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1. Introduction

Singular moduli arise in the calculation of class invariants, and so we first define
the class invariants of Ramanujan and Weber. Set

(:0)e0 = [[(1—ag™, ol <1,
and
X(4) = (44" oo- (1.1)
If

q = eXp(—ﬂ'\/ﬁ), (1'2)

where n is a positive integer, the class invariants G, and g, are defined by
G, = 2_1/4(]_1/24)(((]) and Gn i= 2_1/4(]_1/24)((—(]). (1.3)

In the notation of Weber [8], G\, =: 274 f(v/=n) and ¢, =: 27Y% fi(v/=n).

As usual, in the theory of elliptic functions, let k := k(q), 0 < k < 1, denote
the modulus. The singular modulus k,, is defined by k,, := k(e~™v"), where n is a
natural number. Following Ramanujan, set o, = k2.

The algebraic natures of G, g,,, and «,, are described in the following theorem

of Chan and S.-S. Huang [4].

Theorem 1.

(a) If n =1 (mod 4), then G, and 2w, are units.
(b) If n = 3 (mod 8), then 27Y/'2G,, and 22, are units.
(¢) If n =7 (mod 8), then 27Y/*G,, and 2*av,, are units.

(d) If n =2 (mod 4), then g, and o, are units.

Lastly, we define a modular equation in the sense of Ramanujan. Let 5 F} (%, %; 1;2)
be the ordinary or Gaussian hypergeometric function, which, for brevity, we denote
by 2 Fy(2). Suppose that, for some positive integer n and for a = k% and 8 = (2,
where k and ¢ are moduli,

n2F1(1 —a) ol (1-p)
2F1(04) B zFl(ﬁ) ' (1'4)
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Then a modular equation of degree nis a relation between a and 5 which is induced
by (1.4). We often say that § has degree n over a. If, as customary, in the theory
of elliptic functions,

q:=exp(—7 o F1(1 — @) /2 F1(a)) =: F(a), (1.5)

then [1, p. 124] x(q) = 2!/*{a(1~a)/q} 7/** and x(~q) = 2!/*(1-a) /**(a/q)1/?*.
It follows from (1.1), (1.3), and (1.5) that

G = {da,(l— )} and g, = {4a,(1 - a,) 7}

(1.6)
Thus, if G, or g, is known, then a,, can be easily determined from (1.6) by solving
a quadratic equation. However, usually, the expression for «,, that one obtains in
this manner is not very attractive and does not reflect the algebraic nature of a,
described in Theorem 1. Thus, further algorithms which more readily yield elegant
representations of «,, are highly desirable.

In his first notebook [7], Ramanujan offers without proofs over 30 values for
o, and briefly indicates some formulas which are useful in calculating «,, when
n is even. The authors and L.—C. Zhang [3] proved these formulas of Ramanujan,
developed some new formulas for calculating «,, when n is odd, and consequently
established all of Ramanujan’s values for a,.

Ramanujan obscurely describes two further methods for calculating «a,, in his
first notebook [7].

In the first, Ramanujan indicates that as, may be calculated by solving a certain
type of modular equation of degree n. For several prime values of n, the desired
type of modular equation exists; many of these modular equations can be found in
Ramanujan’s notebooks and are proved in [1]. This very novel method is described
in Section 2, and it is the only known method that does not require a priori the
value of g3,,. Thus, the method is a new, valuable tool in the computation of as,.

In the second, Ramanujan discloses a method for determining ag,, arising from
the definition of a modular equation of degree n. In Section 3 we give a rigorous
formulation of this formula and prove it by using a device the authors and Zhang
introduced in [2] to calculate certain class invariants.

Lastly, in Section 4, we follow our methods in Section 3 and derive a similar
formula for as,. Although we utilize results of Ramanujan from his notebooks in
our proof, this formula was not given by Ramanujan.

2. The determination of a3, from modular equations

In the middle of page 292 in his first notebook, Ramanujan claims that, “Chang-
ing 3 to 4B/(1+ B)? and a to 1 — B? we get an equation in 4B(1 — B)/(1+ B)
and the value of B? is for e=™2" ” We now state and prove a rigorous formulation

of this assertion.

Theorem 2. Let 8 have degree n over «, and suppose o and [ are related by a
modular equation of the form

F((af)" (L -a)(1-75)}7) =0, (2.1)
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for some polynomial F' and some positive rational number r. If we replace o by
1— 2% and B by 4a /(1 + x)?, then (2.1) becomes an equation of the form

G(z):=g{4z(1-2)/(1+2)}") =0,
for some polynomial g. Furthermore, x = \/aa, is a root of this equation.

Proof. Under the designated substitutions,

oo = ((0-535) (- m5)) )

() ()
=0.

Hence, the first part of Theorem 2 follows.
Next, setting 8 = 42 /(1 + )%, we find that

dx

2l (1-5) 2 (1 (1+9€)2) _ 1ah(1—a?)

S zFl( 1z ) =3 LR (2:2)

(1+2)?
by a fundamental transformation for F(z) [1, p. 93], which actually arises from a
special case of Pfaff’s transformation. With « replaced by 1 — 2%, we find from
(1.4) and (2.2) that
2F1($2) 12F1(1—$2)
n2F1(1—$2) N 2 2F1($2)

Therefore,

2F1(1—$2) _ "
VAN =V2n.

Now recalling the definition of a singular modulus and (1.5), we deduce that 2% =
a3, and the proof is complete.

In each example below we use the following denesting theorem in our calculations.

If a® — db? = ¢%, then
\/a:tb\/_:\/a—gczt\/agc. (2.3)

Example 2.1. Let n = 3. Then

(@)t +{(1—a)(1—-p)}H* =1, (2.4)

which is originally due to Legendre and was rediscovered by Ramanujan [1, pp. 230,
232]. With Ramanujan’s substitutions, (2.4) takes the form

1
u + §u2 =1, (2.5)
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CoN1/4
u= (4951 96) . (2.6)
1+ 2z

Solving (2.5), we find that v = /3 — 1. Then solving (2.6), we find that z =
23— 3 —2v2+ /6. Using two different modes of calculation, we find that

where

2V3+ V6 -3 -2V2
ag =27 = (2-V3)1(V3-V2)? = :
° ( A S = Bt Vor3t2va
It should be remarked that there are two roots of (2.6), namely, \/ag and ,/@3/3.

For if we set a = 42/(1+ z)? and 3 = 1 — 2% at the beginning of our proof of
Theorem 2, we find that z still satisfies (2.1). However, in this case,

2F1(1—$2) 2

2F1($2) o n'

That we have selected the correct root can be verified by a numerical check.

The former representation for ag, and two other representations as well, can be
found in Ramanujan’s first notebook, and they were proved by the authors and
Zhang in [3, Theorem 2.1].

Example 2.2. Let n = 5. Then we have Ramanujan’s modular equation of degree
5 [1, p. 280],

(a2 +{(1= a)(1 - B2 4 2{16a5(1 - a)(1— IS = 1.  (2.7)
Using Ramanujan’s substituions, we find that (2.7) can be put in the shape
L oy L oy
u—l—Zu —|—2u:1u +3u=1, (2.8)

where

u= (49[;1_96)1/2. (2.9)

Solving (2.8), we deduce that u = —6 + 2v/10. Next, solving (2.9), we find that
z = 3v10 — 9 — 4v/5 4 6+/2. Lastly, by two distinct routes for calculation,

2 2 2 3V10+6v2-9—-45
arg = 2% = (V10 - 3)%(3 - 2v2) N TV PPN

The former representation was given by Ramanujan in his first notebook and
proved by the authors and Zhang in [3, Theorem 2.1].

Example 2.3. Let n = 11. The modular equation

(@) 4+ {(1 = a)(1 = B)}* + 2{16a5(1 — a)(1 - B)}/*? =1 (2.10)
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is independently due to Schréter and Ramanujan [1, pp. 363-364]. With Ramanu-
jan’s substitutions, (2.10) can be put in the form

u? 4 6u—2 =0, (2.11)
where
1— 2\ /4
uw= |4z . (2.12)
1+ 2z

Solving (2.11), we find that v = —3 + +/11. Then solving (2.12), we find that
z = 30V/11 — 99 — 70v/2 + 211/22. Hence,

30V11 + 2122 — 99 — 70v/2
age = 2% = (10 = 3V11)2(3V11 — 7V2)% = .
22 ( ) ) 30v11 + 21722 + 99 + 702

In his first notebook Ramanujan offered the former value, which was proved in
[3, Theorem 2.1].

3. A formula for as,

Let ¢ be given by (1.2), and suppose that § has degree n over a. Thus, (1.4)
holds. Now suppose also that 5 has degree 3 over 1 — a =: o Then, by (1.4),

2 Fi(a) _ 2 F1(1 - 3) _ nzF1(1 _0‘)‘

3 = = 3.1
211(1 — ) 2F1(53) 2F1(a) 31)
Hence,
zFl(Oé) \/g
it S 3.2
2F1(1 - Oé) 3 ’ ( )
and, from (3.1) and (3.2),
=) [T
=3/ = =V3n. 3.3
2F1(3) 3 ! (3:3)
Next, from [1, p. 237], since 8 has degree 3 over a', we have the parametrizations
! 2+4+p ® s 2+p
= d = 4
a p(1+2p) an B=p T2 (3.4)

where 0 < p < 1. It follows from (3.4) that

v (=pPtp) s 24p) [ 1-p\ (1L+p)(2+p)
(L=e)f= (14 2p)? (1+2p)_(p1+2p) 1+2p (3:5)
and
CL=pHp)® 242\ 1-p (A+p2+p))
=M= p(1+2p) ‘p1+2p( t2p ) (3.6)
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Next, set
N el
2t = i o (3.7)
and observe that (14 )2+ p)
_U+p)2+tp
201 —1t) = i (3.8)
It follows from (3.5)—(3.8) that
af=(1—a)f =161 —1) (3.9)
and '
(1—a)(1-78)=(1-p)a =16t1—1t). (3.10)
Now, set
k= 41(1—1). (3.11)
Observe from (3.9), (3.10), (1.6), (3.2), and (3.3) that
k= (zag/3agn)_ . (3.12)

We determine 3 (as,,) as a function of k. From (3.11), we find that, with no loss of
generality in choosing the minus sign in the first equality below,

1—v1-k
t:f and 1—t:f

Thus, by (3.9) and (3.10), we find that
(1—a)B=0-VI—kP(1+VI—Fk)=k(1-VI-k)? (3.13)

and

(1= =(1-VI—k)(1+VI—k)?®=k(1+VI-k)>. (3.14)
Subtracting (3.13) from (3.14), we find that

o =4kv1—k+ 8. (3.15)
Substituting (3.15) into (3.14), we deduce that

B2+ BAVT —k— 1)+ k(1 —V1—k)? =0.

Thus,
sio AT = F /(AT = = 1) — dk(1 = VT = k)2
agp, = =
>
1 kT k£ (1 2k)T = 4k

2

:1—\/1—4k (1—2k2¢\/(1—k)(1—4k)> | .
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This last formulation was that given by Ramanujan.
We now resolve the sign ambiguity in (3.16). From (3.13) and (3.14), it is clear
that both o' and [ satisfy the equation

v+ y(4kVT—k — 1)+ k(1 — VI - k)? = 0. (3.17)

Since a' = 1—a, it follows from (3.2) and (3.3) that the solutions of (3.17) are as,
and ag/,. Thus, it suffices to show that

ag/n > Q3n, (318)

forn > 1. If

pl@)=> 4",
k=—o0
then clearly

PV > eV,

From Entry 6 in Chapter 17 of Ramanujan’s second notebook [1, p. 101], it follows
that

2F1(043/n) > o Fi(asy,).

Since Fi(z) is increasing on (0,1), (3.18) follows.
Thus, we have proved the following theorem.

Theorem 3. Let g be given by (1.2), suppose that § has degree n over a, let  have
the parametrization (3.4), and define t by (3.7). Then, if k is defined by (3.11),

asy, has the representations given in (3.16), where the minus sign must be chosen.

Ramanujan’s formulation of Theorem 3 at the bottom of page 310 in his first
notebook is a bit different. He first gives (3.9) and (3.10), but with the left sides
switched. He then states (3.7), followed by the equality

F p32+p :e—ﬂ'm
14+ 2p ’

which is a consequence of (3.3) and (3.4), where F'is defined in (1.5). He concludes
by defining k in (3.11) and by claiming that a more complicated, somewhat ambigu-

ous version of the right side of (3.16) equals e="V3" i.e., he forgot to write “F” in

front of the right side of (3.16). (In recording specific values of F'(«a,,), Ramanujan
frequently omitted parentheses about the arguments.)

Example 3.1. Let n = 1. Then from Weber’s tables [8, p. 721], G5 = 2'/12 = Gis,
since G, = Gy [5], [6, p. 23]. Hence, by (3.12), k = 1/4, and by (3.16),

_2-13

Qg = 1

See our paper [3, Theorem 3.2] for another proof and further references.
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Example 3.2. Let n = 5. Then, from Weber’s tables [8, p. 721], G5 = 271/12(\/5+
1)Y/3. 1t can also be verified that G55 = 271/12(y/5 — 1)1/%. Hence, it is easily seen
from (3.12) that k = 1/16. Therefore, from (3.16),

16 — 7v/3 — V15
32 ’

Q15 =

which is simpler than the formula

o1 = 1 (\/52_ 1) (2 - \/§)2(4— \/ﬁ)v

which was given by Ramanujan in his second notebook. For its proof and further
references, see [3, Theorem 3.2].

4. A formula for as,

We proceed as in Section 3; the calculations are easier, however. Let ¢ be given
by (1.2), and suppose that § has degree n over o and degree 5 over 1 —a =: a .
Then, by the same argument as in Section 3, but with 3 replaced by 5, we find that

2Fi(e)  n i 2 11(1 = 0) _ -
T - V3 d 50 Vin. (4.1)

Now, from (4.1), (1.6), and Entry 14(ii) in Chapter 19 of Ramanujan’s second
notebook [1, p. 288], if p,0 < p < (5v/5 — 11)/2, is defined by

2 F1(a)

14+2p=m:= VAT (4.2)
then
k= (GogsCis) ™ = {al—alp(1= DY = p=l (a3)
Therefore,
1—k:1_—::§; (4.4)

Solving (4.3) for p, we find that

p=1—k— vkt —3k+1. (4.5)

Also, from [1, p. 289, Entry 14(iii)],

1 2 1/2
+p ) . (4.6)

1—2a5n:(1+p—p2)(1+2p

Hence, using (4.4) and (4.5) in (4.6), we find that, after a modicum of calculation,

a;,n:l—M(Qk—kz—l-(%—k)\/M). (4.7)

2

Thus, we have established the following theorem.
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Theorem 4. Let q be given by (1.2), let § have degree n over a, define p by (4.2),
and define k by (4.3). Then as, has the representation (4.7).

Example 4.1. Let n = 1. From Weber’s tables [8, p. 721],

1/4
VE+1
Gs = ( = Gyys,

2
since G, = Gy /,,. Thus, from (4.3), k = (3 — v/5)/2. Noting that k% — 3k +1 = 0,

we find from (4.7) that
3/2
1 (\/5— 1) /
ap = - — P
2 2

which can be compared with the value

1 (V-1 ’ \/3+\/5 \/\/5—1 4
A V2 ’

given by Ramanujan in his first notebook and proved by the authors and Zhang in
[3, Theorem 3.2].

Example 4.2. Let n = 5. From Weber’s tables [8, p. 722],

VE+1

2 b

C7Y25 =

and so, since Gy = 1, from (4.3), k = (7 — 3v/5)/2. Thus,

VE —3k+1=14/14—-6V5=3—-1/5,

by an application of (2.3). After a moderate amount of calculation and the use of
(2.3), we find that (4.7) yields

ass = 465445 - 9).

This can be compared with the value

8
1 545 1+V5
a25:§(161—72\/5) \/Z\f—\/ +4f :

imprecisely given in Ramanujan’s first notebook and established in [3, Theorem
3.2].

The authors are very grateful to the referee for very carefully reading our man-
uscript, making valuable suggestions, and uncovering some errors.
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