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1. Introduction

In problems he submitted to the Journal of the Indian Mathematical Society [16],
in his notebooks [15], and in his lost notebook [17], Ramanujan established many
intriguing equalities between radicals. In particular, in his extensive calculations
of more than 100 class invariants, he frequently needed to establish difficult radical
equalities; see two papers [3], [5] by the authors dedicated to the calculation of
Ramanujan’s class invariants, and Berndt’s book [2, Chap. 34]. Ramanujan had
an uncanny ability in discerning radical equalities, but sometimes we can obtain a
peek into Ramanujan’s thinking by observing that units play a key role.

In Section 2 of this brief note, we reexamine the radical identities that Ramanujan
submitted as problems to the Journal of the Indian Mathematical Society. We will
see how units come into play, and we will also put some of the radical equalities in
more general settings.

In Section 3, we examine some material in Ramanujan’s notebooks [15] and lost
notebook [17], mostly pertaining to class invariants and singular moduli. So that
we may define Ramanujan’s class invariants, set

χ(q) :=
∞∏

n=0

(1 + q2n+1), |q| < 1.

If q = exp(−π
√

n), where n is a positive rational number, the two class invariants
Gn and gn are defined by

Gn := 2−1/4q−1/24χ(q) and gn := 2−1/4q−1/24χ(−q).

It is customary to study Gn for odd n and gn for even n. As usual, in the theory
of elliptic functions, let k := k(q), 0 < k < 1, denote the modulus. The singular
modulus kn is defined by kn := k(e−π

√
n), where n is a natural number. After

Ramanujan, set αn = k2
n. Except for possibly a power of 2, Gn, gn, and kn are units

[2, p. 184, Theorem 1.1]. The authors have verified many of Ramanujan’s formulas
for class invariants and singular moduli [3], [5], [4], [2], [20]. These calculations are
often very difficult, but with the observation that certain algebraic expressions are
units or have the character of units, seemingly very difficult calculations can be
transformed into considerably easier ones.

In Section 4, we briefly examine some elementary radical identities found in
Ramanujan’s lost notebook.
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Radicals arise in other problems that Ramanujan submitted to the Journal of
the Indian Mathematical Society, and we encourage readers to examine them in
Ramanujan’s Collected Papers [16, pp. 322–334]. See also Berndt’s book [1, Chap.
22] for an assortment of beautiful elementary algebraic identities, many involving
radicals.

Lastly, some of the ideas here are briefly touched in our paper [6].

2. Elementary Equalities Between Radicals

Theorem 2.1.
(

3
√

5− 3
√

4
)1/2

=
1
3

(
3
√

2 + 3
√

20− 3
√

25
)

,(a)
(

3
√

28− 3
√

27
)1/2

=
1
3

(
3
√

98− 3
√

28− 1
)

,(b)
(

5

√
1
5 + 5

√
4
5

)1/2

=
(
1 + 5

√
2 + 5

√
8
)1/5

,(c)

(
5

√
1
5 + 5

√
4
5

)1/2

= 5

√
16
125 + 5

√
8

125 + 5

√
2

125 − 5

√
1

125 ,(d)

(
5

√
32
5 − 5

√
27
5

)1/3

= 5

√
1
25 + 5

√
3
25 − 5

√
9
25 ,(e)

(
3 + 2 4

√
5

3− 2 4
√

5

)1/4

=
4
√

5 + 1
4
√

5− 1
,(f)

(
7 3
√

20− 19
)1/6

= 3

√
5
3 − 3

√
2
3 ,(g)

(
4 3

√
2
3 − 5 3

√
1
3

)1/8

= 3

√
4
9 − 3

√
2
9 + 3

√
1
9 ,(h)

(
3
√

2− 1
)1/3

= 3

√
1
9 − 3

√
2
9 + 3

√
4
9 .(i )

Equalities (a) and (b) constitute Question 525 [11], [16, p. 329]. Equalities (c)–(f)
comprise Question 1070 [13], [16, p. 334]. Parts (g) and (h) are found in Question
1076 [14], [16, p. 334]. Lastly, equality (i) is part of Question 682 [12], [16, p. 331].

Each identity can be easily verified by taking an appropriate power of each
side above and then simplifying the right side. Both the left and right sides of
each equality in Theorem 2.1 are units in some algebraic number field. Although
Ramanujan never used the term unit, and probably did not formally know what a
unit was, he evidently recognized their essential essence. He then recognized that
taking certain powers of units often led to elegant identities.

We will briefly explain why these expressions are units. It suffices to examine
the left sides. First observe that if x = 3

√
a− 3

√
a− 1, then

x3 = 1− 3 3
√

a(a− 1)x.

We thus see that x is a unit if a = t/3, for some algebraic integer t. Secondly,
observe that if x = 5

√
a− 5

√
a− 1 and y = 5

√
a(a− 1), then

x5 + 5x3y + 5xy2 − 1 = 0.
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Thus, x is a unit if a = t/5, for some algebraic integer t. More generally, it is not
difficult to check that n

√
1 + a− n

√
a is a unit whenever n is a positive integer and

na is an algebraic integer. Similar arguments can be given for other expressions
appearing on the left sides above.

For identities (a), (b), (d), (e), (g), and (i) we provide generalizations below. For
(f) and (h), we establish general analogues.

Proposition 2.2. For 1
2 (1−√3)3 ≤ a ≤ 1

2 (1 +
√

3)3,

(2.1)

(
(a + 4) 3

√
a + (1− 2a) 3

√
4

9

)1/2

=
3
√

2 + 3
√

4a− 3
√

a2

3
.

Proof. It is easy to verify that

(
3
√

2 + 3
√

4a− 3
√

a2
)2

= (a + 4) 3
√

a + (1− 2a) 3
√

4,

which is equivalent to (2.1) for the given values of a.

If a is a real number lying outside the interval specified in Proposition 2.2, then
(2.1) is still valid if the right side is multiplied by −1.

Setting a = 5 in (2.1), we deduce (a) above. One can deduce further interesting
radical identities by giving a special values in (2.1). For example, setting a = 14,
we find that (

2 3
√

14− 3 3
√

4
)1/2

=
1
3

(
3
√

196− 3
√

2− 2 3
√

7
)

.

Proposition 2.3. For a outside the interval [ 14 (1−√3)3, 1
4 (1 +

√
3)3],

(2.2)

(
(a + 2) 3

√
4a + (1− 4a)

9

)1/2

=
3
√

2a2 − 3
√

4a− 1
3

.

Proof. It is easy to verify that

(
3
√

2a2 − 3
√

4a− 1
)2

= (a + 2) 3
√

4a + (1− 4a),

from which (2.2) follows for the given values of a.

If a lies on the interior of the interval specified in Proposition 2.3, then the right
side must be multiplied by −1.

Setting a = 7 in (2.2), we deduce (b) of Theorem 2.1. Other interesting identities
can be deduced by specializing (2.2). For example, setting a = 25 in (2.2), we find
that (

3 3
√

100− 11
)1/2

=
1
3

(
5 3
√

10− 3
√

100− 1
)

.

The proofs of (a) and (b) given by N. S. Aiyar [11] proceed along completely
different lines.
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Proposition 2.4. For each real number a,

(2.3)
{

(3a + 1) + (3− a) 5
√

a− 5 5
√

a3
}1/3

= 1 + 5
√

a− 5
√

a2.

Proof. Raising each side of (2.3) to the third power, we readily verify the truth of
(2.3).

Setting a = 3 in (2.3) and dividing both sides by 5
√

25, we deduce (e) in Theorem
2.1.

Proposition 2.5. If a is any real number, then
(2.4){

(9a + 15) 3
√

a2(a + 1) + (9a− 6) 3
√

a(a + 1)2 − (18a(a + 1)− 1)
}1/6

= 3
√

a + 1− 3
√

a.

Proof. Taking the sixth power of each side of (2.4) and simplifying, we complete
the proof.

If we set a = 2
3 in (2.4), we deduce (g) of Theorem 2.1. Note that if 3a is an

algebraic integer in (2.4), we obtain units on each side. Giving a other values in
(2.4), we can establish further interesting radical identities. For example, letting
a = 1 and a = 1

3 , we deduce that

(
24 3
√

2 + 3 3
√

4− 35
)1/6

= 3
√

2− 1

and (
6 3
√

4− 2 3
√

2− 7
)1/6

= 3

√
4
3 − 3

√
1
3 ,

respectively.
In both the original formulation of Question 1076 [14] and Ramanujan’s Collected

Papers [16, p. 334], the exponent 1
8 on the left side of (g) is incorrectly printed as

1
6 . In fact, the powers 1

6 and 1
8 are permuted on the left sides of (g) and (h) in both

the original statements and the Collected Papers. In contrast to (g), we do not have
a generalization of (h). However, we offer a simple proof of (h) below.

Proof of (h). It is easy to see that (h) is equivalent to the equality

(
3

√
4
9 − 3

√
2
9 + 3

√
1
9

)−8

=
(

4 3

√
2
3 − 5 3

√
1
3

)−1

,

which can be written in the alternative form

(2.5)
(

3

√
2
3 + 3

√
1
3

)8

= 16 3

√
4
9 + 20 3

√
2
9 + 25 3

√
1
9 ,

which can be verified by expanding the left side.

We next establish a general identity which has (i) as a special case.
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Proposition 2.6. For any real number a,

(2.6)
(
(a2 − 7a + 1) + (6a− 3) 3

√
a + (6− 3a) 3

√
a2

)1/3

= 3
√

a2 − 3
√

a + 1.

Proof. Cubing both sides of (2.6) we readily establish its truth.

As an example, set a = 2 in (2.6) and divide both sides by 32/3 to deduce that

( 3
√

2− 1)1/3 = 3

√
4
9 − 3

√
2
9 + 3

√
1
9 ,

which is (i).
We do not have any generalizations of (c) and (d). Identity (c) can be verified

by taking the tenth power of each side, expanding both sides, and simplifying.
Likewise, (d) can be verified by squaring both sides. S. D. Chowla, N. B. Mitra,
and S. V. Venkataraya Sastri established (c) in the same way [13]. However, their
proof of (d) is rather ingenious. Let a, b, c, and d be numbers satisfying the relations

a5 = 2b5 = 8c5 = 16d5.

Then, it is easily proved by squaring that

a + b + c− d =
√

(c2 + 2ab) + (d2 + 2ac).

Putting

a = 5

√
16
125 , b = 5

√
8

125 , c = 5

√
2

125 , and d = 5

√
1

125 ,

we deduce (d).
Although we have no generalization for (c), we have found two new analogues of

(c), namely, (
3

√
4
3 − 3

√
1
3

)1/2

=
(

3
√

2− 1
)1/3

and (
3

√
16
9 + 3

√
4
9 + 3

√
1
9

)1/2

=
(

3
√

4 + 3
√

2 + 1
)1/3

,

both of which can be readily verified by taking the sixth powers of both sides.
We have nothing to add about (f), which is easily verified.
On page 344 in his lost notebook [17], Ramanujan offers the (corrected) equalities

(2.7) 3

√
1
3

+ 3

√
5
3

= 6
√

3

√
3
√

5− 1
2− 3

√
5

= 3

√
3 + 3

√
5

3
√

5− 1
= 5

√
3 3
√

3 + 3
√

15
2− 3

√
5

.

The factor 6
√

3 after the first equality was omitted by Ramanujan. It can be shown
that the far left side of (2.7) equals each of the three remaining radicals by taking
the square, cube, and fifth powers of each, respectively.

3. Radicals Appearing in the Calculation of
Class Invariants, Singular Moduli, and Continued Fractions
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The authors have devoted much effort in recent years to the calculation of Ra-
manujan’s class invariants. In particular, in [5] 13 class invariants were proved.
After our paper was published, we noticed that in 12 of our 13 calculations, we
used (sometimes in somewhat altered form) special cases of one of the two identi-
ties

(3.1)
{

(8a2 − 1) +
√

(8a2 − 1)2 − 1
}1/4

=
√

a + 1
2 +

√
a− 1

2

and

(3.2)
{

(32b3 − 6b) +
√

(32b3 − 6b)2 − 1
}1/6

=
√

b + 1
2 +

√
b− 1

2 .

These identities can be verified by raising each side to the fourth and sixth powers,
respectively. For example, setting a = (5 +

√
65)/8 in (3.1), we obtain the identity





41 + 5
√

65
4

+

√√√√
(

41 + 5
√

65
4

)2

− 1





1/4

=

√
9 +

√
65

8
+

√
1 +

√
65

8
,

utilized in the calculation of the invariant G65. Setting b = (4 + 3
√

3)/4 in (3.2),
we find that

{
(188 + 108

√
3) +

√
(188 + 108

√
3)2 − 1

}1/6

=

√
6 + 3

√
3

4
+

√
2 + 3

√
3

4
,

used to determine the class invariant G69. Some of the determinations in [20] also
depend on (3.1) and (3.2).

We are very grateful to Bruce Reznick for informing us that, in fact, (3.1) and
(3.2) are special cases of a theorem about Chebyshev polynomials. Recall that the
nth Chebyshev polynomial Tn(x) is defined by Tn(x) = cos(nθ), where θ = cos−1 x.
We now state and prove Reznick’s theorem.

Theorem 3.1. If x ≥ 1
2 and n is a positive integer, then

(√
x + 1

2 +
√

x− 1
2

)2n

= Tn(2x) +
√

T 2
n(2x)− 1.

Proof. Put x = 1
2 cos θ, so that θ is purely imaginary when x > 1

2 . Then

(√
x + 1

2 +
√

x− 1
2

)2n

=
(√

1
2 (1 + cos θ) +

√
1
2 (cos θ − 1)

)2n

=
(
cos

(
1
2θ

)
+ i sin

(
1
2θ

))2n

=cos(nθ) + i sin(nθ)

= cos(nθ) +
√

cos2(nθ)− 1

=Tn(2x) +
√

T 2
n(2x)− 1.
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For example, if n = 2, T2(2x) = 8x2 − 1, and so Theorem 3.1 yields (3.1); if
n = 3, T3(2x) = 32x3 − 6x, and so Theorem 3.1 yields (3.2).

After Reznick gave us Theorem 3.1, we learned that T. J. Osler also had observed
the connection between Chebyshev polynomials and the problem of simplifying
radicals, although Theorem 3.1 is not explicitly given in his paper [10].

In Section 1, we gave one definition of a singular modulus. We offer an alternative
definition here. Let 2F1(a, b; c; z) denote the ordinary hypergeometric series. For
each positive rational number n, a singular modulus is the unique number

√
αn

satisfying the equation
2F1( 1

2 , 1
2 ; 1; 1− αn)

2F1(1
2 , 1

2 ; 1; αn)
=
√

n.

In his second letter to G. H. Hardy [16, p. xxix], [7, p. 60], Ramanujan asserted
that

√
α210 =(

√
2− 1)4(2−

√
3)2(

√
7−

√
6)4(8− 3

√
7)2

× (
√

10− 3)4(4−
√

15)4(
√

15−
√

14)2(6−
√

35)2.

This was first proved by Watson [18] using H. Weber’s value for the class invariant
g210, where

(3.3) 2g12
n =

1√
αn

−√αn,

and the following remarkable lemma found in Ramanujan’s first notebook [15, vol.
1, p. 320].

Lemma 3.2. Let (as in (3.3))

2g12
n =

1√
αn

−√αn.

If g6
n = uv and

u2 +
1
u2

= 2U, v2 +
1
v2

= 2V,
√

U2 + V 2 − 1 = W, U + V + W + 1 = 2S,

then

αn ={
√

S −
√

S − 1}2{
√

S − U −
√

S − U − 1}2

× {
√

S − V −
√

S − V − 1}2{
√

S −W −
√

S −W − 1}2.

Lemma 3.2 was also proved in Watson’s paper but his proof does not shed any
light on how Ramanujan might have discovered the formula. A more natural proof
is now available [2, pp. 277–280]. The latter proof is based on the simple observation
in Lemma 3.3 below.

To obtain elegant representations of αn from Lemma 3.2, we express g6
n as a

product of two units, for when n ≡ 2 (mod 4), gn is indeed a unit. Since u and v are
units, U, V,W, and S are algebraic integers. Thus, Lemma 3.2 gives a representation
of αn in terms of elegant and relatively simple radicals.
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Lemma 3.3. The number

x = (
√

a−√a− 1)(
√

b + 1−
√

b)

is a solution of the equation

(3.4)
1
x
− x = 2(

√
ab +

√
(b + 1)(a− 1)).

Lemma 3.3 is applicable whenever we encounter an expression involving x−1−x.
For example, by determining a and b in the expression

x−1 − x =
1− 2y2 + y3 +

√
1− 4y − 10y3 − 4y5 + y6

2y
,

S.–Y. Kang [9, Theorem 3.2, eq. (3.15)] established an explicit formula for the
Rogers-Ramanujan continued fraction found in Ramanujan’s lost notebook [17 p.
208]

The simple analogue of Lemma 3.3 for the expression x−1 + x is given in the
next lemma.

Lemma 3.4. The number

x = (
√

a−√a− 1)(
√

b−
√

b− 1)

is a solution of the equation

(3.5)
1
x

+ x = 2(
√

ab +
√

(a− 1)(b− 1)).

The expression x−1 + x appears in Ramanujan’s evaluations of singular moduli
αn when n is divisible by 8 or 16. Using Lemma 3.4, we now sketch new proofs of
two results first proved in [2, p. 285, Theorem 9.5; p. 287, Theorem 9.6].

Theorem 3.5. If

αn =
1−

√
1− 1

m2

2
,

then

α16n =(
√

m + 1 +
√

m)8
{√

2m + 1−
√

2
√

m(
√

m + 1 +
√

2)
}4

×
{√

2m− 1−
√

2
√

m(
√

m + 1−
√

2)
}4

.

Proof. From [2, p. 286], it suffices to solve the equation

1
x

+ x = 2(
√

m + 1 +
√

m)2(
√

m +
√

m− 1)2,

= 2(
√

m + 1 +
√

m)2(2m− 1 + 2
√

m(m− 1)),
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where x = α
1/4
16n. Set

(3.6)
√

ab = (
√

m + 1 +
√

m)2(2m− 1)

and

(3.7)
√

(a− 1)(b− 1) = 2(
√

m + 1 +
√

m)2
√

m(m− 1).

Since (a− 1)(b− 1) = ab− a− b + 1, we may conclude from (3.6) and (3.7) that

(3.8) a + b− 1 = (
√

m +
√

m + 1)4 =: s2.

Substituting (3.8) into (3.6), we find that

(3.9) b(s2 − b + 1) = s2(2m− 1)2,

which implies that

(3.10) b =
1 + s2 ± 4s

√
2m

2
.

Since a and b are both solutions of (3.9) and a 6= b, we may set

b =
1 + s2 + 4s

√
2m

2
=

s

2

(
1
s

+ s + 4
√

2m

)

= s(2m + 1 + 2
√

2m) = s(
√

2m + 1)2.

(3.11)

This implies that the other solution of (3.10) is

(3.12) a = s(
√

2m− 1)2.

Substituting (3.11) and (3.12) into Lemma 3.4 yields Theorem 3.5.

To illustrate Theorem 3.5, we find that, for n = 1 [2, p. 286],

α16 = (
√

2 + 1)4(21/4 − 1)8.

Theorem 3.6. If

α2n = (
√

m + 1−√m)2(
√

m−√m− 1)2,

then

α8n =
{√

m + 1 +
√

m + 1√
2

−
√

(
√

m + 1)(
√

m +
√

m + 1)
}4

×
{√

m− 1 +
√

m + 1√
2

−
√

(
√

m− 1)(
√

m +
√

m + 1)
}4

.
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Proof. From [2, p. 288], we find that

1√
x

+
√

x = 2(
√

m + 1 +
√

m)(
√

m +
√

m− 1),

where x =
√

α8n. Set

(3.13)
√

ab = (
√

m + 1 +
√

m)
√

m

and

(3.14)
√

(a− 1)(b− 1) = (
√

m + 1 +
√

m)
√

m− 1.

These yield

a =
(√

m +
√

m + 1 + 1√
2

)2

and b =
(√

m +
√

m + 1− 1√
2

)2

and the expressions for α8n then follows from Lemma 3.4. The derivations of a and
b from (3.13) and (3.14) are similar to that given in the proof of Theorem 3.5, and
we therefore omit the details.

As an illustration of Theorem 3.6, if we set n = 3, we find that [2, p. 287]

α24 =
(√

6 + 3
√

3−
√

5 + 3
√

3
)4 (√

2 +
√

3−
√

1 +
√

3
)4

.

We end this section with a simple observation about Lemma 3.2, namely, that
it is independent of the definitions of class invariant and singular modulus. Hence,
we may restate Lemma 3.2 in the spirit of Lemma 3.3 as

Lemma 3.7. Suppose x−1 − x = 2uv where u and v are preferably units in some
algebraic number fields. Let

u +
1
u

= 2U, v +
1
v

= 2V,
√

U2 + V 2 − 1 = W, U + V + W + 1 = 2S,

then

x ={
√

S −
√

S − 1}{
√

S − U −
√

S − U − 1}
× {

√
S − V −

√
S − V − 1}{

√
S −W −

√
S −W − 1}.

In [8], Chan and S.–S. Huang showed that if

H(q) :=
q1/2

1 + q +
q2

1 + q3 +
q4

1 + q5 + · · · ,

then

(3.15)
1

H(e−π
√

n)
−H(e−π

√
n) = 2α

−1/4
4n .
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Equation (3.15) shows that the Ramanujan–Gordon–Göllnitz continued fraction
H(e−π

√
n) can be evaluated if α4n is known. Since [4]

α
1/4
12 = (

√
3−

√
2)(
√

2− 1),

α
1/4
24 = (

√
6 + 3

√
3−

√
5 + 3

√
3)(

√
2 +

√
3−

√
1 +

√
3)

and

α
1/4
28 = (3− 2

√
2)(2

√
2−

√
7),

we conclude from Lemma 3.7 that

H(e−π
√

3)

=




√√
2 +

√
3 + 3

2
−

√√
2 +

√
3 + 1

2







√√
2−√3 + 3

2
−

√√
2−√3 + 1

2




×



√
−√2 +

√
3 + 3

2
−

√
−√2 +

√
3 + 1

2







√√
2 +

√
3− 1

2
−

√√
2 +

√
3− 3

2




H(e−π
√

6)

=




√
2
√

2 +
√

6 +
√

3 + 3
2

−
√

2
√

2 +
√

6 +
√

3 + 1
2




×



√
2
√

2 +
√

6−√3− 1
2

−
√

2
√

2 +
√

6−√3− 3
2




×



√√
2 +

√
3 + 3

2
−

√√
2 +

√
3 + 1

2







√
−√2 +

√
3 + 3

2
−

√
−√2 +

√
3 + 1

2




H(e−π
√

7) = (
√

4 +
√

2−
√

3 +
√

2)(
√

4−
√

2−
√

3−
√

2)

× (
√√

2 + 1− 21/4)(21/4 −
√√

2− 1).

We have eliminated the details, but in each case the parameters U, V, W, and S
can be routinely calculated.

4. Some Radical Equalities in the Lost Notebook

On page 344 in [17], Ramanujan recorded the eight equalities below. Although
we have not seen them before, because they are elementary, it is likely that some,
or all, of them have been heretofore observed. Because of the notation used by
Ramanujan, it might be conjectured that Ramanujan used these equalities in the
calculation of class invariants or similar types of numbers. However, we have no
examples to substantiate this vague feeling.
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If g4 = 5, then

(4.1)
5
√

3 + 2g − 5
√

4− 4g
5
√

3 + 2g + 5
√

4− 4g
= 2 + g + g2 + g3.

If g5 = 2, then

(4.2)
√

g + 3 +
√

5g − 5√
g + 3−√5g − 5

= g + g2.

If g5 = 2, then

(4.3)

√
g2 + 1 +

√
4g − 3√

g2 + 1−√4g − 3
= 1

5

(
1 + g2 + g3 + g9

)2
.

If g5 = 3, then

(4.4)

√
g2 + 1 +

√
5g − 5√

g2 + 1−√5g − 5
=

1
g

+ g + g2 + g3.

If g5 = 2, then

(4.5)
√

1 + g2 =
1√
5

(
g4 + g3 + g − 1

)
.

If g5 = 2, then

(4.6)
√

4g − 3 =
1√
5

(
g9 + g7 − g6 − 1

)
.

If g5 = 3, then

(4.7) 3
√

2− g3 =
1
3
√

5

(
1 + g − g2

)
.

If g5 = 2, then

(4.8) 5
√

1 + g + g3 =
1

10
√

5

√
1 + g2.

Equalities (4.1)–(4.4) are readily proved if we use the elementary fact that

(4.9)
A + B

A−B
= M if and only if (M − 1)A = (M + 1)B.

As an illustration, we prove (4.1).
If A = 5

√
2g + 3 and B = 5

√
4g − 4, by (4.9), it suffices to prove that

(4.10) (1 + g + g2 + g3) 5
√

2g + 3 = (3 + g + g2 + g3) 5
√

4g − 4.
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Since g4 = 5,

1 + g + g2 + g3 =
g4 − 1
g − 1

=
4

g − 1

and
3 + g + g2 + g3 = 2 +

4
g − 1

=
2g + 2
g − 1

.

Thus, (4.10) is equivalent to the equality

2 5
√

2g + 3 = (g + 1) 5
√

4g − 4,

or
8(2g + 3) = (g + 1)5(g − 1),

which is readily verified by again using the hypothesis g4 = 5.
Equalities (4.5)–(4.8) can easily be established by raising each side to an appro-

priate power.
Next to (4.7), Ramanujan wrote “g = 3.” Indeed, it is readily verified that g = 3

is also a root of (4.7).
To the right of (4.8), Ramanujan wrote

(4.11) g5 + 5g3 + 5g + 2 = 0.

Indeed, from (4.8),

0 = g10 + 5g8 + 5g6 − 10g3 − 10g − 4 = (g5 − 2)(g5 + 5g3 + 5g + 2),

which proves (4.11).
We are very grateful to the referee for pointing out several inaccuracies in our

original manuscript.
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1996, pp. 817–838.

Department of Mathematics, University of Illinois, 1409 West Green Street,
Urbana, Illinois 61801, USA

E-mail address: berndt@math.uiuc.edu

Department of Mathematics, National University of Singapore, Kent Ridge, Sin-
gapore 119260, Republic of Singapore

E-mail address: chanhh@math.nus.sg

Department of Mathematics, Southwest Missouri State University, Springfield,
MO 65804, USA

E-mail address: liz917f@cnas.smsu.edu


