

then 

R e m  arks:  

p _  ~(3~) and Q -  ~(~) 
r](7~-) 7/(21T)' 

- 2 7  
7 49 

pQ (pQ)2" 

P - ' ( ~ )  and Q -  ~(5~) 

F -  ~(~) and Q -  ~(3~) 
~(13r) ~(39T)' 

13 z Q 3 p  PQ + ~-~ = - 3 ~ - 3 -  , 

The groups involved in the above entries are, respectively, 

(ro(5O),Wso), 

(F0(15),Wla}, 

(r0(21),W2~), 

(to(30), w~a), <0(30), W3o), (ro(15), w,5), 

(ro(15),ws), (ro(30),W3o), (ro(21),w2~), 

(Fo(21),W3), (Fo(35),W35}, and (Fo(39),W39}. 

All the Riemann surfaces associated with the above groups have genus 0 (see 

[6, pp. 107 109] or Section 5). 

w C o n s t r u c t i o n s  of  m o d u l a r  e q u a t i o n s  

Let a be a modular function with invariance group A such that  g(A\H*) r 0. If 

there exists a group G such that  m := [G : A] < oc, g(G\N*) = 0, and A ~ G, 

then we always have an identity of the form 

7 n  

(4.1) n(f) 
- d - ~ '  

i =1  

where a = U'~%~ ,~A, ~(x) and d(~) are both polynomials in x, and f generates 
the function field of G\H*.  To determine d(f), we first set { m} 

p : :  poles of Ea i .q~  \{poles  of f } .  
i=1 
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Since by assumption, f is a bijection from G\EI ~ C u {oo}, we conclude that  

d(x) = H ( x -  f(p))%, 
p6p 

where 
order of (Ei%l (719~) at p 

ep = order of (f  - f(p)) at p " 

Note that  d(x) is defined to be 1 if fa = qS. The polynomial n(x) can then be 

determined by comparing thc Fourier expansions of d(f) Ei~=l (71:,~ and f at oc. 

We now return to our discussions of Ramanujan 's  modular equations. If we 

identify (7, f ,  G and A accordingly in the modular equations given in Section 3, we 

find that  these identities are all special cases of (4.1). Our computations in these 

cases, unlike the general situation, are less cumbersome due to thc simplicity 

of the functions involved. For example, in Entry 3.6, out" (7 = Q, A = F0(14), 

and G = <  Fo(14),W7 >. The generator f = P is 0 at the p o l e p  = 0/1 of 

Q + I/Q and ep = 1. Hence, d(x) = x. Moreover, using Atkin Lehner involution 

W2, we only need to expand the functions Q + 1/Q and P up to the constant 

terms in order to determine n(x). In short, Ramanujan 's  modular equations are 

special cases of (4.1) where (7 and f are products of r/Junctions. Furthermore, 

the invariance group A of (7 is usually of the form r0(N) and G is of tile form 

< F0(N), We >, with ellN. These observations are enough for us to construct 

new modular  equations. 

First, we search through the table given in [6, pp. 107-109] or Section 5 for 

a group G such that  G\H* has genus 0. We then construct two generalized 

permutat ions ~rl and 7r2 (using the conditions in Theorems 2.3 and 2.4 as a 

guide) such that  the corresponding functions P = 7/~ , and Q = r/~ satisfy either 

1. P and Q are invariant under a subgroup A with [G : A] = 2, and 

2. P is a generator of the function field of G\H*,  

or  

1'. (pQ)k (for some integer k) and Q/P are invariant under a subgroup A with 

[G: A] = 2, and 

2'. Q/P  is a generator of the function field of G\H*.  

With the above P and Q, we proceed as in the proof of Entry 3.6 to construct 

our new modular equation. 

We illustrate our method with an example. If we search through the table 

given in [6, pp. 107-109] or Section 5, we find that  G = <  Fo(33), WI~ > is a 

good candidate. With this choice of G, we set 7rl = 3/11 and 7r2 = 1/33. Hence 

P -  r/(3r) and Q = r/(r) 
r / ( l l r  ) ~ (3a~ )  
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Since (pQ)3 and Q/P are invariant under A -- F0(33), by Theorem 2.3, (1') is 

satisfied. Furthermore, by Corollary 2.2, we find that Q/P and (PQ)3-(ll/pQ)3 
are invariant under G. Using Theorem 2.4, we check that Q/P is a generator for 

the function field of G\]I-]I* and hence (2') is satisfied. Finally, we follow the steps 

in the proof of Entry 3.6 to deduce 

p _  a.d Q -  
 (11T)  (33T)' 

ENTRY 4.1: If  

then 

Remarks: 
(1) 

(2) 

(pQ)3 113 4 

If we take F as one of the groups in the previous section, we will usually end 

up with Ramanujan's P 's  and Q's. This is the reason why we have chosen 

F :=< Fo(33), Wll  > for the construction of our new modular equation. It 

is amazing that  Ramanujan has discovered most of the "simple" modular 

equations without the knowledge of function field theory. 

A modular equation similar to Entry 4.1 was first discovered by B. C. 

Berndt, S. Bhargava and F. G. Garvan [5, (7.33)] when they proved a 

modular equation of degree 11 to alternative base 3. We thank Professor 

Berndt for bringing our attention to this modular equation. If we use the 

permutations 7rl = 33/11 and :r2 = 1/3, that is, 

p _  ~/(33~-) and Q -  r/(T) 
,/(117) ~(3T)' 

we would have a new proof of this modular equation. 

w Genus zero discrete groups r of SL2(R) such that r0(N) C r C 

to(N)+ 

In this section, we give a list of all genus zero discrete groups F of SL2 (R) such 

that Fo(N) c F C Fo(N)+,  where Fo(N)+ refers to groups generated by Fo(N) 
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Tab le  1. T a b l e  o f  genus  ze ro  d i s c r e t e  g r o u p s  F 

of  SL2(R) such  t h a t  Fo(N) c v c Co(N)+ 

1, 
3, 3 + 3, 
5, 5 + 5, 

7 , 7 + 7 ,  
9, 9 + 9, 

11 + 11, 

13, 13 + 13, 
15 + 5, 15 + 15, 15 + 3 + 5, 

17 + 17, 

19 + 19, 
21 + 3, 21 + 21, 21 + 3 + 7, 

23 + 23, 
25, 25 + 25, 

27 + 27, 
29 + 29, 

31 + 31, 
33 + 11,33 + 3 + 11, 
35 + 35, 35 + 5 + 7, 

3 8 + 2 + 1 9 ,  
4l + 41, 

4 4 + 4 +  11, 
46 + 23, 
47 + 47, 

50 + 50, 50 + 2 + 25, 
54 + 2 + 27, 
5 6 + 8 + 7 ,  
6 0 + 4 +  15 
6 2 + 2 + 3 1 ,  
69 + 2 + 23, 

71 + 71, 
87 + 3 + 29, 
94 + 2 + 47, 

1 0 5 + 3 + 5 + 7 ,  
1 1 9 + 7 +  17. 

2 , 2 + 2 ,  
4 , 4 + 4 ,  

6 , 6 + 2 , 6 + 3 ,  
6 + 6 , 6 + 2 + 3 ,  

8 , 8 + 8 ,  
10, 10 + 2, 10 + 5, 

10 + 10, 10 + 2 + 5, 
12, 12 + 4, 12 + 3, 

12 + 12, 12 + 4 + 3, 
14 + 7, 14 + 14, 14 + 2 + 7 

16, 16 + 16, 
18, 18 + 2, 18 + 9, 

18 + 18, 18 + 2 + 9, 
20 + 4, 20 + 20, 20 + 4 + 5, 

22 + 11,22 + 2 + 11, 
24 + 8, 24 + 24, 24 + 8 + 3, 

26 + 26, 26 + 2 + 13, 
2 8 + 7 , 2 8 + 4 + 7 ,  

30 + 15, 30 + 30, 30 + 2 + 15, 
3 0 + 3 + 5 , 3 0 + 6 + 1 0 , 3 0 + 2 + 3 + 5 ,  

32 + 32, 
34 + 2 + 17, 

36 + 4, 36 + 36, 36 + 4 + 9, 
39 + 39, 39 + 3 + 13, 

4 2 + 3 +  1 4 , 4 2 + 6 +  1 4 , 4 2 + 2 + 3 + 7 ,  
4 5 + 9 + 5  

46 + 2 + 23, 
49 + 49, 

51 + 3 + 17, 
5 5 + 5 + 1 1 ,  

59 + 59 
6 0 + 2 0 + 1 5 , 6 0 + 4 + 3 + 5 ,  
6 6 + 1 1 + 6 , 6 6 + 2 + 3 + 1 1 ,  
7 0 +  10+  1 4 , 7 0 + 2 + 5 + 7 ,  

78 + 26 + 39, 78 + 2 + 3 + 13, 
92 + 4 + 23, 
95 + 5 + 19, 

1 1 0 + 2 + 5 + 1 1 ,  
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and all its Atkin-Lehner involutions Wr eIIN. This list (Table 1) is compiled by 

the second author using Kluit 's results [7] and it can also be found in [6, pp. 107- 

109]. The first number N represent the group r0(N)  and the subsequent numbers 

e (after the "+" sign) represent the corresponding Atkin Lehner involutions W(,. 

For example, the symbol "33 + 11" represents the group < F0(33), WH >. 

w C o n c l u s i o n  

The modular equations discussed in this paper are just a small collection of 

those discovered by Ramanujan. We have shown that  these identities can be 

constructed with the knowledge of function field theory and the theory of modular 

forms. It will be of great interest to devise other techniques which will facilitate 

uniform treatments of other types of modular equations found in Ramanujan 's  

notebooks and Lost Notebook. 
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