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ON EISENSTEIN SERIES AND
∑∞

m,n=−∞ qm2+mn+2n2

HENG HUAT CHAN AND YAO LIN ONG

(Communicated by David E. Rohrlich)

Abstract. In this paper, we derive some new identities satisfied by the se-

ries
∑∞

m,n=−∞ qm2+mn+2n2
using Ramanujan’s identities for L(q), M(q) and

N(q). Our work is motivated by an attempt to develop a theory of elliptic
functions to the septic base.

1. Introduction

Set, for |q| < 1,

L(q) = 1− 24
∞∑

n=1

nqn

1− qn
,

M(q) = 1 + 240
∞∑

n=1

n3qn

1− qn
,

and

N(q) = 1− 504
∞∑

n=1

n5qn

1− qn
.

In his famous paper “On certain arithmetical functions” [6, pp. 136–162], [7]
S. Ramanujan established (using elementary methods) many identities involving
L(q), M(q) and N(q), three of which are

q
dL(q)
dq

=
L2(q)−M(q)

12
,(1.1)

q
dM(q)
dq

=
L(q)M(q)−N(q)

3
,(1.2)

and

q
dN(q)
dq

=
L(q)N(q)−M2(q)

2
.(1.3)
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These identities were employed by K. Venkatachaliengar to derive relations be-
tween certain functions x and z which are stated implicitly in Ramanujan’s Note-
books. For example, he showed that [9, pp. 93–95] if

M(q) = z4
3(1 + 8x3)(1.4)

and

N(q) = z6
3(1− 20x3 − 8x2

3),(1.5)

then

z3 = 2F1

(
1
3
,
2
3
; 1;x3

)
,(1.6)

where 2F1(a, b; c; z) is the ordinary hypergeometric function. The final step in
Venkatachaliengar’s proof of (1.6), however, requires the knowledge of x3 and z3,
but these were neither supplied by Ramanujan nor Venkatachaliengar. The mystery
was solved recently in a paper by B.C. Berndt, S. Bhargava, and F.G. Garvan1

[3]. They succeeded in expressing x3 and z3 in terms of the Borweins’2 functions,
namely,

z3 = a(q) :=
∞∑

m,n=−∞
qm2+mn+n2

and

x3 =
(
c(q)
a(q)

)3

,

where

c(q) :=
∞∑

m,n=−∞
q(m+ 1

3 )2+(m+ 1
3 )(n+ 1

3 )+(n+ 1
3 )2 .

As a result, the proof of (1.6) using Venkatachaliengar’s idea is now complete [4].
Venkatachaliengar’s method of deriving relations between functions x3 and z3

from (1.4) and (1.5) can be adopted to deduce new relations between functions x
and z satisfying

M(q) = z4F (x) and N(q) = z6G(x),(1.7)

where F (x) and G(x) are certain rational functions of x. In Section 2, we state
two identities found in Ramanujan’s Notebooks and establish new parametrizations
of M(q) and N(q) of the type given in (1.7). We then invoke Venkatachaliengar’s
method to derive relations associated with the function

σ(q) :=
∞∑

m,n=−∞
qm2+mn+2n2

.(1.8)

1Professor Garvan informed us recently that J.M. Borwein and P.B. Borwein are the first to
have identified x3 and z3.

2The Borweins here refer to J.M. Borwein and P.B. Borwein.
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In Section 3, we use an identity proved in Section 2, together with some of Ra-
manujan’s modular equations to prove the following surprising identity:

6
∞∑

m,n=−∞
e
− 4π√

7
(m2+mn+2n2) = 5

∞∑
m,n=−∞

e
− 2π√

7
(m2+mn+2n2)

.(1.9)

Our method of deriving (1.9) depends on the existence of certain types of modular
equations. This method can also be modified to derive special values of certain
quotients of the classical theta function

ϕ(q) =
∞∑

n=−∞
qn2

as well as that of the Borweins’ function a(q).

2. Two identities associated with M(q) and N(q)

Theorem 2.1. Let f(−q) =
∏∞

n=1(1 − qn), |q| < 1. Then

M(q) =
(
f7(−q)
f(−q7) + 5 · 72qf3(−q)f3(−q7) + 74q2

f7(−q7)
f(−q)

)
×
(
f7(−q)
f(−q7) + 13qf3(−q)f3(−q7) + 49q2

f7(−q7)
f(−q)

)1/3(2.1)

and

N(q) =
(
f7(−q)
f(−q7) − 72(5 + 2

√
7)qf3(−q)f3(−q7)− 73(21 + 8

√
7)q2

f7(−q7)
f(−q)

)
×
(
f7(−q)
f(−q7) − 72(5− 2

√
7)qf3(−q)f3(−q7)− 73(21− 8

√
7)q2

f7(−q7)
f(−q)

)
.

(2.2)

Two proofs of Theorem 2.1 were given by S. Raghavan and S.S. Rangachari [5].
As indicated in [5], Theorem 2.1 can easily be deduced from F. Klein’s formula which
expressed the modular j-invariant in terms of the Hauptmodul q−1f4(−q)/f4(−q7)
for Γ0(7). One can also verify Theorem 2.1 using modular equations found in
Ramanujan’s Notebooks [8].

Identities (2.1) and (2.2) are not suitable for the application of Venkatachalien-
gar’s method. Our next task is to transform these two identities into those analo-
gous to (1.4) and (1.5).

Lemma 2.2. Let σ(q) be as given in (1.8) and let

ψ(q) =
∞∑

n=0

qn(n+1)/2.

Then for |q| < 1,

σ(q) = ϕ(q)ϕ(q7) + 4q2ψ(q2)ψ(q14)

=
(
f8(−q) + 13qf4(−q)f4(−q7) + 49qf8(−q7)

f(−q)f(−q7)
)1/3

.
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Proof of the first equality in Lemma 2.2. We first observe that the left hand side is
essentially

∑
x∈OK

qN (x), where OK is the ring of integers in K := Q(
√−7) and

N (x) is the norm of the element x. An element in OK takes the form m+n 1+
√−7
2 ,

m,n ∈ Z. Hence, we may partition OK into two sets

OK,0 :=
{
m+ n

1 +
√−7
2

| n even
}

and OK,1 :=
{
m+ n

1 +
√−7
2

| n odd
}
,

and deduce that ∑
x∈OK

qN (x) =
∑

x∈OK,0

qN (x) +
∑

x∈OK,1

qN (x).(2.3)

When x ∈ OK,0, x is of the form m + 2k 1+
√−7
2 = m + k + k

√−7. Therefore,
N (x) = (m+ k)2 + 7k2 and∑

x∈OK,0

qN (x) =
∞∑

m,k=−∞
q(m+k)2+7k2

=
∞∑

u,v=−∞
qu2+7v2

= ϕ(q)ϕ(q7).

(2.4)

When x ∈ OK,1, x is of the form m+ (2k + 1)1+
√−7
2 = m+ k + 1

2 + (k + 1
2 )
√−7.

Therefore, N (x) = (m+ k+ 1
2 )2 + 7(k+ 1

2 )2 = (m+ k)2 + (m+ k) + 7k(k+ 1) + 2
and ∑

x∈OK,1

qN (x) =
∞∑

m,k=−∞
q(m+k)(m+k+1)+7k(k+1)+2

= q2
∞∑

u,v=−∞
qu(u+1)+7v(v+1) = 4q2ψ(q2)ψ(q14).

(2.5)

From (2.3), (2.4) and (2.5), the first equality of Lemma 2.2 follows.

Remark. Suppose d ≡ 3 (mod 4). Then by similar argument as above, we have
∞∑

m,n=−∞
qm2+mn+ d+1

4 n2
= ϕ(q)ϕ(qd) + 4q

d+1
4 ψ(q2)ψ(q2d).

In order to establish the second equality, we need the following modular equations
of degree 7. For the definition of modular equation, see [1, p. 213].

Lemma 2.3. Suppose β has degree 7 over α. Let m = ϕ(q)/ϕ(q7), and let P =
{16αβ(1− α)(1 − β)}1/8 and Q = {β(1− β)/(α(1 − α))}1/6. Then

(αβ)1/8 + {(1− α)(1 − β)}1/8 = 1,(2.6)

m2 =
(
β

α

)1/2

+
(

1− β

1− α

)1/2

−
(
β(1 − β)
α(1 − α)

)1/2

− 8
(
β(1− β)
α(1− α)

)1/3

,(2.7)

49
m2

=
(
α

β

)1/2

+
(

1− α

1− β

)1/2

−
(
α(1 − α)
β(1 − β)

)1/2

− 8
(
α(1− α)
β(1− β)

)1/3

,(2.8)
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and

Q+
1
Q

+ 7 = 2
√

2
(
P +

1
P

)
.(2.9)

The proofs of these modular equations can be found in [1, pp. 314 – 324].

Proof of the second equality in Lemma 2.2. Let t = (αβ)1/8. By (2.6), (1 − t) =
{(1− α)(1 − β)}1/8. Hence,

t(1 − t) = {αβ(1− α)(1 − β)}1/8.(2.10)

From [1, p. 473], we find that

ϕ(q2)ϕ(q14) + 4q4ψ(q4)ψ(q28) =
√
ϕ(q)ϕ(q7){1− t(1− t)}.

Now, from [1, p. 124, Entry 12 (iii)] and (2.10),√
ϕ(q)ϕ(q7) = 22/3q2/3 f(−q2)f(−q14)

(t(1− t))2/3
.

Hence,

ϕ(q2)ϕ(q14) + 4q4ψ(q4)ψ(q28) = 22/3q2/3f(−q2)f(−q14) 1− t(1− t)
(t(1− t))2/3

.(2.11)

Next, from (2.7), (2.8) and [1, p. 124, Entry 12(iii)],

f4(−q2)
q2f4(−q14) = m2

(
α(1 − α)
β(1 − β)

)1/3

=

√
α(1 − β) +

√
β(1 − α)

(α(1 − α))1/6(β(1− β))1/3
−
(
β(1 − β)
α(1 − α)

)1/6

− 8(2.12)

and

49q2f4(−q14)
f4(−q2) =

49
m2

(
β(1 − β)
α(1 − α)

)1/3

=

√
α(1 − β) +

√
β(1 − α)

(α(1 − α))1/3(β(1− β))1/6
−
(
α(1 − α)
β(1 − β)

)1/6

− 8.(2.13)

Now, (
β(1 − β)
α(1 − α)

)1/6

+
(
α(1− α)
β(1− β)

)1/6

= 4t(1− t) +
2

t(1− t)
− 7,(2.14)

by (2.9) and (2.10). Also,

(
√
α(1 − β) +

√
β(1 − α))

×
(

1
(α(1 − α))1/6(β(1 − β))1/3

+
1

(α(1 − α))1/3(β(1− β))1/6

)
=

√
α(1 − β) +

√
β(1 − α)

(t(1 − t))5/2

((
α(1 − α)
t(1− t)

)1/6

+
(
β(1− β)
t(1− t)

)1/6
)
,

(2.15)
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by (2.10). It is easy to see that√
α(1− β) +

√
β(1 − α) =

√
1− (

√
αβ −

√
(1− α)(1 − β))2

=
√

1− (t4 − (1 − t)4)2

= 2
√
t(1− t)(2t2 − t+ 1)(2t2 − 3t+ 2),

(2.16)

and from [1, p. 318, (19.12), (19.13)],(
α(1− α)
t(1− t)

)1/6

+
(
β(1 − β)
t(1 − t)

)1/6

=
√

(2t2 − t+ 1)(2t2 − 3t+ 2).(2.17)

Hence, using (2.16) and (2.17), we may simplify (2.15) as

(
√
α(1− β) +

√
β(1 − α))

×
(

1
(α(1 − α))1/6(β(1 − β))1/3

+
1

(α(1 − α))1/3(β(1 − β))1/6

)
= 2

(2t2 − t+ 1)(2t2 − 3t+ 2)
t2(1− t)2

.

(2.18)

Therefore, by adding (2.12) and (2.13) and simplifying using (2.14) and (2.18),
we deduce that

f4(−q2)
q2f4(−q14) + 49

q2f4(−q14)
f4(−q2)

= 2
(2t2 − t+ 1)(2t2 − 3t+ 2)

t2(1− t)2
− 4t(1− t)− 2

t(1− t)
− 9

= 22 (1− t(1− t))3

t2(1− t)2
− 13.

(2.19)

Combining (2.11) and (2.19), and replacing q2 by q, we complete the proof of
Lemma 2.2.

Remarks. Lemma 2.2 is due to Ramanujan. The first proof of the second equality
which also utilizes Ramanujan’s modular equations of degree 7 can be found in [1,
p. 472]. One can also prove the second equality by verifying that the function
σ3(q)/(qf3(−q)f3(−q7)) is invariant under Γ0(7) and therefore can be expressed in
terms of f4(−q)/(qf4(−q7)).

Next, define x := α(q) as the function satisfying the relation

1− α(q)
α(q)

=
1
7q

(
f(−q)
f(−q7)

)4

,(2.20)

and let

z := σ(q).

By Lemma 2.2, we may rewrite (2.1) and (2.2) as

M(q) = 7z4 1 + 33x+ 15x2

7− x+ x2
,(2.21)
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and

N(q) = 49z61− 74x− 225x2 − 18x3 − 27x4

(7− x+ x2)2
.(2.22)

Note that (2.21) and (2.22) are now analogues of (1.4) and (1.5) and we are in the
position to invoke Venkatachaliengar’s method.

Theorem 2.4. Let x and z be as above. Then

q
dx

dq
= z2x(1 − x)(2.23)

and

z′′xx(x − 1) + z′x(2x− 1) =
2z(2x2 − 2x− 7)

(7 − x+ x2)2
,(2.24)

where

z′′x =
d2z

dx2
and z′x =

dz

dx
.

Proof of Theorem 2.4. For simplicity, let L = L(q),M = M(q), and N = N(q).
From (2.21) and (2.22), we find that

M3 −N2 = 592704
z12x(1− x)7

(7− x+ x2)4
(2.25)

and

3qN
dM

dq
− 2qM

dN

dq
= 592704q

z10x′(x− 1)6

(7− x+ x2)4
,(2.26)

where the “prime” means differentiation with respect to q.
Next, if we multiply (1.2) by 3N and (1.3) by 2M and eliminate LMN from the

resulting equations, we find that the left hand sides of (2.25) and (2.26) are equal.
Hence, we conclude that

qx′ = z2x(1 − x),

which is (2.23).
Now, from (2.21) and (1.2), we have

LM −N = 168qx′z4 29 + 26x− 6x2

(7− x+ x2)2
+ 84qz′z3 1 + 33x+ 15x2

7− x+ x2
,

which implies that

L = z2 7− 53x− 3x2

7− x+ x2
+ 12q

z′

z
,(2.27)

by (2.21)–(2.23). From (2.27) and (2.21), we deduce that

q
dL

dq
=12q2

z′′

z
+ 12q

z′

z
− 12

(
q
z′

z

)2

+ 28z4x(1− x)
−13− 2x+ 2x2

(7− x+ x2)2
+ 2qz′z

7− 53x− 3x2

7− x+ x2

(2.28)

and
L2 −M

12
= 12

(
q
z′

z

)2

− 4z4x(1− x)
49 + 2x− 2x2

(7− x+ x2)2
+ 2qz′z

7− 53x− 3x2

7− x+ x2
.(2.29)
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By (1.1), (2.28) and (2.29), we find that

q2
z′′

z
+ q

z′

z
− 2

(
q
z′

z

)2

= −2z4x(1− x)
2x2 − 2x− 7
(7 − x+ x2)2

.(2.30)

Finally, let

z′x =
dz

dx
and z′′x =

d2z

dx2
.

Then

q2
z′′

z
+ q

z′

z
− 2

(
q
z′

z

)2

= z′′xz
3x2(1 − x)2 + z′xz

3x(1 − x)(1 − 2x),

and (2.24) follows from (2.30).

Remarks. 1. Part of our computations given in this section are done with the aid
of MAPLE V.

2. We have not been able to express the solutions of the second order differential
equation (2.24) in terms of known functions.

3. Identity (2.23) is not new. It is equivalent to Ramanujan’s identity

σ2(q) = 1− 28
∞∑

n=1

nq7n

1− q7n
+ 4

∞∑
n=1

nqn

1− qn
,

which is first proved by Berndt [1, p. 467, Entry 5 (i)] using modular equations of
degree 7.

4. The relation (2.23) is also satisfied by other pairs of functions. For example
[3, p. 4178],

q
dx3

dq
= z2

3x3(1− x3),

where x3 and z3 are discussed in Section 1, and [1, p. 120, Entry 9(i)]

q
dx2

dq
= z2

2x2(1− x2),

where

z2 := ϕ2(q) and x2 := 16q
ψ4(q2)
ϕ4(q)

.

3. Evaluation of σ(q)/σ(q2) at q = e−2π/
√

7

In this final section, we give a method of deriving special values of σ(q)/σ(qk),
k ∈ N. We illustrate this method by giving a proof of (1.9).

Proof of (1.9). Let β(q) := α(q2). Then from (2.23), we find that

dβ(q)
dα(q)

= 2
σ2(q2)
σ2(q)

β(q)(1 − β(q))
α(q)(1 − α(q))

.(3.1)

In general, we have

dα(qk)
dα(q)

= k
σ2(qk)
σ2(q)

α(qk)(1 − α(qk))
α(q)(1 − α(q))

.
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Next, recall the following modular equations of degree 7 found in Ramanujan’s
Notebooks [2, p. 209]:

PQ+
49
PQ

=
(
Q

P

)3

− 8
Q

P
− 8

P

Q
+
(
P

Q

)3

,(3.2)

where

P = P (q) := q−1/2 f
2(−q)

f2(−q7) and Q = Q(q) := q−1 f
2(−q2)

f2(−q14) .

By (2.20),

1− x

x
= P 2/7 and

1− y

y
= Q2/7,(3.3)

where x = α(q) and y = β(q). Substituting (3.3) into (3.2), we obtain a relation
between x and y, namely,

7xy − 6y2x− 6x2y + 3x2y2 + 2x3y + 2y3x− x3 − y3 = 0.(3.4)

Implicitly differentiating (3.4) with respect to x, we find that

dy

dx
= − 7y − 6y2 − 12xy + 6y2x+ 6x2y + 2y3 − 3x2

7x− 6x2 − 12xy + 6x2y + 6y2x+ 2x3 − 3y2
.(3.5)

This proves that the derivative in (3.1) can be expressed in terms of α(q) and β(q).
Hence, in order to prove (1.9), it suffices to compute α1 = α(q1) and β1 = β(q1)
where q1 = e−2π/

√
7.

By the transformation formula for q1/24f(−q) [1, p. 43, Entry 27(iii)], we find
that P (q1) =

√
7 and therefore, by (3.3), α1 = 1/2. Substituting α1 into (3.4)

yields β1 = 1/2−√
7/6. This implies that

dy

dx

∣∣∣∣
q=q1

=
25
81
,

by (3.5). Hence, by (3.1), σ(q21)/σ(q1) = 5/6, which is (1.9).

In a similar way, using the modular equation [2, p. 236, Entry 68],

P1Q1 +
7

P1Q1
=
(
Q1

P1

)2

− 3 +
(
P1

Q1

)2

,

with

P1 = q−1/4 f(−q)
f(−q7) and Q1 = q−3/4 f(−q3)

f(−q21) ,

we can show that

9
∞∑

m,n=−∞
e−6π/

√
7(m2+mn+2n2) =

√
27 + 6

√
21

∞∑
m,n=−∞

e−2π/
√

7(m2+mn+2n2).

(3.6)
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Concluding remarks

This paper is motivated by an attempt to develop a theory of elliptic functions
to the septic base (see [3] for the definition of elliptic functions to alternative bases).
Our investigation here shows that this theory may not exist since we are unable to
solve (2.24) in terms of known functions. The failure to do so implies that there are
no simple analogues of Jacobi’s inversion formula as well as the Borweins’ inversion
formula in the septic case. The existence of a simple inversion formula is important
in developing elliptic functions to alternative bases.

It is interesting to note that proofs of simple identities such as (1.9) and (3.6) in-
volve so many non-trivial identities scattered in Ramanujan’s Notebooks. Although
Ramanujan possessed all the identities discussed in this paper, (1.9) and (3.6) were
not found in his Notebooks.
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