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In this paper, we derive new Ramanujan-type series for 1/7
which belong to “Ramanujan’s theory of elliptic functions to alter-
native base 3” developed recently by B.C. Berndt, S. Bhargava,
and F.G. Garvan.

1. Introduction.
Let (a)g = 1 and, for a positive integer m,
(@)m i =ala+1)(a+2)---(a+m—1),
and
oFi(a,b;c; z) := Z — |zl < 1.
=0 -

In his famous paper “Modular equations and approximations to «” [10],
S. Ramanujan offered 17 beautiful series representations for 1/7. He then
remarked that two of these series

2§ D (DD (2\™
1) g:m20(2+15m) 2 (;!)3 5 (27>
and
- 1y (1) (2 m
42 127r3 - (4+33m)(2)m<(r?;l)!’)’;(3)m (ég,)

m=0
“belong to the theory of gs,” where
o oF1(3, 3151 — k?)
@ =exp| ——7= :
V3 oFi(3, 5 1;k2)

Ramanujan did not elaborate on his “theory of ¢o,’
details for his proofs of (1.1) and (1.2).

)

neither did he provide
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Ramanujan’s formulas (1.1) and (1.2) were first proved by J.M. Borwein
and P.B. Borwein in 1987. Motivated by their study of Ramanujan’s se-
ries for 1/7 associated with the classical theory of elliptic functions, they
established the following result:

Theorem 1.1 ([3, p. 186]). Let

dK (x)
dr

K(z) == oFi(3,3;1;2), and K(z) =

For n € Q%, define the cubic singular modulus to be the unique number oy,
satisfying

(1.3) il Sl

Set

(1) en) = L (K(an) 2= Vi (3%(1 o) ) an),

(1.5) ap, = (e(n) — Vnow,),

9

and
(1.6) b, := 2\2371\/1 - H,,
where
(1.7) Hy =40y, (1 — ay).
Then

o0 1 1 2
(1.8) % =) (an+ bnm)(2>m((;)!;;(3)m Hy.

m=0

Remark. We state this theorem with a different definition of e(n) than that
given in [3]. We have avoided using elliptic integrals of the second kind and
Legendre’s relation.

The Borweins’ theorem indicates that for each positive rational number
n, we can easily derive a series for 1/ belonging to the “theory of ¢2” if the
values of av, and €(n) (the rest of the constants can be computed from these)
are known. The computation of these constants for any given n, however,
is far from trivial.
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The Borweins’ method of evaluating «, involves solving a quartic equa-
tion. More precisely, they show that when n is an odd positive integer, a,,
is the smaller of the two real solutions of the equation

(9 — 8ay,)? (4G24 —1)3

1.9 = n
(1.9) 6403 (1 — ) 27TG3L 7

where G, is the classical Ramanujan-Weber class invariant defined by

G, = 2—1/467T\/ﬁ/24 H (1 + e—ﬂ'\/ﬁ(2m—1)).

m=1

Using known values for G3,,, they derive o, for n = 3 and 5 from (1.9). For
example, from (see [1, p. 190])

4
G%§:8<\/5+1> |

2

they deduce that
11V5
50
When n is an even positive integer, the corresponding formula between «,,
and g3y, is

1
01525—

_ n 3 4 24 1 3
(1.10) O~ 8an)” __ (4950 +1)7
64a3 (1 — a) 2793,

where g, is the other Ramanujan-Weber class invariant defined by

e}
Gn = 2—1/4€7T\/ﬁ/24 H (1 _ e—w\/ﬁ(2m—1)).

m=1
Using (1.10) and known values of g3, they compute «,, for n = 2, 4, and 6.
Together with the values of €(n) for n = 2, 3, 4, 5, and 6 [3, p. 190, Problem
20], they obtained five series for 1/7. Ramanujan’s series (1.1) and (1.2)
then correspond to n = 4 and 5, respectively. At the end of [3, Chapter 5,
Section 5], the Borweins remark that their explanation of Ramanujan’s series
(1.1) and (1.2) is “a bit disappointing” as they only have “well-concealed
analogues of the original theory for K.”

In a recent paper, B. C. Berndt, S. Bhargava, and F. G. Garvan [2]
succeeded in developing Ramanujan’s “corresponding theories” mentioned
in [10]. One of these theories is Ramanujan’s “theory of ¢2” and its discovery
has motivated us to revisit Ramanujan’s series (1.1) and (1.2). This theory
is now known as “Ramanujan’s theory of elliptic functions to alternative base
37 or “Ramanugjan’s elliptic functions in the theory of signature 3.”

In this article, we derive some new formulas from the “theory of ¢5”
which will facilitate the computations of o, and €(n). With the aid of cubic
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Russell-type modular equations (see [6]) and Kronecker’s Limit Formula, we
discover new Ramanujan-type series for 1/ belonging to the “theory of ¢5.”
An example of these series, which corresponds to n = 59, is

(1.11)

(D (3 (2 _ m
2153559+/3 =S (ot bm) (3)m(5)m(5)m 73 — 40v/3 |
21/3.232(4 4+ 5v/3)

where
a = 1028358v/3 — 593849 and b := 19101285v/3 — 795.

Each term in this series gives approximately 10 decimal places of 7.

In Section 2, we recall some important results proved in [2] and establish
new formulas satisfied by €(n) which lead to a new formula for a,. In
Section 3, we describe our strategy for computing a,. In Section 4, we
indicate that if 3n is an Fuler convenient number, then «,, as well as other
related cubic singular moduli, can be computed explicitly via Kronecker’s
Limit Formula. These values are used to derive the constants a,, b,, and
H,, listed in our final section.

2. Ramanujan’s elliptic functions in the theory of signature 3
(Ramanujan’s “theory of g2”).

Define

w) = Y g
and

clq) == Z gL/ H(m+1/3)(n+1/3)+(n+1/3)
Theorem 2.1. If

2 K(1 — oz))
21 = e —_— R
=y o=o (<
then
*(q)

2.2 = .
22 )

Theorem 2.2 (Borweins’ Inversion Formula). We have

(23) ola) = & (58 = K(a),

a*(q)
where K(-) is defined in Theorem 1.1.
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Theorem 2.1 and Theorem 2.2 are important results in Ramanujan’s the-
ory of elliptic functions in the signature 3 which can be found in [2] as
Lemma 2.9 and Lemma 2.6, respectively.

Let « be given as in (2.2). Then it is known that (see [2, (4.4)] and [5,

(4.7)])
da

(2.4) qd—q = K?*(a)a(l — ).

The modulus ( is said to have degree n over the modulus o when there is a
relation

(2.5) =n

Hence, when ¢ satisfies (2.1),

qn ep< 27TK(1_E)>
= ex -,
YERRN)
and applying (2.4) with ¢ and « replaced by ¢" and 3, respectively, we
deduce that

(2.6) qu — WK (B)B(1 - ).

Combining (2.6) and (2.4), we arrive at:
Theorem 2.3. If B has degree n over a, then

(2.7 mHa, )G =ntg o,
where
(2.8) m(a, B) == g Eg;

We call the quantity m(«, 3) the multiplier of degree n in the theory of
signature 3. We are now ready to derive new formulas satisfied by e(n).

Theorem 2.4. Let €(r) be defined as in (1.4). Then

() -,

r r
Proof. Set
K(1—
_K(-o)
K(a)
Then
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From (2.1) and (2.4), we deduce that
da —2m
— = K? 1—a).
= a1 -a)

Hence,

V3 1

(2.9) K(l-a)= 27 K(a)a(l — o)

— K(a)T.
Next, note that from (1.3)

(2.10) ay=1-a.

Therefore, by (1.4) and (2.9) with 7 = \/r,

1 _3\/?; - 1 3ar(1_ar)f{(l—0&7~)
6<7“> = 2(1—%)—\[( 2K(1 - ay) _(1_%))

_3V3 1 B 3v3 n 3a,(1 — o) K (ar) n 1 o
81 K2(1—oq,) 4mrK2(a) 21K () NG
_ V=€)
= . .
Theorem 2.5. Let
d
m* = m(a, a,2,) and m* = %(ar,anzr).

Then
3
(2.11) c(n’r) =m*? <6<r> - Vr (ar — St (1 - o) - nﬁf» |

Proof. Suppose [ has degree n over . Then from (2.8), we deduce that
de(ﬁ) n dm dK(oc).

(2.12) To K(ﬁ)@ =—
Using (2.7), we may rewrite (2.12) as

nB(l—B)dK(8) mPa(l —a)dK(a) dm
(2.13) K@) df K@) da el ogg

Next, suppose @ = a,. Then = a,,2,, and by (1.4), (2.8), and (2.13),

3v3 a2, (1 — ag2,) -
E(nQT) 87{'K27() 'I’L\/> < 2K( ) K(Oén27.) — Oén27.>
B 3v/3m*?
- 81K (ay)

3m*2a, (1 — o) - 3 ok
QKT((aT) T)K(ar) — §m*ar(1 —a,)m* — nan2r>

i
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= (etr) = v (0 = 3 a1 - agyt - 22 ) )

m*2

If we set 7 = 1/n in (2.11) and use (2.10), we find that

e(n) =n (e (i) —\/r (1 o Wﬁ(l s o) — an>>

3an(l — ay) dm

= — 2 n
e(n) + 2anv/n + 5 Ta

(1 — o, ).
Hence, we have:

Theorem 2.6.
B 3an(l — ap) dm
e(n) = vnay, + 1 Ta

Corollary 2.7. With a, and H, defined in Theorem 1.1, we have
H, dm

=——(1- .
Qp, 2\/§ da( anaan)
Theorems 2.4, 2.5, and 2.6 are the respective cubic analogues of [3, (5.1.5),
Theorem 5.2, and (5.2.5)].

(1 — ap, an).

3. Computations of ay.

It is clear from Corollary 2.7 that in order to compute a, it suffices to
compute ay, and dm/da, where m is the multiplier of degree n. We will
discuss the computation of the latter in this section. Suppose there is a
relation between a and 3, where 8 has degree n over a. Then we can
determine d3/da by implicitly differentiating the relation with respect to
a. Substituting d3/da into (2.7), we conclude that m can be expressed in
terms of « and 3. This implies that dm/da is a function of o and £3.

A relation between « and (3 induced by (2.5) (i.e., when 3 has degree n
over «) is known as a modular equation of degree n in the theory of signature
3. (We sometimes call these cubic modular equations.) Our discussion in
the previous paragraph indicates that our computations of dm/da depend
on the existence of such modular equations.

The first few modular equations in the theory of signature 3 are given by
Ramanujan in his notebooks. One of these is the following modular equation
of degree 2:

(3.1) (@) +{(1-a)(1 =)} = 1.

Proofs of Ramanujan’s modular equations in the theory of signature 3 are
now available in [2] and [6].
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Recently, we showed that [6] if p is a prime, then there is a relation
between z := (af)*® and y := {(1 — a)(1 — 5)}*/5, when (p +1)/3 = N/s
and ged(V, s) = 1. Moreover, we proved that the degree of the polynomial
satisfied by =z and ¥y is N. This proves the existence of modular equations
of prime degrees and we conclude that when m is a multiplier of degree p,

dm

(32) % = Fp(avﬁ)a

where F), is a certain function in a and 3. If we know the value of «,, then
the value of a, follows by substituting & = 1 —«,, and § = «,, into (3.2) and
simplifying. Our simplification is done with the help of MAPLE V.

When n is not a prime, except for modular equations of degrees 4 and 9, it
is difficult to derive a modular equation of degree n. However, deriving such
a modular equation is unnecessary. We illustrate our point with n = pq. If
0 has degree g over « then from a cubic modular equation of degree ¢ and
(2.7), we can write

K(a
(33 ma = Ti3) = Galen B
where my is the multiplier of degree ¢ and G|, is a certain function of o and
(. Similarly, we can deduce that if v has degree p over 8, then from a cubic
modular equation of degree p, we may write

(3.4) iy = [;Efi — Gy(B.),

where m,, is the multiplier of degree p and G, is a certain function of 3 and
~. It follows that v has degree pq over a and

K(a) _K(a) K(B)
K() K@ K@)

Hence, differentiating with respect to a and substituting a = ay/(,q), We
have

= mg(a, B) - my(B,7).

mpq(a”}/) =

dm dm
dofq (1 — apg, apg) = mp(aq/pa apq)T;(l - apq»o‘q/P)

@.%(a )
do dﬂ q/p>%pq)-

+ mg(1 — apg, al]/p)

This allows us to compute a,, provided we know modular equations of de-
grees p and ¢ and the singular moduli a4 and g/,

When n is a squarefree product of more than 2 primes, say n = pips - - pi,
then the above idea can be extended with the computation of a,, reduced to
that of finding modular equations of degrees p1, po, ..., pi—1, and p;, and

constants a"/(l’?l"‘l’?s)’ where 1 <s<l—1and1<i; <I.
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4. Euler’s convenient numbers, Kronecker’s Limit Formula,
and cubic singular moduli.

An FEuler convenient number is a number c satisfying the following criterion:

Letl > 1 be an odd number relatively prime to ¢ which is properly
represented by x? +cy?. If the equation | = x + cy® has only one
solution with x,y > 0, then [ is a prime number.

Fuler was interested in these numbers because they helped him to generate
large primes. The above criterion, however, is not very useful for finding
these numbers.

Let d be squarefree, K = Q(v/—d), Cx denote the class group of K and
C%{ be the subgroup of squares in Cg. A genus group G is defined as the
quotient group Cg/ C%(. Gauss observed that Gx ~ Cfk if and only if d
is a convenient number. (Some convenient numbers are not squarefree but
Gauss’ criterion is also true for class groups of orders in K.) Using this new
criterion, Gauss determined 65 Euler convenient numbers [8], [7, p. 60]. We
reproduce here those ¢’s (# 3) which are squarefree and divisible by 3.

h(—4c) := }C’Q( \/—TC)‘ Euler’s convenient number ¢
P 6, 15
4 91, 30, 33, 42, 57, 78, 93, 102, 177
8 105, 165, 210, 273, 330, 345, 357, 462
16 1365

Table 1. Convenient numbers in Gauss’ table which are squarefree and
divisible by 3 (except 3).

For each ¢ in Table 1, we will deduce the corresponding values a3, b./3,
and H,/3, which in turn yield new series for 1/m.

A group homomorphism x : Gg — {£1} is known as a genus character.
One can show that a genus character arises from a certain decomposition
of Dk, where Dg is the discriminant of K. More precisely, if x is a genus
character, then there exist di and ds satisfying Dg = dids, di > 0, and
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d; =0o0r 1 (mod 4), such that for any prime ideal p in K,

(Nd(lp))’ if N(p)1di,

(4.1) x([p]) =

(). if N@)|d

where N (p) is the norm of the ideal p and (—) denotes the Kronecker symbol.
If [a] is an ideal class in Cx and a = [[p®?, then we define

= [T xtne

Theorem 4.1. Let x be a genus character arising from the decomposition
Dg = dyyday. Let hiy be the class number of the field Q(y/d; ), wa be
the number of roots of unity in Q(\/da,), and €, be the fundamental unit

of Q(\/di,). Let
= VN (L, 7)) ()P

where N (-) denotes the norm of a fractional ideal, n(z) denotes the Dedekind
eta-function defined by

_ mz/12 H 2mnz Imz >0
and

T2

T=—, Im7>0, where a=][r,T2]

T1
Then
(4.2) S | R

[aleCk

Theorem 4.1 follows from Kronecker’s First Limit Formula [11, p. 72,
Theorem 6]. In [9], K.G. Ramanathan applied Theorem 4.1 to compute
products of the form

6
14+4/—n/5
P 1 n( 2 "/ )
n — —
5\/5 n(lJr\/Q 5n)

when 5n is a convenient number. These products are then used to deduce
special values of the Rogers-Ramanujan continued fraction. In the same
article, he defined [9, Eq. (51)]

6
(/B
(43) “”‘m(nw-*w) |
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and remarked that u, can be evaluated when 3n is one of the convenient
numbers listed in Table 1 (15 is missing from his list). Ramanathan’s result
can be stated as follows:

Theorem 4.2 ([9, Theorem 4]). Let ¢ be a convenient number listed in Ta-
ble 1 and let K = Q(\/—c). Let [t] be the ideal class containing t such that
t2 = (3). Then with the same notation as in Theorem 4.1

3
/3 = H €X8X>

x([t)=-1
where the exponents are given by
2wh17xh2,x
= wo h
2,x

with h being the class number of K and w the number of roots of unity in

K.

It turns out that Ramanathan’s p,, is related to ay,, namely [5, (2.7)],

1 2

(4.4) o W, + 1.
Hence, from Theorem 4.2, (4.1), and (4.4), we can determine «,, explicitly.
Using the same technique as given in the proof of Theorem 4.2, one can
compute an/(l’?l"'l’? ) 1<s<l—-1and 1 <i; <[, which will be needed in
the evaluations of a,,.

We conclude this section with a list of singular moduli which will be
needed in the evaluations of a,, b,, and H, with n = ¢/3.

n | Cubic singular moduli

1 2
5 a5—7_7\/7

Table 2. Cubic singular moduli for A(—12n) = 2.
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n Cubic singular moduli

Tler=3 58

10 | agp = 3 — BVESE g, = L 3V22Y5

11 a1l = % — %

14 s = § = SERAL gy = — WGt

19 | a9 = % — W

26 | gp = 5 — SO gy, = 1 CSOVIAVI
31 a3] = % — W

5 a34:%_W7 a17/2:%_w
59 | aso = 1 63670915%@:;02865\/@

Table 3. Cubic singular moduli for A(—12n) = 4.
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n Cubic singular moduli
35 | ags = § + %5 V5 + S VI — 55 V35 — 150 VI05
arss = 5+ 50'V5 — VI + 55v35 — 15 Vit
55 | ass =} + VA - Ve - W+ B
1175 = 5 ~ 53131 V3 + 5536 V8 ~ Togss V1T T iros6s V106
70 | an = % + 64038937510\/g - 11201062730\/ﬁ - 1ggggzlsor - 188§8§gor
Qz5/2 = % o 64038937510\/5 o 11201062730‘/ﬁ + 133?(2)}50@ o 13323230\/%
Q7/10 = % + 64038937510\/g B 11201062$0m + 183?(%;0@ + 183?8280\/%
1 | an =} - BRI + RS - SR+ BARG v
13/7 = 5 + 53700108 V3 + Trssaost V2 — 1rss3061 V3 — 306108 V2
110 | a0 = % - 21521()24870012190487s)‘/5 - 57092252660727;15758 Ve
~ 50256022175 V33 + 100319011355 V110
A55/2 = 3 3+ 21521024870012190%79\/5 B 57092252660727;15758 Ve
~ 50236022175 V3 — T003 12041356 V110
@11/10 = 5 3 T+ 215210248700121904879 V5 — 570922526607272415758 Ve
+ 50256022178 V3 + 0013014355 V110
115 | ans = % - 1113727706596759430 V3 + 11643248830705795 V5 + 312269936704175 V23 — 5281885525;2472070 V345
Q23/5 = % + 111372770659629430 V3 + 11é324188307()5795 V5 — 312269936704175 V23 — 52818855255;42472070 V345
119 | ang = 3 2t 1560522746664T3 VIT — égﬁggg??g V51 + 11695628436549453 V119 — é65(;195875274752 V357
017/7 = 3 — Tosaieins V1T — Gonossrrs Vo1 + Tosvioias VIO T oossarrs VI
154 | ansa = § = S5V + R V1 — RN 6 v
Qrr/2 = % - éigiggg‘/ﬁ - 13??32??05 - 61648172802312275\/% + 1igg?gg5ﬁ
@11/14 = % - éigigggﬁ + 13??8%20@ + 61648172802312275\/% + 1223?2;’5ﬁ
Table 4. Cubic singular moduli for h(—12n) = 8.
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n Cubic singular moduli
1 52602592750172050462677 5668214189343349857381
55 == — - V15
455 | auss 2 248717948742554175611950\/5 49743589748510835122390
_ 5696597990275946071461 JE 538462633924678371678 V&
49743589748510835122390 24871794874255417561195
_ 682503637304416627557 /05 25146509927196138320763 =
9948717949702167024478 497435897485108351223900
109593923135795012632 1196360473602901817979
Vv V1
1974358974851083512230 ¥ 1°° T 90a87179497021670224780 ¥ 150
1 52602592750172050462677 5668214189343349857381
0591/5 = - — f vV 15
2 248717948742554175611950 49743589748510835122390
462633924 1
5696597990275946071461 VI 538462633924678371678 JEE
49743589748510835122390 24871794874255417561195
_ 682503637304416627557 /05 25146509927196138320763 =
9948717949702167024478 497435897485108351223900
109593923135795012632 1196360473602901817979
V455 — V1365
1074358074851083512239 ¥ 0 ~ 99487179497021670244780 ¥ 1
1 52602592750172050462677 5668214189343349857381
_1 _ Vi
a6s/T= 5 +248717948742554175611950‘/g 19743539748510835122390 ¥ 1°
5696597990275946071461 538462633924678371678
10743539743510835122390 ¥ °°  21871794874255417561195 ¥ 0
_ 682503637304416627557 V05 — 25146509927196138320763 =
9948717949702167024478 497435897485108351223900
109593923135795012632 1196360473602901817979
/455 — V1365
4974358974851083512239 99487179497021670244780
_ 1 52602592750172050462677 VB4 5668214189343349857381 JiE
35/13 = T O 4R717948742554175611950 49743589748510835122390
462633924 1
_ 5696597990275946071461 VI - 538462633924678371678 VG
49743589748510835122390 24871794874255417561195
_ 682503637304416627557 V105 — 25146509927196138320763 =
9948717949702167024478 497435897485108351223900
109593923135795012632 1196360473602901817979
V4 V1365
1974353974851083512230 ¥ 1°° T 99487179497021670244780
Table 5. Cubic singular moduli for A(—12n) = 16.
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5. Values of a,, b,, and H,,.

The values of H,, follow immediately from the values of a,, by (1.7). From
(1.6), it appears that we need to denest the expression /1 — H,, in order to
determine b,,. The next simple lemma shows that this is not necessary.

Lemma 5.1. Let pu,, be defined as in (4.3). Then

_2\/371;@%—1
3 241

bn,

Proof. From (4.4), we deduce that

1 1
1—-a, - @
Hence, by (1.7), (4.4), and (5.1), we conclude that

(5.1) +1.

4, 1
Fn = MU, + MiZ + 2.
n
Hence,
4
5.2 V1-H,=,/1— —M
(5:2) \/ W+ i + 2
_ Hn— !
fin + pn
Substituting (5.2) into (1.6) completes our proof of the lemma. O

Finally, to compute a,,, we use the method outlined in Section 3, together
with the singular moduli given in Section 4. Our final results are shown in
the following tables, grouped once again according to class numbers.

nl| ay b, | Hp
9 1 2
3W3 | V3 | 2

8 22 4
15v/3 | 5v/3 | 125

Table 6. a,, b,, and H, for h(—12n) = 2.
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n an bn, H,
10 7 13 7 17 13
T | —=+—=V7 =VT- - -+ =T
o7 27‘[ 9 9 o7 T 54\[
25 8 70 10 223 35
10 | =V15—- —/6 —V15+ —6 = _ =10
243 243‘[ 81 T Vo 1458 729
6 13 45 5 194 225
11| =—-=v3 = _ =3 -4+ =3
11 99‘[ 11 33‘[ 1331 " 2662\/
21 82 198 28 1819 198
4| —=Vi-—"3 —VT+ =3 — -
125 V7 1125 V3 125 VTt 375 V3 31250 15625
1654 133 5719 13 8522 3913
19 | — — —=— 19 — - —/19 - V19
3375 3375 1125 1125 421875 = 843750
1118 3967 4620 130 249913 34650
26 | ——V39—- ——/3 —— 394+ —/3 - V13
14739 44217\[ 4913 + 14739f 48275138 24137569
14662 7843 217 35113 684197 245791
31 | - —= + —/31 -+ =31 -
91125 | 91125 30375 | 30375 307546875 = 615093750
7157 62896 70 296140 3555313 304850
34| - V51 6 NG 6 -
323433 + 323433\[ 107811 * Jors11 Vo 2582935938 1291467969
342786 593849 6367095 265 1461224894
59 -— 3 - V3 |
717853 6460677 717853 2153559 30403462846931
1687280175
60806925693862

Table 7. a,, by, and H, for h(—12n) = 4.
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n an, b,, and H,

558 364 577
35 | ass = i HE;\/igr— 42yﬁ?—k4?57y4§

1701 581 366
b3s = —+t5 3 — 1267 — T\/21

1210352 279531 91494 264132
- V34 VT + V21

Hszs = —

125 50 25 125
1411054 14375 26884 194150
55 =— V15 V33 —
455 132651 | 4913 * 14739 132651
1423345 50435 27530 185990

bss = — V15 V33—
55 14217 4913 * 1013 44217

40461639767 2329268305
Hss = — + V15 +

V55

V55

V33 —

782606510 5473886320

651714363 144825414 72412707 651714363

V55

V42

57239 217912 18154 5432
70 = 7 V10 V15 —
470 = 1642545 VTt 1622545 ¥ 0 1 132505 60835

766766 540694 93548 29314
= V10 V15 — ——/42
547515 VTt 547515 + 60835 60835

70

263701974157 3413048639 8992317139 1429629212

70

999242250750 55513458375 + 499621125375 55513458375

V105

513055226 197125250 140862644 52944437
91 =— 7— V13
a0 17779581 | 17779581 V7 17779581 t 17779581

by, — 02667165 214664450 . 142555490 . 53880005
o1 = T 5926527 5926527 5926527 5926527

N

1. 3020198045742832 ~ 1141527555432550
91 = —

838583339971300

Vo1

VT

V13

633909424388075

V91
23415814854486

11707907427243 + 11707907427243 11707907427243

51466456301 1605347400 2302296150
226152099801 25128011089 25128011089

2180745776

———————/66

75384033267
113011075870 n 21911639310 31690709820
75384033267 25128011089 25128011089

8031352980
——————/66
25128011089

_328032510163806603637 34968343286005152660\/ﬁ
10 1262833882577813931842  631416941288906965921

110 | a110 =

bi1o =

26922173637682728405 V30 11479638881035691730

~ 631416941288906965921 + 631416941288906965921

V165

Table 8. a,, b,, and H, for h(—12n) = 8.
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Gn, by, and H,

2453452114 58294124 7317496 139937129
115 = — V15 — V69 V115
M5 = TeR0792405 | 98088045 32606015 " O° T 882792405

5026751821 39674908 19045012 132769793
- - V15 — V69 V115
M5 = 994264135 32696015 32696015 ¥ O° T 204264135

195193666847694106 5599864542570116
Hyi5 = — + V15
144318968578830375 16035440953203375

2653754247048632 37000600425371947
69 V115

16035440953203375 © _ 288637937157660750
103789302 547343732 43409625 72149336
119 = - 7 — V21
@9 T9700379 87483411 V3 9720379 V7 29161137
318200715 551139820 162387225 67035540
biig = - 7— Va1
197 T9790379 29161137 V3t 9720379 V7 9720379

i - A99TETI0S96750603  28855221888962700 /-
19 = T 606258054361897 | 1606258054361897

37979008521886575 10963595445145200
- VT + V21
3212516108723794 1606258054361897

965168 3910004 28870936 142457
6 7 V22 V231

154 | a154 = — _
4053225 182395125 182395125 4053225
2375828 112962616 55833106 836822
biss = 6 7 — 2 V231
154 = 1351075 Y T 60798375 60798375r 1351075
b _ 7310532242037247 1415741080717 8770226416943
154 = 7107244286031250  301191603178125 301191603178125

206104571568818
- V154
13553622143015625

Table 8 (continuation). a,, b,, and H,, for h(—12n) = 8.
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a455 =

byss = —

Hyss =

_35958686812804845816546 199639241839509967088008\/f
4974358974851083512239 44769230773659751610151

__91866311009633295364887\/7 12114289251501127493868
24871794874255417561195 4974358974851083512239

B

__21170489873453104001440\/47 19045288924435485549578
14923076924553250536717 14923076924553250536717

2

3501400086019335742242\/47 36482832707135043514012

2
4974358974851083512239 * 74615384622766252683585 7

108868803097864065436089 199460940107146922990240\/—

4974358974851083512239 14923076924553250536717

__326904629053549798169919\/f 47775254611309163928990\/If
24871794874255417561195 4974358974851083512239

__9333352321361091775752V/A—+_26584123954621081666818\/4—
4974358974851083512239 4974358974851083512239

11336428378686699714762\/47 35068395166781366975118\/§7§
4974358974851083512239 24871794874255417561195

_25593277575291678024530931497850444197001585383
12372123605340761245091680055188536031396560500

726431859849607816583487985232610666030207597
618606180267038062254584002759426801569828025

&

_3839347276534358839899743258373310667699209791
4948849442136304498036672022075414412558624200

S

351649374516601338100434337317872458470333402
618606180267038062254584002759426801569828025

B

_ 56196149792473665089405401522944398076147222
123721236053407612450916800551885360313965605

5

1032402621896013253168215818718780641551536294
3093030901335190311272920013797134007849140125

g

53580377184022523304261118862331927596113329
247442472106815224901833601103770720627931210

5

152525837164039389925036504420966961190929163
1237212360534076124509168005518853603139656050

Eﬂ
BN
w

Table 9. a,, b,, and H, for h(—12n) = 16.
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Concluding remarks.

The common feature of all our series computed here is that they involve
only simple quadratic numbers. The series corresponding to n = 455 gives
us approximately 33 additional digits per term and it is the fastest conver-
gent series belonging to the theory of g known so far. It might also be the
fastest convergent series for 1/m which involves only real quadratic num-
bers. One should compare this with the spectacular series discovered by the
Borweins [4] which gives “25 digits per term” using only real quadratics.
The fastest convergent series known so far is that given by the Borweins [4]
which gives roughly 50 additional digits per term.

Acknowledgment. The authors wish to thank W. Galway for helping
us in finding some of the a,’s. We also thank the referee for comments to
improve the manuscript.

References

[1] B.C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.

[2] B.C. Berndt, S. Bhargava and F.G. Garvan, Ramanugjan’s theories of elliptic functions
to alternative bases, Trans. Amer. Math. Soc., 347 (1995), 4163-4244.

[3] J.M. Borwein and P.B. Borwein, Pi and the AGM, Wiley, New York, 1987.

[4] , Class number three Ramanujan type series for 1/m, J. Comput. Appl. Math.,

46 (1993), 281-290.

[5] H.H. Chan, On Ramanujan’s cubic transformation formula for 2F1(1/3,2/3;1;2),
Math. Proc. Cambridge Philos. Soc., 124 (1998), 193-204.

[6] H.H. Chan and W.-C. Liaw, On Russell-type modular equations, Canad. J. Math., to
appear.

[7] D.A. Cox, Primes of the Form z* + ny?, Wiley, New York, 1989.
[8] C.F. Gauss, Disquisitiones Arithmeticae, Springer-Verlag, New York, 1986.

[9] K.G. Ramanathan, Some applications of Kronecker’s limit formula, J. Indian Math.
Soc., 52 (1987), 71-89.

[10] S. Ramanujan, Modular equations and approzimations to w, Quart. J. Math. (Oxford),
45 (1914), 350-372.

[11] C.L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Re-
search, Bombay, 1980.

Received June 16, 1998 and revised July 16, 1998.

NATIONAL UNIVERSITY OF SINGAPORE
KENT RIDGE, SINGAPORE 119260
REPUBLIC OF SINGAPORE

E-mail address: chanhh@math.nus.sg

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS 61801
E-mail address: liawQmath.uiuc.edu



