
NOTES ON RAMANUJAN'S SINGULAR MODULIBruce C. Berndt and Heng Huat Chan1. IntroductionSingular moduli arise in the calculation of class invariants, and so we �rst de�nethe class invariants of Ramanujan and Weber. Set(a; q)1 = 1Yn=0(1� aqn); jqj < 1;and �(q) = (�q; q2)1: (1.1)If q = exp(��pn); (1.2)where n is a positive integer, the class invariants Gn and gn are de�ned byGn := 2�1=4q�1=24�(q) and gn := 2�1=4q�1=24�(�q): (1.3)In the notation of Weber [8], Gn =: 2�1=4f(p�n) and gn =: 2�1=4f1(p�n):As usual, in the theory of elliptic functions, let k := k(q); 0 < k < 1; denotethe modulus. The singular modulus kn is de�ned by kn := k(e��pn); where n is anatural number. Following Ramanujan, set �n = k2n:The algebraic natures of Gn; gn; and �n are described in the following theoremof Chan and S.{S. Huang [4].Theorem 1.(a) If n � 1 (mod 4); then Gn and 2�n are units.(b) If n � 3 (mod 8); then 2�1=12Gn and 22�n are units.(c) If n � 7 (mod 8); then 2�1=4Gn and 24�n are units.(d) If n � 2 (mod 4); then gn and �n are units.Lastly, we de�ne a modular equation in the sense of Ramanujan. Let 2F1(12 ; 12 ; 1; x)be the ordinary or Gaussian hypergeometric function, which, for brevity, we denoteby 2F1(x): Suppose that, for some positive integer n and for � = k2 and � = `2;where k and ` are moduli, n2F1(1� �)2F1(�) = 2F1(1� �)2F1(�) : (1.4)Typeset by AMS-TEX1



2 BRUCE C. BERNDT AND HENG HUAT CHANThen a modular equation of degree n is a relation between � and � which is inducedby (1.4). We often say that � has degree n over �: If, as customary, in the theoryof elliptic functions, q := exp(�� 2F1(1� �)=2F1(�)) =: F (�); (1.5)then [1, p. 124]�(q) = 21=6f�(1��)=qg�1=24 and �(�q) = 21=6(1��)1=12(�=q)�1=24:It follows from (1.1), (1.3), and (1.5) thatGn = f4�n(1� �n)g�1=24 and gn = �4�n(1� �n)�2	�1=24 : (1.6)Thus, if Gn or gn is known, then �n can be easily determined from (1.6) by solvinga quadratic equation. However, usually, the expression for �n that one obtains inthis manner is not very attractive and does not reect the algebraic nature of �ndescribed in Theorem 1. Thus, further algorithms which more readily yield elegantrepresentations of �n are highly desirable.In his �rst notebook [7], Ramanujan o�ers without proofs over 30 values for�n and briey indicates some formulas which are useful in calculating �n; whenn is even. The authors and L.{C. Zhang [3] proved these formulas of Ramanujan,developed some new formulas for calculating �n when n is odd, and consequentlyestablished all of Ramanujan's values for �n:Ramanujan obscurely describes two further methods for calculating �n in his�rst notebook [7].In the �rst, Ramanujan indicates that �2n may be calculated by solving a certaintype of modular equation of degree n: For several prime values of n; the desiredtype of modular equation exists; many of these modular equations can be found inRamanujan's notebooks and are proved in [1]. This very novel method is describedin Section 2, and it is the only known method that does not require a priori thevalue of g2n: Thus, the method is a new, valuable tool in the computation of �2n:In the second, Ramanujan discloses a method for determining �3n arising fromthe de�nition of a modular equation of degree n: In Section 3 we give a rigorousformulation of this formula and prove it by using a device the authors and Zhangintroduced in [2] to calculate certain class invariants.Lastly, in Section 4, we follow our methods in Section 3 and derive a similarformula for �5n: Although we utilize results of Ramanujan from his notebooks inour proof, this formula was not given by Ramanujan.2. The determination of �2n from modular equationsIn the middle of page 292 in his �rst notebook, Ramanujan claims that, \Chang-ing � to 4B=(1 + B)2 and � to 1 � B2 we get an equation in 4B(1 � B)=(1 + B)and the value of B2 is for e��p2n:" We now state and prove a rigorous formulationof this assertion.Theorem 2. Let � have degree n over �; and suppose � and � are related by amodular equation of the formF ((��)r; f(1� �)(1� �)gr) = 0; (2.1)



NOTES ON RAMANUJAN'S SINGULAR MODULI 3for some polynomial F and some positive rational number r: If we replace � by1� x2 and � by 4x=(1 + x)2; then (2.1) becomes an equation of the formG(x) := g (f4x(1� x)=(1 + x)gr) = 0;for some polynomial g: Furthermore, x = p�2n is a root of this equation.Proof. Under the designated substitutions,F ((��)r; f(1� �)(1� �)gr) =F ��(1� x2) 4x(1 + x)2�r ;�x2 �1� 4x(1 + x)2��r�=F  �4x(1� x)1 + x �r ; 142r �4x(1� x)1 + x �2r!=0:Hence, the �rst part of Theorem 2 follows.Next, setting � = 4x=(1 + x)2; we �nd that2F1(1� �)2F1(�) = 2F1 �1� 4x(1 + x)2�2F1 � 4x(1 + x)2� = 12 2F1(1� x2)2F1(x2) ; (2.2)by a fundamental transformation for F (x) [1, p. 93], which actually arises from aspecial case of Pfa�'s transformation. With � replaced by 1 � x2; we �nd from(1.4) and (2.2) that n 2F1(x2)2F1(1� x2) = 12 2F1(1� x2)2F1(x2) :Therefore, 2F1(1� x2)2F1(x2) = p2n:Now recalling the de�nition of a singular modulus and (1.5), we deduce that x2 =�2n; and the proof is complete.In each example below we use the following denesting theorem in our calculations.If a2 � db2 = c2; then qa� bpd =ra + c2 �ra � c2 : (2.3)Example 2.1. Let n = 3: Then(��)1=4 + f(1� �)(1� �)g1=4 = 1; (2.4)which is originally due to Legendre and was rediscovered by Ramanujan [1, pp. 230,232]. With Ramanujan's substitutions, (2.4) takes the formu + 12u2 = 1; (2.5)



4 BRUCE C. BERNDT AND HENG HUAT CHANwhere u = �4x1� x1 + x�1=4 : (2.6)Solving (2.5), we �nd that u = p3 � 1: Then solving (2.6), we �nd that x =2p3� 3� 2p2 +p6: Using two di�erent modes of calculation, we �nd that�6 = x2 = (2� p3)2(p3�p2)2 = 2p3 +p6� 3� 2p22p3 +p6 + 3 + 2p2 :It should be remarked that there are two roots of (2.6), namely, p�6 and p�2=3:For if we set � = 4x=(1 + x)2 and � = 1 � x2 at the beginning of our proof ofTheorem 2, we �nd that x still satis�es (2.1). However, in this case,2F1(1� x2)2F1(x2) =r 2n:That we have selected the correct root can be veri�ed by a numerical check.The former representation for �6; and two other representations as well, can befound in Ramanujan's �rst notebook, and they were proved by the authors andZhang in [3, Theorem 2.1].Example 2.2. Let n = 5: Then we have Ramanujan's modular equation of degree5 [1, p. 280],(��)1=2 + f(1� �)(1� �)g1=2 + 2f16��(1� �)(1� �)g1=6 = 1: (2.7)Using Ramanujan's substituions, we �nd that (2.7) can be put in the shapeu+ 14u2 + 2u = 14u2 + 3u = 1; (2.8)where u = �4x1� x1 + x�1=2 : (2.9)Solving (2.8), we deduce that u = �6 + 2p10: Next, solving (2.9), we �nd thatx = 3p10� 9� 4p5 + 6p2: Lastly, by two distinct routes for calculation,�10 = x2 = (p10� 3)2(3� 2p2)2 = 3p10 + 6p2� 9� 4p53p10 + 6p2 + 9+ 4p5 :The former representation was given by Ramanujan in his �rst notebook andproved by the authors and Zhang in [3, Theorem 2.1].Example 2.3. Let n = 11: The modular equation(��)1=4 + f(1� �)(1� �)g1=4 + 2f16��(1� �)(1� �)g1=12 = 1 (2.10)



NOTES ON RAMANUJAN'S SINGULAR MODULI 5is independently due to Schr�oter and Ramanujan [1, pp. 363{364]. With Ramanu-jan's substitutions, (2.10) can be put in the formu2 + 6u� 2 = 0; (2.11)where u = �4x1� x1 + x�1=4 : (2.12)Solving (2.11), we �nd that u = �3 + p11: Then solving (2.12), we �nd thatx = 30p11� 99� 70p2 + 21p22: Hence,�22 = x2 = (10� 3p11)2(3p11� 7p2)2 = 30p11 + 21p22� 99� 70p230p11 + 21p22 + 99 + 70p2 :In his �rst notebook Ramanujan o�ered the former value, which was proved in[3, Theorem 2.1]. 3. A formula for �3nLet q be given by (1.2), and suppose that � has degree n over �: Thus, (1.4)holds. Now suppose also that � has degree 3 over 1� � =: �0 : Then, by (1.4),3 2F1(�)2F1(1� �) = 2F1(1� �)2F1(�) = n2F1(1� �)2F1(�) : (3.1)Hence, 2F1(�)2F1(1� �) =rn3 ; (3.2)and, from (3.1) and (3.2), 2F1(1� �)2F1(�) = 3rn3 = p3n: (3.3)Next, from [1, p. 237], since � has degree 3 over �0 ; we have the parametrizations�0 = p� 2 + p1 + 2p�3 and � = p3 � 2 + p1 + 2p� ; (3.4)where 0 < p < 1: It follows from (3.4) that(1� �0)� = (1� p)3(1 + p)(1 + 2p)3 p3 � 2 + p1 + 2p� = �p 1� p1 + 2p�3 (1 + p)(2 + p)1 + 2p (3.5)and(1� �)�0 = (1� p)(1 + p)3(1 + 2p) p� 2 + p1 + 2p�3 = p 1� p1 + 2p � (1 + p)(2 + p)1 + 2p �3 : (3.6)



6 BRUCE C. BERNDT AND HENG HUAT CHANNext, set 2t = p 1� p1 + 2p (3.7)and observe that 2(1� t) = (1 + p)(2 + p)1 + 2p : (3.8)It follows from (3.5){(3.8) that�� = (1� �0)� = 16t3(1� t) (3.9)and (1� �)(1� �) = (1� �)�0 = 16t(1� t)3: (3.10)Now, set k = 4t(1� t): (3.11)Observe from (3.9), (3.10), (1.6), (3.2), and (3.3) thatk = �2G6n=3G63n��1 : (3.12)We determine � (�3n) as a function of k: From (3.11), we �nd that, with no loss ofgenerality in choosing the minus sign in the �rst equality below,t = 1�p1� k2 and 1� t = 1 +p1� k2 :Thus, by (3.9) and (3.10), we �nd that(1� �0)� = (1� p1� k)3(1 +p1� k) = k(1� p1� k)2 (3.13)and (1� �)�0 = (1�p1� k)(1 +p1� k)3 = k(1 +p1� k)2: (3.14)Subtracting (3.13) from (3.14), we �nd that�0 = 4kp1� k + �: (3.15)Substituting (3.15) into (3.14), we deduce that�2 + �(4kp1� k � 1) + k(1�p1� k)2 = 0:Thus, �3n = � =1� 4kp1� k �q(4kp1� k � 1)2 � 4k(1�p1� k)22=1� 4kp1� k � (1� 2k)p1� 4k2=1�r1� 4k �1� 2k �p(1� k)(1� 4k)�22 : (3.16)



NOTES ON RAMANUJAN'S SINGULAR MODULI 7This last formulation was that given by Ramanujan.We now resolve the sign ambiguity in (3.16). From (3.13) and (3.14), it is clearthat both �0 and � satisfy the equationy2 + y(4kp1� k � 1) + k(1�p1� k)2 = 0: (3.17)Since �0 = 1��; it follows from (3.2) and (3.3) that the solutions of (3.17) are �3nand �3=n: Thus, it su�ces to show that�3=n > �3n; (3.18)for n > 1: If '(q) = 1Xk=�1 qk2 ;then clearly '2(e��p3=n) > '2(e��p3n):From Entry 6 in Chapter 17 of Ramanujan's second notebook [1, p. 101], it followsthat 2F1(�3=n) > 2F1(�3n):Since 2F1(x) is increasing on (0; 1); (3.18) follows.Thus, we have proved the following theorem.Theorem 3. Let q be given by (1.2), suppose that � has degree n over �; let � havethe parametrization (3.4), and de�ne t by (3.7). Then, if k is de�ned by (3.11),�3n has the representations given in (3.16), where the minus sign must be chosen.Ramanujan's formulation of Theorem 3 at the bottom of page 310 in his �rstnotebook is a bit di�erent. He �rst gives (3.9) and (3.10), but with the left sidesswitched. He then states (3.7), followed by the equalityF �p3 2 + p1 + 2p� = e��p3n;which is a consequence of (3.3) and (3.4), where F is de�ned in (1.5). He concludesby de�ning k in (3.11) and by claiming that a more complicated, somewhat ambigu-ous version of the right side of (3.16) equals e��p3n; i.e., he forgot to write \F" infront of the right side of (3.16). (In recording speci�c values of F (�n); Ramanujanfrequently omitted parentheses about the arguments.)Example 3.1. Let n = 1: Then fromWeber's tables [8, p. 721], G3 = 21=12 = G1=3;since Gn = G1=n [5], [6, p. 23]. Hence, by (3.12), k = 1=4; and by (3.16),�3 = 2� p34 :See our paper [3, Theorem 3.2] for another proof and further references.



8 BRUCE C. BERNDT AND HENG HUAT CHANExample 3.2. Let n = 5: Then, fromWeber's tables [8, p. 721],G15 = 2�1=12(p5+1)1=3: It can also be veri�ed that G5=3 = 2�1=12(p5� 1)1=3: Hence, it is easily seenfrom (3.12) that k = 1=16: Therefore, from (3.16),�15 = 16� 7p3�p1532 ;which is simpler than the formula�15 = 116  p5� 12 !4 (2�p3)2(4� p15);which was given by Ramanujan in his second notebook. For its proof and furtherreferences, see [3, Theorem 3.2].4. A formula for �5nWe proceed as in Section 3; the calculations are easier, however. Let q be givenby (1.2), and suppose that � has degree n over � and degree 5 over 1 � � =: �0 :Then, by the same argument as in Section 3, but with 3 replaced by 5, we �nd that2F1(�)2F1(1� �) =rn5 and 2F1(1� �)2F1(�) = p5n: (4.1)Now, from (4.1), (1.6), and Entry 14(ii) in Chapter 19 of Ramanujan's secondnotebook [1, p. 288], if p; 0 < p < (5p5� 11)=2; is de�ned by1 + 2p = m := 2F1(�)2F1(�) ; (4.2)then k := (Gn=5G5n)�4 = f4�(1� �)4�(1� �)g1=6 = p 2� p1 + 2p: (4.3)Therefore, 1� k = 1 + p21 + 2p: (4.4)Solving (4.3) for p; we �nd thatp = 1� k �pk2 � 3k + 1: (4.5)Also, from [1, p. 289, Entry 14(iii)],1� 2�5n = (1 + p� p2)�1 + p21 + 2p�1=2 : (4.6)Hence, using (4.4) and (4.5) in (4.6), we �nd that, after a modicum of calculation,�5n = 12 �p1� k�2k � k2 + �12 � k�pk2 � 3k + 1� : (4.7)Thus, we have established the following theorem.



NOTES ON RAMANUJAN'S SINGULAR MODULI 9Theorem 4. Let q be given by (1.2), let � have degree n over �; de�ne p by (4.2),and de�ne k by (4.3). Then �5n has the representation (4.7).Example 4.1. Let n = 1: From Weber's tables [8, p. 721],G5 =  p5 + 12 !1=4 = G1=5;since Gn = G1=n: Thus, from (4.3), k = (3� p5)=2: Noting that k2 � 3k + 1 = 0;we �nd from (4.7) that �5 = 12 � p5� 12 !3=2 ;which can be compared with the value�5 = 12  p5� 12 !30@s3 +p54 �sp5� 12 1A4 ;given by Ramanujan in his �rst notebook and proved by the authors and Zhang in[3, Theorem 3.2].Example 4.2. Let n = 5: From Weber's tables [8, p. 722],G25 = p5 + 12 ;and so, since G1 = 1; from (4.3), k = (7� 3p5)=2: Thus,pk2 � 3k + 1 =q14� 6p5 = 3� p5;by an application of (2.3). After a moderate amount of calculation and the use of(2.3), we �nd that (4.7) yields�25 = 12 + 6 � 51=4(4p5� 9):This can be compared with the value�25 = 12(161� 72p5)0@s5 +p54 �s1 +p54 1A8 ;imprecisely given in Ramanujan's �rst notebook and established in [3, Theorem3.2].The authors are very grateful to the referee for very carefully reading our man-uscript, making valuable suggestions, and uncovering some errors.
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