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Abstract

The main aim of this paper is to provide two new proofs of Ramanujan’s cubic
transformation formula for 2F1( 1

3 ,
2
3 ; 1; z) (see (1·8) below). For our first proof, we

have to develop Ramanujan’s elliptic functions in the theory of signature 3 using
a different approach from that given in a recent paper by Berndt, Bhargava and
Garvan. For our second proof, we use two of Goursat’s formulas.

1. Introduction

Define

a0 = a, b0 = b, a > b > 0,

an+1 =
an + bn

2
and bn+1 =

√
anbn.

This iteration is known as the arithmetic–geometric mean iteration (AGM) of Gauss
and Legendre. One can show that the limits of the sequences {an} and {bn} exist
and that

M (a, b)÷ lim
n→∞

an = lim
n→∞

bn.

The following two properties of M (a, b) are immediate:

M (λa, λb) = λM (a, b), λ > 0, (1·1)

† This work is partially supported by NSF, grant number DMS-9304580.
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and

M (a, b) = M

(
a + b

2
,
√
ab

)
. (1·2)

When a = 1,

M (1, b) =
1 + b

2
M

(
1,

2
√
b

1 + b

)
, (1·3)

by (1·1) and (1·2).
Around 1799, Gauss [9] determined M (1, b) explicitly by showing that

1
M (1, x)

= 2F1
(

1
2 ,

1
2 ; 1; 1− x2

)
, (1·4)

where

2F1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

(u)n = (u)(u + 1) · · · (u + n− 1) and |z| < 1. From (1·3) and Gauss’ identity (1·4),
we obtain the transformation formula

2F1
(

1
2 ,

1
2 ; 1; 1− x2

)
=

2
1 + x

2F1

(
1
2 ,

1
2 ; 1;

{
1− x
1 + x

}2
)
. (1·5)

Upon replacing x by (1− x)/(1 + x) in (1·5), we arrive at Landen’s transformation
formula [1, p. 93]

2F1

(
1
2 ,

1
2 ; 1; 1−

{
1− x
1 + x

}2
)

= (1 + x) 2F1
(

1
2 ,

1
2 ; 1;x2

)
.

In [5], J. M. Borwein and P. B. Borwein considered the following cubic analogue
of the AGM: Let

d0 = d, e0 = e, d > e > 0,

dn+1 =
dn + 2en

3
and en+1 = 3

√
en(d2

n + dnen + e2
n)

3
.

The limits of the sequences {dn} and {en} exist and

AG3(d, e)÷ lim
n→∞

dn = lim
n→∞

en.

The following analogues of (1·1) and (1·3) hold:

AG3(λd, λe) = λAG3(d, e), λ > 0,

and

AG3(1, e) =
1 + 2e

3
AG3

(
1, 3

√
9e(1 + e + e2)

(1 + 2e)3

)
. (1·6)

One of the most surprising results in the Borweins’ paper is the beautiful analogue
of (1·4), namely,

1
AG3(1, x)

=2 F1
(

1
3 ,

2
3 ; 1; 1− x3

)
. (1·7)
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By computations similar to those of the Gauss–Legendre AGM, they concluded from
(1·6) and (1·7) that

2F1

(
1
3 ,

2
3 ; 1; 1−

{
1− x
1 + 2x

}3
)

= (1 + 2x)2F1
(

1
3 ,

2
3 ; 1;x3

)
. (1·8)

Identity (1·8) was first recorded without proof on page 258 of Ramanujan’s second
notebook [12]. The Borweins rediscovered this identity and provided the first proof
by verifying (1·7) using a hypergeometric differential equation.

Recently, while studying Ramanujan’s theories of elliptic functions to alternative
bases, Berndt, Bhargava and Garvan [4] revisited (1·8) and proved it by verifying
that both sides of (1·8) satisfy the differential equation

2x(1− x)(1 + x + x2)(1 + 2x)2y′′ − 2(1 + 2x)(4x4 + 4x3 + 2x− 1)y′ − 4(1− x)2y = 0

and coincide at x = 0. At the end of their proof, they remarked that neither their
proof nor the Borweins’ proof is completely satisfactory and a more natural proof
would be desirable.

The main purpose of this paper is to provide new proofs of identity (1·8) which
will shed some light on its origin. It turns out that, for our first proof, we have to
develop Ramanujan’s elliptic functions in the theory of signature 3 using a different
approach from that given in [4]. In Section 2, we define the Borweins’ cubic theta
functions and recall some of their properties. In Section 3, we discuss the relations
between Eisenstein Series and the Borweins’ functions. In Section 4, we derive the
cubic analogue of Jacobi’s classical inversion formula for the Borweins’ functions.
Our treatment in this section follows closely that found in [13]. In Section 5, we
complete the first proof of (1·8). In our concluding section, we give a second proof
of (1·8) using Goursat’s formulas [10].

2. Some facts about the Borweins’ cubic theta functions

For |q| < 1, set

f (−q) =
∞∏
n=1

(1− qn),

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2

,

b(q) =
∞∑

m,n=−∞
ωn−mqn

2+mn+m2

,

and

c(q) =
∞∑

m,n=−∞
q(n+ 1

3 )2+(n+ 1
3 )(m+ 1

3 )+(m+ 1
3 )2

,

where ω is a primitive cube root of unity. In terms of infinite products,

a(q) =
f 3(−q 1

3 ) + 3q
1
3 f 3(−q3)

f (−q) , (2·1)

b(q) =
f 3(−q)
f (−q3)

(2·2)
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and

c(q) = 3q
1
3
f 3(−q3)
f (−q) . (2·3)

Identities (2·2) and (2·3) were first discovered by the Borweins and elementary proofs
can be found in [6]. Identity (2·1) is due to Ramanujan [2, p. 346]. We will also need
the following important result of Ramanujan [2, p. 346]:(

1 + 9q
f 3(−q9)
f 3(−q)

)
=
(

1 + 27q
f 12(−q3)
f 12(−q)

) 1
3

. (2·4)

From (2·1) to (2·4), we deduce the Borweins’ cubic analogue of Jacobi’s identity [7]

a3(q) = b3(q) + c3(q). (2·5)

Next, set

α(q) =
c3(q)
a3(q)

.

From (2·1) and (2·3), we deduce that

1− α 1
3 (q3)

α
1
3 (q3)

=
1
3q

(
f (−q)
f (−q9)

)3

. (2·6)

On the other hand, from (2·1) to (2·3) and (2·5), we have

1− α(q)
α(q)

=
1

27q

(
f (−q)
f (−q3)

)12

. (2·7)

Hence, using (2·4), (2·6) and (2·7), we conclude that

α(q) = 1−
(

1− α 1
3 (q3)

1 + 2α
1
3 (q3)

)3

. (2·8)

Identity (2·8) is a modular equation of degree 3 in the theory of signature 3 [4], and
it plays a crucial role in the proof of (1·8). Finally, we record the identity

27qf 24(−q) = a12(q)(1− α(q))3α(q), (2·9)

which follows from (2·2), (2·3) and (2·5).

3. Ramanujan’s L(q), M (q) and N (q)

Set, for |q| < 1,

L(q) = 1− 24
∞∑
n=1

nqn

1− qn ,

M (q) = 1 + 240
∞∑
n=1

n3qn

1− qn ,

and

N (q) = 1− 504
∞∑
n=1

n5qn

1− qn .
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In his famous paper On certain Arithmetical Functions [11], Ramanujan established
(using elementary methods) many identities involving L(q),M (q) andN (q). We quote
four of these identities which will be needed in what follows:

M 3(q)−N 2(q) = 1728qf 24(−q), (3·1)

q
dL(q)
dq

=
L2(q)−M (q)

12
, (3·2)

q
dM (q)
dq

=
L(q)M (q)−N (q)

3
(3·3)

and

q
dN (q)
dq

=
L(q)N (q)−M 2(q)

2
. (3·4)

Our aim in this section is to establish some relations between the Eisenstein Series
M (q) and N (q) and the Borweins’ cubic functions.

Theorem 3·1. Let z3 = a(q) and x3 = α(q). Then

M (q) = z4
3(1 + 8x3) (3·5)

and

M (q3) =
z4

3

9
(9− 8x3). (3·6)

Identities (3·5) and (3·6) were first proved by Berndt, Bhargava, and Garvan [4,
theorems 4·2 and 4·4] using (1·8) and the inversion formula of the Borweins’ functions.
To avoid circular argument, we deduce these identities from the classical theory of
elliptic functions and modular equations of degree 3.

Proof of Theorem 3.1. Let

√
z2 = ϕ(q) =

∞∑
n=−∞

qn
2

, (3·7)

ψ(q) =
∞∑
n=0

qn(n+1)/2,

and

x2 = 16q
ψ4(q2)
ϕ4(q)

. (3·8)

From the classical theory of elliptic functions, we know that [2, p. 126, entry 13(i)]

M (q2) = z4
2(1− x2 + x2

2). (3·9)

We will establish (3·5) from (3·9) via Ramanujan’s modular equations of degree 3.
Suppose the modulus β has degree 3 over the modulus α. Then from [2, p. 230], we
find that

x2 = α = p
(2 + p)3

(1 + 2p)3
, (3·10)

and

β = p3 (2 + p)
(1 + 2p)

, (3·11)
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where p is given by

ϕ2(q)
ϕ2(q3)

ømø 1 + 2p. (3·12)

Next, from [2, p. 460] we find that

a(q2) =
ϕ3(q)
4ϕ(q3)

+
3ϕ3(q3)
4ϕ(q)

= ϕ2(q)
m2 + 3

4m
3
2

= 2
(p2 + p + 1)

(1 + 2p)
3
2

.


(3·13)

Hence

a4(q2) = z4
2
(p2 + p + 1)4

(1 + 2p)6
. (3·14)

From (2·3), [2, p. 124, entry 12(iii)], and [2, p. 232, (5·1)], we deduce that

c3(q2) =
(

3q
2
3
f 3(−q6)
f (−q2)

)3

=
27
4
ϕ9(q3)
ϕ3(q)

(
β3(1− β)3

α(1− α)

) 1
4

=
27
4
ϕ9(q3)
ϕ3(q)

(m2 − 1)2

16
.


(3·15)

Dividing (3·15) by the cube of (3·13), and using (3·12), we conclude that

c3(q2)
a3(q2)

=
27
4

p2(p + 1)2

(1 + p + p2)3
. (3·16)

Next, substituting (3·10) into (3·9), we find that

M (q2) = z4
2
(p2 + p + 1)(p6 + 3p5 + 60p4 + 115p3 + 60p2 + 3p + 1)

(1 + 2p)6

= a4(q2)
(p6 + 3p5 + 60p4 + 115p3 + 60p2 + 3p + 1)

(p2 + p + 1)3
by (3·14)

= a4(q2)
(

1 + 54
p2(p + 1)2

(p2 + p + 1)3

)
= a4(q2)

(
1 + 8

c3(q2)
a3(q2)

)
by (3·16).

Replacing q2 by q, we deduce (3·5). For the proof of (3·6), we observe that since β
has degree 3 over α,

M (q6) = ϕ8(q3)(1− β + β2), (3·17)
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by (3·9). Using (3·11) and (3·12), we may rewrite (3·17) as

M (q6) = ϕ8(q3)
(p2 + p + 1)(p6 + 3p5 − 5p3 + 3p + 1)

(1 + 2p)2

= a4(q2)
(p6 + 3p5 − 5p3 + 3p + 1)

(p2 + p + 1)3
by (3·14)

= a4(q2)
(

1− 6
p2(p + 1)2

(p2 + p + 1)3

)
= a4(q2)

(
1− 8

9
c3(q2)
a3(q2)

)
, by (3·16).


(3·18)

Replacing q2 by q, we deduce (3·6). This completes the proof of Theorem 3·1.

From (2·9) and (3·1), we find that

M 3(q)−N 2(q) = 64z12
3 (1− x3)3x3. (3·19)

Hence, by (3·5), we deduce that

N (q) =
√
M 3(q)− 64z12

3 (1− x3)3x3 = z6
3(1− 20x3 − 8x2

3). (3·20)

4. Venkatachaliengar’s derivation of the inversion formula
for the Borweins’ functions

In [13, pp. 93–95], Venkatachaliengar applied Ramanujan’s differential equations
(3·2)–(3·4) to show that, if

M (q) = z4(1 + 8x) (4·1)

and

N (q) = z6(1− 20x− 8x2), (4·2)

then

z = 2F1
(

1
3 ,

2
3 ; 1;x

)
. (4·3)

In the previous section, we showed that (4·1) and (4·2) are satisfied when z = z3

and x = x3, and so, from (4·3), we deduce the inversion formula for the Borweins’
functions, namely,

a(q) = 2F1

(
1
3 ,

2
3 ; 1;α(q)

)
. (4·4)

In this section, we will follow Venkatachaliengar’s derivations of Ramanujan’s
cubic inversion formula (4·3). The only difference is that we shall use our knowledge
of z and x in the final step of our argument. For simplicity, let L = L(q), M = M (q),
and N = N (q). From (3·3) and (3·5), we have

LM −N = q{12(1 + 8x)z3z′ + 24x′z4}, (4·5)

where the ‘prime’ means differentiation with respect to q. From (3·4) and (3·20), we
find that

LN −M 2 = q{12z5(1− 20x− 8x2)z′ − (40 + 32x)x′z6}. (4·6)

Next, multiply (4·5) and (4·6) by N and M , respectively. Solving the resulting si-
multaneous equations using (3·19), we deduce that

q
{
−M{12(1− 20x− 8x2)z5z′ − (40 + 32x)z6x′} +N{12(1 + 8x)z3z′ + 24x′z4}

}
= 64x(1− x)3z12.
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Therefore, by (4·1) and (4·2),

q
{
−12(1 + 8x)(1− 20x− 8x2)z9z′ + z10(40 + 32x)(1 + 8x)x′

+12(1 + 8x)(1− 20x− 8x2)z9z′ + 24z10(1− 20x− 8x2)x′
}

= 64x(1− x)3z12.

This implies that

qx′ = z2x(1− x). (4·7)

Now, substituting (4·7) into (4·5), we have

LM = 12q(1 + 8x)z3z′ + 24x(1− x)z6 + (1− 20x− 8x2)z6

= 12q(1 + 8x)z3z′ + (1− 4x)(1 + 8x)z6.

Therefore, by (4·1),

L = 12q
z′

z
+ z2(1− 4x). (4·8)

So,

qL′ = 12q2 z
′′

z
− 12q2 z

′ 2

z2
+ 12q

z′

z
+ 2q(1− 4x)zz′ − 4qx′z2

= 12q2 z
′′

z
− 12q2 z

′ 2

z2
+ 12q

z′

z
+ 2q(1− 4x)zz′ − 4x(1− x)z4,

 (4·9)

by (4·7). Using (3·2), (4·8) and (4·9), we deduce that

12q2 z
′′

z
− 12q2 z

′ 2

z2
+ 12q

z′

z
+ 2q(1− 4x)zz′ − 4x(1− x)z4

= 12q2 z
′ 2

z2
+

(1− 4x)2z4

12
+ 2q(1− 4x)zz′ − (1 + 8x)z4

12
,

which implies that

12q2 z
′′

z
− 24q2 z

′ 2

z2
+ 12q

z′

z
= 8

3z
4x(1− x). (4·10)

Let

z′x÷
dz

dx
and z′′x÷

d2z

dx2
.

Then, by (4·7),

qz′ = q
dz

dx

dx

d q
= z′xz

2x(1− x),

and

qz′ + q2z′′ = z′′xz
4x2(1− x)2 + 2zz′x(1− x)z′xq + z′xz

4x(1− x)(1− 2x).

This implies that

qz′ + q2z′′ − 2z′q2 z
′

z
= z′′xz

4x2(1− x)2 + z′xz
4x(1− x)(1− 2x). (4·11)

Substituting (4·11) into (4·10), we conclude that

x(1− x)z′′x + (1− 2x)z′x = 2
9z.
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This is an example of a hypergeometric differential equation [8, p. 246] and the
solutions of this differential equation are linear combination of

F (x)÷ 2F1
(

1
3 ,

2
3 ; 1;x

)
and G(x)÷ 2F1

(
1
3 ,

2
3 ; 1; 1− x

)
.

Hence, for some constants a1 and a2,

z = a1F (x) + a2G(x).

From our knowledge of z and x, we know that z − a1F (x) is analytic at x = 0. This
implies that G(x) is analytic at x = 0 if a2 � 0, which is clearly a contradiction
[1, example 2, p. 81]. Hence, from the q-expansions of z and x, we conclude that
a1 = 1, and that

z = 2F1
(

1
3 ,

2
3 ; 1;x

)
,

which is (4·3).
Identity (4·3) is a cubic analogue of the classical identity [2, chapter 17, p. 98,

entry 3]

z2 = 2F1
(

1
2 ,

1
2 ; 1;x2

)
, (4·12)

where z2 and x2 are defined as in (3·7) and (3·8), respectively.
On page 258 of his second notebook [12], Ramanujan recorded the identity

(1 + p + p2) 2F1

(
1
2 ,

1
2 ; 1;

p3(2 + p)
1 + 2p

)
=
√

1 + 2p 2F1

(
1
3 ,

2
3 ; 1;

27p2(1 + p)2

4(1 + p + p2)3

)
, (4·13)

where 0 < p < 1. Identity (4·13) was first proved by Berndt, Bhargava and Garvan
in [4, theorem 5·6]. We conclude this section with a new proof of (4·13). From (4·4)
and (3·16), we find that

a(q2) = 2F1
(

1
3 ,

2
3 ; 1;α(q2)

)
= 2F1

(
1
3 ,

2
3 ; 1;

27p2(1 + p)2

4(1 + p + p2)3

)
,

 (4·14)

where p is given by (3·12). Substituting (4·14), (4·12) and (3·10) into (3·13), we find
that

2F1

(
1
3 ,

2
3 ; 1;

27p2(1 + p)2

4(1 + p + p2)3

)
=

(1 + p + p2)

(1 + 2p)
3
2

2F1

(
1
2 ,

1
2 ; 1; p

(
2 + p

1 + 2p

)3
)
. (4·15)

Identity (4·13) now follows from (4·15) and the identity [2, p. 238, entry 6(i)]

2F1

(
1
2 ,

1
2 ; 1; p

(
2 + p

1 + 2p

)3
)

= (1 + 2p) 2F1

(
1
2 ,

1
2 ; 1; p3

(
2 + p

1 + 2p

))
.

5. Ramanujan’s cubic transformation formula

From (4·3), we observe that we may express (3·5) and (3·6) as functions of t3,
namely,

M∗1 (t3)÷M1(q)÷M (q) = F 4(t3)(1 + 8t3) (5·1)

and

M∗3 (t3)÷M3(q)÷M (q3) =
F 4(t3)

9
(9− 8t3), (5·2)
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where t = x
1
3
3 , with x3 given as in Theorem 3·1. Set t1÷α(q

1
3). By (2·8), we find that

t31 = 1−
(

1− t
1 + 2t

)3

. (5·3)

Using (5·2) and (5·3), we deduce that

M∗3 (t31)÷M∗3

(
1−

{
1− t
1 + 2t

}3
)

= 1
9F

4

(
1−

{
1− t
1 + 2t

}3
)(

1 + 8
{

1− t
1 + 2t

}3
)
.


(5·4)

Now, dividing (5·4) by (5·1), we obtain

M∗3

1−

 1− t
1 + 2t


3

M∗1 (t3) =

(
1 + 8

{
1− t
1 + 2t

}3
)

9(1 + 8t3)

F 4

(
1−

{
1− t
1 + 2t

}3
)

F 4 (t3)

=
1

(1 + 2t)4

F 4

(
1−

{
1− t
1 + 2t

}3
)

F 4 (t3)
.


(5·5)

Now,

M∗3

(
1−

{
1− t
1 + 2t

}3
)

= M∗3 (t31) = M3(q
1
3 ) = M1(q) = M∗1 (t3).

Hence, (1·8) follows from (5·5).

Remarks. Shortly after the discovery of the above proof of (1·8), the author re-
ceived a letter from Professor Berndt containing Venkatachaliengar’s ‘proof ’ of (1·8).
Venkatachaliengar’s “proof” is similar to the author’s proof, but his final argument
is circular. More precisely, he showed that identities (5·3) and (1·8) are equivalent
but failed to show that (5·3) holds. We have shown here that (5·3) follows from the
modular equation (2·8) (via the Borweins’ functions).

6. Proof of (1·8) using Goursat’s formulas

Let u and v be real variables. In [10, p. 140, (126) and (127)], Goursat recorded
the following transformation formulas:

2F1
(
4c, 4c + 1

3 ; 6c + 1
2 ;u
)

=
(
1− 8

9u
)−3c

× 2F1

(
c, c + 1

3 ; 2c + 5
6 ; 64

u3(1− u)
(9− 8u)3

)
, 0 6 u < 9

4 −
3
4

√
3. (6·1)

and

2F1
(
4c, 4c + 1

3 ; 2c + 5
6 ; v
)

= (1 + 8v)−3c

× 2F1

(
c, c + 1

3 ; 2c + 5
6 ; 64

v(1− v)3

(1 + 8v)3

)
, 0 6 v < − 5

4 + 3
4

√
3. (6·2)
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Set k÷ 3

√
1− u and l÷ 3

√
v. Assuming that

64
u3(1− u)
(9− 8u)3

= 64
v(1− v)3

(1 + 8v)3
, (6·3)

we find that

k
1− k3

1 + 8k3
= l

1− l3
1 + 8l3

.

Hence, k = l or

(−1 + k + l + 2kl)(1 + k + k2 + (1 + 4k − 2k2)l + (1− 2k + 4k2)l2) = 0.

This implies that the only two solutions to (6·3) are

u = 1− v or u = 1−
(

1− 3
√
v

1 + 2 3
√
v

)3

,

since the discriminant of (1 + k + k2 + (1 + 4k − 2k2)l + (1− 2k + 4k2)l2) is negative.
Now, the solution u = 1 − v is inadmissible since 9

4 −
3
4

√
3 6 u < 1 is outside the

range of u in (6·1). Hence, by (6·1) and (6·2),

2F1

(
4c, 4c +

1
3

; 6c +
1
2

; 1−
(

1− 3
√
v

1 + 2 3
√
v

)3
)

=
(
1 + 2 3

√
v
)12c

× 2F1
(
4c, 4c + 1

3 ; 2c + 5
6 ; v
)
, 0 6 v < − 5

4 + 3
4

√
3. (6·4)

The range of v in (6·4) can be extended to 0 6 v < 1. Setting c = 1
12 and v = x3 in

(6·4), we deduce (1·8).

Remarks. Identity (6·4) was first discovered by Berndt, Bhargava and Garvan
[4, theorem 2·3]. Contrary to what they have claimed in the paragraph before [4,
theorem 2·3], we have shown that Ramanujan’s transformation for 2F1( 1

3 ,
2
3 ; 1;x) and

one of its generalizations can be deduced from Goursat’s results.
The proof of (6·4) given in this section is motivated by two new identities recently

discovered by the author and Berndt [3, section 2], namely,

j(τ ) = 27
(1 + 8x3)3

x3(1− x3)3
(6·5)

and

j(3τ ) = 27
(9− 8x3)3

(1− x3)x3
3
, (6·6)

where j is the well-known modular j-invariant and q = e2πiτ . Note that the recipro-
cals of the right hand sides of (6·5) and (6·6) both appear in Goursat’s formulas (6·1)
and (6·2). Now, one can deduce (6·6) from (6·5) (see [3, section 2]) by using (2·8) and
hence, it is not surprising that a solution of (6·3) is of the form

u = 1−
(

1− 3
√
v

1 + 2 3
√
v

)3

.
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