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1. INTRODUCTION

In his famous paper [11], [12, pp. 23�39], Ramanujan offers several
elegant series for 1�?. He then remarks, ``There are corresponding theories
in which q is replaced by one or other of the functions''

qr :=qr (x) :=exp \&? csc(?�r)
2F1 \1

r
,

r&1
r

; 1; 1&x+
2F1 \1

r
,

r&1
r

; 1; x+ + , (1.1)

where r=3, 4, or 6 and where 2F1 denotes the classical Gaussian hyper-
geometric function. In the classical theory of elliptic functions, the variable
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q=q2 , and Ramanujan implies that most of his series for 1�? arise not out
of the classical theory but out of new alternative theories wherein q is
replaced by either q3 , q4 , or q6 . Ramanujan gave no proofs of his series for
1�? or of any of his theorems in the ``corresponding'' or ``alternative''
theories. It was not until 1987 that J. M. Borwein and P. B. Borwein [6]
proved Ramanujan's series formulas for 1�?. In the appendix of Ramanu-
jan's Collected Papers [12, p. 336], Mordell laments, ``It is unfortunate that
Ramanujan has not developed in detail the corresponding theories...''
However, in his second notebook [13, pp. 257�262], Ramanujan records
without proofs his theorems in these new theories, which were first proved
in 1995 by Berndt et al. [5], who gave these theories the appellation, the
theories of signature r (r=3, 4, 6). An account of this work may also be
found in Berndt's book [4, Chap. 33].

In the classical theory, the theta-functions

.(q) := :
�

n=&�

qn2
and �(q) := :

�

n=0

qn(n+1)�2 (1.2)

play key roles. In particular, Jacobi's identity [3, p. 40, Entry 25(vii)]

.4 (q)&.4 (&q)=16q�4 (q2) (1.3)

is crucially used in establishing the fundamental inversion formula [3,
pp. 100�101]

z2 := 2F1 ( 1
2 , 1

2 ; 1; x)=.2 (q), (1.4)

where q :=q2 is given by (1.1).
In the cubic theory, or the theory of signature 3, for |=exp(2?i�3), let

a(q) := :
�

m, n=&�

qm2+mn+n2
, (1.5)

b(q) := :
�

m, n=&�

|m&nqm2+mn+n2
, (1.6)

and

c(q) := :
�

m, n=&�

q(m+1�3)2+(m+1�3)(n+1�3)+(n+1�3)2
. (1.7)

The functions defined in (1.5)�(1.7) are the cubic theta-functions, first intro-
duced by J. M. Borwein and P. B. Borwein [7], who proved that

a3 (q)=b3 (q)+c3 (q). (1.8)
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Ramanujan [13, p. 258] established the fundamental inversion formula

z3 :=2 F1 ( 1
3 , 2

3 ; 1; x)=a(q), (1.9)

where q=q3 is given by (1.1). This theorem was first proved in print by
Berndt, Bhargava, and Garvan [5], [4, p. 99], with (1.8) being a necessary
ingredient in their proof.

In the theory of signature 4, or in the quartic theory, Berndt, Bhargava,
and Garvan [5], [4, p. 146, Eq. (9.7)] established a type of transfer prin-
ciple by which formulas in the theory of signature 4 could be derived from
formulas in the classical theory. The primary purpose of this paper is to
establish an analogue of both (1.4) and (1.9), and some concomitant
theorems, so that results in the quartic theory can be proved without rely-
ing on corresponding theorems in the classical theory. Taking the place of
a(q), b(q), and c(q) in the cubic theory are the functions

A(q) :=.4 (q)+16q�4 (q2), B(q) :=.4 (q)&16q�4 (q2), (1.10)

and

C(q) :=8 - q .2 (q) �2 (q2) (1.11)

(where . and � are defined in (1.2)) which, by Jacobi's identity (1.3),
satisfy the equality

A2 (q)=B2 (q)+C2 (q). (1.12)

In Section 2, we use (1.12) to establish a quartic inversion formula
(Theorem 2.3) in order to prove that

z4 := 2 F1 ( 1
4 , 3

4 ; 1; x)=- A(q), (1.13)

where x=x(q). Clearly (1.13) is an analogue of (1.4) and (1.9). The defini-
tions of A(q), B(q), and C(q) were motivated by results of the Borweins [6,
p. 179, Proposition 5.7(a)] and Ramanujan [4, pp. 151�152, Lemma 9.14,
Theorem 9.15] pointing toward (1.13). We next prove quartic analogues of
the extremely useful ``principles of duplication and dimidiation'' in the
classical theory [3, pp. 125�126]. Using (1.12), (1.13), and the quartic
analogues of duplication and dimidiation, we then easily obtain useful
formulas for B(q) and C(q) in terms of z4 and x.

In Section 3, by using (1.13) and the quartic versions of duplication and
dimidiation, we show how to reprove many theorems of Ramanujan in
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the quartic theory, which were first established by Berndt, Bhargava, and
Garvan [5], [4, pp. 145�149]. Define

f (&q) := `
�

n=1

(1&qn) :=e&2?i{�24'({) (q=e2?i{, Im {>0), (1.14)

where '({) is the Dedekind eta function. We first derive quartic analogues
of the representations [4, p. 109, Lemma 5.1],

b(q)=
f 3 (&q)
f (&q3)

and c(q)=3q1�3 f 3 (&q3)
f (&q)

,

in the cubic theory. Second, we establish a formula for f (&q) in terms of
z4 and x. Third, we define the classical Eisenstein series M(q) and N(q) and
derive formulas for M(q) and M(q2), where, for the latter, we use the quar-
tic version of duplication. Corresponding formulas for N(q) and N(q2) can
be similarly derived.

In the last section of this paper, we show how the alternative quartic
theory can be utilized to derive two general formulas for Ramanujan-type
series for 1�?. Our results are new versions of formulas found by the
Borweins [6, pp. 182�183] and considerably facilitate the determination of
particular examples. The paper concludes with three such examples.

Ramanujan's theory of elliptic functions of signature 6 is not as complete
as those in the cubic and quartic theories [5], [4, pp. 161�164]. In par-
ticular, we have been unable to obtain a sextic analogue of (1.4), (1.9), and
(1.13).

Chan and Ong [9] have established a few results pointing toward the
beginnings of a theory of signature 7. No further alternative theories have
been found.

Some of the theorems in this paper were established by the third author
in his doctoral dissertation [10].

2. THE QUARTIC INVERSION FORMULA AND PRINCIPLES OF
DUPLICATION AND DIMIDIATION

Theorem 2.1 [13, p. 260]. For 0<x<1,

2F1 \1
4

,
3
4

; 1; 1&\ 1&x
1+3x+

2

+=- 1+3x 2F1 \1
4

,
3
4

; 1; x2+ . (2.1)
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Theorem 2.2. If A(q) and C(q) are defined by (1.10) and (1.11), respec-
tively, and if |q|<1, then

2F1 \1
4

,
3
4

; 1;
C2 (q)
A2 (q)+=- A(q). (2.2)

A proof of Theorem 2.1 can be found in [5, p. 4214, Theorem 9.4].
Theorem 2.2 was first proved by J. M. Borwein and P. B. Borwein (see [6,
p. 179, Proposition 5.7(a)] and [7, Theorem 2.6(b)]). See [5, p. 4220,
Lemma 9.14] for a proof using results from Ramanujan's notebooks.

For 0<x<1, let

F(x) :=exp \&? - 2 2 F1 ( 1
4 , 3

4 ; 1; 1&x)

2F1 ( 1
4 , 3

4 ; 1; x) + . (2.3)

The following quartic inversion formula is the key to proving (1.13).

Theorem 2.3. For |q|<1,

F \C2 (q)
A2 (q)+=q. (2.4)

A series of lemmas are needed.

Lemma 2.4. We have

.2 (q)&.2 (&q)=8q�2 (q4) (2.5)

and

.2 (q)+.2 (&q)=2.2 (q2). (2.6)

These formulas are, respectively, Entries 25 (v) and (vi) of Chapter 16 in
[3, p. 40].

Lemma 2.5. We have

B(q)= 1
3 (4A(q2)&A(q)) (2.7)
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and

C(q)= 1
3 (A(- q)&A(q)). (2.8)

Proof. Squaring both sides of (2.5) and (2.6) and then adding the
resulting identities together, we obtain

4(.4 (q2)+16q2�4 (q4))=2(.4 (q)+.4 (&q)).

Thus,

4A(q2)=2(.4 (q)+.4 (&q))=2(2.4 (q)&16q�4 (q2))=A(q)+3B(q),

(2.9)

where the penultimate equality is justified by (1.3). Hence the first identity
(2.7) follows. Now, multiplying equalities (2.5) and (2.6) and then employ-
ing equality (1.3), we see that

C(q2)=8q�4 (q2). (2.10)

From (2.9), we also have

A(q2)=.4 (q)&8q�4 (q2). (2.11)

From (1.10), (2.10), and (2.11), we immediately deduce the second identity
(2.8). K

Equalities (2.7) and (2.8) are the quartic analogues of equalities (2.8) and
(2.9) in [5].

Lemma 2.6. If n=2m, where m is a positive integer, then

2F1 \1
4

,
3
4

; 1; 1&
B2 (q)
A2 (q)+=

- A(q)

- A(qn)
2F1 \1

4
,

3
4

; 1; 1&
B2 (qn)
A2 (qn)+ . (2.12)

Proof. Replacing x by (1&x)�(1+3x) in (2.1), we find that

2F1 \1
4

,
3
4

; 1; 1&x2+=� 4
1+3x 2F1 \1

4
,

3
4

; 1; \ 1&x
1+3x+

2

+ . (2.13)
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Let x=B(q)�A(q) and use (2.7), (2.8), and (1.12) to obtain

2 F1 \1
4

,
3
4

; 1; 1&
B2 (q)
A2 (q)+=� 4A(q)

A(q)+3B(q) 2F1 \1
4

,
3
4

; 1; \ A(q)&B(q)
A(q)+3B(q)+

2

+
=�A(q)

A(q2) 2F1 \1
4

,
3
4

; 1;
C 2 (q2)
A2 (q2)+

=�A(q)
A(q2) 2F1 \1

4
,

3
4

; 1; 1&
B2 (q2)
A2 (q2)+ .

We conclude the proof by iterating this identity m times. K

Lemma 2.7. If n=2m, where m is a positive integer, then

2F1 \1
4

,
3
4

; 1;
B2 (q)
A2 (q)+=

- A(q)

n - A(qn)
2F1 \1

4
,

3
4

; 1;
B2 (qn)
A2 (qn)+ . (2.14)

Proof. By (1.12), (2.13) with x=C(q)�A(q), (2.7), and (2.8), we deduce
that

2F1 \1
4

,
3
4

; 1;
B2 (q)
A2 (q)+= 2F1 \1

4
,

3
4

; 1; 1&
C 2 (q)
A2 (q)+

=� 4A(q)
A(q)+3C(q) 2 F1 \1

4
,

3
4

; 1; \ A(q)&C(q)
A(q)+3C(q)+

2

+
=2� A(q)

A(- q)
2 F1 \1

4
,

3
4

; 1;
B2 (- q)

A2 (- q)+ . (2.15)

Replacing q by q2 in (2.15), and then iterating the resulting equality m
times, we establish (2.14). K

Lemma 2.8. Let |q|<1 and let F(x) be as defined in (2.3). If n=2m,
where m is a positive integer, then

F \B2 (q)
A2 (q)+=F n \B2 (qn)

A2 (qn)+
and

F n \C2 (q)
A2 (q)+=F \C2 (qn)

A2 (qn)+ . (2.16)
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Proof. We deduce, upon division of (2.12) by (2.14), that

2F1 \1
4

,
3
4

; 1; 1&
B2 (q)
A2 (q)+

2F1 \1
4

,
3
4

; 1;
B2 (q)
A2 (q)+

=n
2F1 \1

4
,

3
4

; 1; 1&
B2 (qn)
A2 (qn)+

2F1 \1
4

,
3
4

; 1;
B2 (qn)
A2 (qn)+

.

This proves the lemma. K

The cubic analogues of Lemmas 2.6, 2.7, and 2.8 are recorded, respec-
tively, as Lemmas 2.5, 2.7, and 2.8 in [5].

We are now ready to establish the quartic inversion formula.

Proof of Theorem 2.3. We will use Ramanujan's approximation proved
in Example 3 in Section 27 of Chapter 11 in Ramanujan's second notebook
[2, p. 82], namely,

exp \&- 2 ? 2 F1 ( 1
4 , 3

4 ; 1; 1&x)

2F1 ( 1
4 , 3

4 ; 1; x) +=
x
64 \1+

5
8

x+ } } } + .

Letting n tend to � in (2.16) and applying Ramanujan's approximation
above and the definitions of C(q) and A(q), we deduce that

F \C2 (q)
A2 (q)+= lim

n � �
F 1�n \C 2 (qn)

A2 (qn)+
= lim

n � � \ C2 (qn)
64A2 (qn) \1+

5
8

C2 (qn)
A2 (qn)

+ } } } ++
1�n

= lim
n � � \(qn+ } } } ) \1+

5
8

(64qn+ } } } )+ } } } ++
1�n

=q. K

Using Theorems 2.2 and 2.3, we can deduce (1.13), which we state in the
following theorem. We will omit the proof since it is along the same lines
as that given in [3. Entry 6, p. 101].

Theorem 2.9. Let 0<x<1. If q=q4 is given by (1.1), then

z=z4 :=2 F1 ( 1
4 , 3

4 ; 1; x)=- A(q).

We next derive quartic versions of duplication and dimidiation. Let

t$2=1&\ 1&t
1+3t+

2

. (2.17)
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Then

t=
1&- 1&t$2

1+3 - 1&t$2
. (2.18)

Using (2.17) and Theorem 2.1, we find that

z$ :=z(t$2)=2 F1 \1
4

,
3
4

; 1; t$2+
=2F1 \1

4
,

3
4

; 1; 1&\ 1&t
1+3t+

2

+
=- 1+3t 2 F1 \1

4
,
3
4

; 1; t2+
=- 1+3t z(t2). (2.19)

Using (2.18), we see that (2.19) may be rewritten in the form

z2 (t2)=
z$2

1+3t
=

1
4

(1+3 - 1&t$2) z$2. (2.20)

Next, by (2.17),

q$ :=q(t$2)=exp \&? - 2
2F1 \1

4
,

3
4

; 1; 1&t$2+
2F1 \1

4
,

3
4

; 1; t$2+ +
=exp \&? - 2

2F1 \1
4

,
3
4

; 1; \ 1&t
1+3t+

2

+
2F1 \1

4
,

3
4

; 1; 1&\ 1&t
1+3t+

2

++ . (2.21)

Now, by the same transformation (Theorem 2.1),

2F1 \1
4

,
3
4

; 1; \ 1&t
1+3t+

2

+

=
1

�1+3
1&t
1+3t

2F1 \1
4

,
3
4

; 1; 1&\ 1&
1&t
1+3t

1+3
1&t
1+3t+

2

+
=

- 1+3t
2 2 F1 \1

4
,

3
4

; 1; 1&t2+ . (2.22)
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Thus, by (2.21) and (2.22),

q$=q(t$2)=exp \&? - 2

- 1+3t
2 2 F1 \1

4
,

3
4

; 1; 1&t2)

- 1+3t 2F1 \1
4

,
3
4

; 1; t2+ +
=exp \&

?

- 2

2F1 \1
4

,
3
4

; 1; 1&t2+
2F1 \1

4
,

3
4

; 1; t2+ +
=- q(t2). (2.23)

Thus, we can state the following theorems.

Theorem 2.10 (Duplication formula). Suppose we have a relation of the
form

0(t2; q; z2)=0, (2.24)

where

z= 2F1 ( 1
4 , 3

4 ; 1; t2).

Then

0 \{ 1&- 1&t$2

1+3 - 1&t$2=
2

; q$2;
1
4

(1+3 - 1&t$2) z$2+=0.

Proof. The result follows immediately from (2.18), (2.23), and (2.20). K

Theorem 2.11 (Dimidiation formula). Suppose that (2.24) holds with t,
q, and z replaced by t$, q$, and z$, respectively. Then

0 \8
t(1+t)

(1+3t)2 ; - q; (1+3t) z2+=0.

Proof. The result is an immediate consequence of (2.17), (2.23), and
(2.19). K

We complete this section by applying Theorems 2.10 and 2.11 in deriving
representations for B(q) and C(q) in terms of x and z.
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Theorem 2.12. Recall that B(q) and C(q) are defined by (1.10) and
(1.11), respectively. Then

B(q)=- 1&x z2 (2.25)

and

C(q)=- x z2. (2.26)

Proof. By (2.7), Theorem 2.9, and Theorem 2.10,

B(q)= 1
3 (4A(q2)&A(q))= 1

3 (4 } 1
4 (1+3 - 1&x) z2&z2)=- 1&x z2.

Next, by (2.8), Theorem 2.9, and Theorem 2.11,

C(q)= 1
3 (A(- q)&A(q))= 1

3 ((1+3 - x) z2&z2)=- x z2. K

3. THE DEDEKIND ETA FUNCTION AND EISENSTEIN SERIES

In this section, we derive some alternative representations for the quartic
theta functions A(q), B(q), and C(q) and the quartic modulus x in terms
of the Dedekind eta function. We also show how the Dedekind eta function
and Eisenstein series can be parametrized in terms of the quartic variables
x, q=q4 , and z=z4 . Recall that the function f (&q)=q&1�24'({) is defined
by (1.14).

Theorem 3.1. We have

B(q)=\ f 2 (&q)
f (&q2) +

4

, (3.1)

C(q)=8 - q \ f 2 (&q2)
f (&q) +

4

, (3.2)

and

A(q)=
f 8 (&q)+32qf 8 (&q4)

f 4 (&q2)
. (3.3)

Proof. We need some representations for .(&q) and �(q) in terms of
f (&q). These are given by [3, pp. 36�37, Entry 22(ii) and Eq. (22.4)]

.(&q)=
f 2 (&q)
f (&q2)

(3.4)
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and

�(q)=
f 2 (&q2)

f (&q)
. (3.5)

Now, (3.1) follows immediately from (1.10), (1.3), and (3.4), whereas (3.2)
follows from (2.10) and (3.5). By (1.10) and (2.10), we have

A(q)=B(q)+4C(q2),

from which we derive (3.3) in view of (3.1) and (3.2). K

The following curious identity is the quartic analogue of a cubic theorem
of Ramanujan found in his notebooks [3, p. 346, Entry 1(iv)] and is useful
in establishing an eta function representation for the quartic modulus x.

Theorem 3.2. We have

1+32q
f 8 (&q4)
f 8 (&q)

=\1+64q
f 24 (&q2)
f 24 (&q) +

1�2

. (3.6)

Proof. Substituting (3.1) and (3.2) into (1.12), comparing the resulting
expression for A2 (q) with (3.3), and simplifying, we finish the proof. K

Theorem 3.3. Let 0<x<1. If q=q4 is given by (1.1), then

1
1&x

=1+64q
f 24 (&q2)
f 24 (&q)

(3.7)

and

1
x

=1+
f 24 (&q)

64qf 24 (&q2)
. (3.8)

Proof. To prove (3.7), solve (2.25) for 1�(1&x), and then use, in order,
Theorem 2.9, (1.12), and Theorems 3.1 and 3.2. To prove (3.8), solve (2.26)
for 1�x and use the same steps as above. K

Theorem 3.4 [5, p. 4216, Theorem 9.9]. We have

f (&q)=q&1�24
- z 2&1�4x1�24 (1&x)1�12. (3.9)

Proof. By Theorem 2.12, (3.9) is equivalent to

f (&q)=q&1�242&1�4C1�12 (q) B1�6 (q).
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Thus, it suffices to prove that

8 - q f 12 (&q)=C(q) B2 (q),

which is obvious by Theorem 3.1. K

For |q|<1, the classical Eisenstein series L, M, and N are defined by

L(q)=1&24 :
�

k=1

kqk

1&qk , (3.10)

M(q)=1+240 :
�

k=1

k3qk

1&qk , (3.11)

and

N(q)=1&504 :
�

k=1

k5qk

1&qk . (3.12)

Theorem 3.5. We have

M(q)=(1+3x) z4.

Proof. We need to recall some facts about z= 2F1 ( 1
4 , 3

4 ; 1; x) and L(q).
The hypergeometric differential equation satisfied by z is given by [1, p. 1]

x(1&x)
d 2z
dx2+(1&2x)

dz
dx

&
3

16
z=0. (3.13)

If

y := &? - 2 2F1 ( 1
4 , 3

4 ; 1; 1&x)

2F1 ( 1
4 , 3

4 ; 1; x)
, (3.14)

then [2, p. 88, Corollary]

dy
dx

=&
1

x(1&x) z2 . (3.15)
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The functions z and L(q) are related by [5, Eq. (9.10)], [4, p. 149,
Eq. (9.10)]

L(q)=12x(1&x) z
dz
dx

+(1&3x) z2. (3.16)

Last, L(q) satisfies the differential equation [2, p. 330]

q
dL
dq

=
L2 (q)&M(q)

12
. (3.17)

By the chain rule and (3.15),

dL
dx

=&
1

x(1&x) z2

dL
dy

. (3.18)

By (1.1) and (3.14), q=e&y. Thus, by (3.17) and the chain rule,

dL
dy

=
M(q)&L2 (q)

12
. (3.19)

Thus, from (3.18) and (3.19),

&x(1&x) z2 dL
dx

=
M(q)&L2 (q)

12
. (3.20)

From (3.16) and (3.13),

dL
dx

=(12(1&x)&12x) z
dz
dx

+12x(1&x) \z
d 2z
dx2+\dz

dx+
2

+
&3z2+(1&3x) 2z

dz
dx

=(14&30x) z
dz
dx

+12x(1&x) \z
d 2z
dx2+\dz

dx+
2

+&3z2

=(14&30x) z
dz
dx

+12x(1&x) \z

3
16

z&(1&2x)
dz
dx

x(1&x)
+\dz

dx+
2+&3z2

=2(1&3x) z
dz
dx

&
3
4

z2+12x(1&x) \dz
dx+

2

. (3.21)

142 BERNDT, CHAN, AND LIAW



Thus, by (3.20), (3.16), and (3.21),

M(q)=\12x(1&x) z
dz
dx

+(1&3x) z2+
2

&12x(1&x) z2 \2(1&3x) z
dz
dx

&
3
4

z2+12x(1&x) \dz
dx+

2

+
=(1&3x)2 z4+9x(1&x) z4

=(1+3x) z4. K

We now use Theorem 3.5 and the principle of duplication to find a
representation for M(q2).

Theorem 3.6. We have

M(q2)=(1& 3
4 x) z4.

Proof. By Theorems 3.5 and 2.10,

M(q2)=
1

16 \1+3 - 1&x+
2

\1+3 \ 1&- 1&x

1+3 - 1&x+
2

+ z4

=
1

16
((1+3 - 1&x)2+3(1&- 1&x)2) z4

=\1&
3
4

x+ z4. K

Similarly, we can derive formulas for N(q) and N(q2). Also, one can use
the principle of duplication to derive a formula for f (&q2). Alternatively,
we could have reversed the procedure and used the principle of dimidia-
tion. See [4, pp. 146�148] for a different approach to the formulas in this
section.

4. SERIES FOR 1�?

We conclude our paper with a new method for deriving series for 1�?
associated with the theory of signature 4. We first state a general theorem
of J. M. Borwein and P. B. Borwein [6, pp. 182�183, Eqs. (5.5.16),
(5.5.17)]. In order to state their theorem, we need to review some defini-
tions.
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The classical singular modulus - :n is the unique number between 0 and
1 satisfying the relation

2F1 ( 1
2 , 1

2 ; 1; 1&:n)

2 F1 ( 1
2 , 1

2 ; 1; :n)
=- n.

The Ramanujan�Weber class invariants Gn and gn are defined by [4,
p. 183, Eq. (1.3)]

Gn :=2&1�4q&1�24
n

f (qn)
f (&q2

n)
and gn :=2&1�4q&1�24

n

f (&qn)
f (&q2

n)
, (4.1)

where f (&q) is defined by (1.14) and where qn=e&? - n. They can be
expressed in terms of :n by the equalities [4, p. 185, Eq. (1.6)]

Gn=[4:n (1&:n)]&1�24 and gn=[4:n (1&:n)&2]&1�24. (4.2)

The Borweins [6, pp. 182�183, Eqs. (5.5.16), (5.5.17)] derived two classes
of series for 1�?, involving Gn , g2n , and :n , in the theory of signature 4,
which we record in the following theorem.

Theorem 4.1. Let

Ak=
( 1

4)k ( 3
4)k ( 1

2)k

(k!)3 (4.3)

and

:(n)=
?

4K2&- n \E
K

&1+ ,

where

K :=
?
2 2F1 \1

2
,

1
2

; 1; :n+ and E :=
?
2 2 F1 \&

1
2

,
1
2

; 1; :n+ .

Then

1
?

= :
�

k=0

Ak \\:(n) u&1
n

1+:n
&

- n
4

g&12
n ++k - n \g12

n & g&12
n

2 ++ u2k+1
n (4.4)

and

1
?

= :
�

k=0

(&1)k Ak \\:(n) v&1
n

1&2:n
+

- n
2

:n G12
n ++k - n \G12

n +G&12
n

2 ++ v2k+1
n ,

(4.5)
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where

un=\g12
n + g&12

n

2 +
&1

and vn=\G12
n &G&12

n

2 +
&1

.

In his papers [11], [12, pp. 23�39], Ramanujan recorded a total of 10
series [11, Eqs. (35)�(44)] for 1�? associated with the quartic theory. The
series (40)�(44) are precisely (4.4) when n=6, 10, 18, 22, and 58, respec-
tively. The first example of (4.4), which is the case when n=4, namely,

9
2?

= :
�

k=0

Ak (7k+1) \32
81+

k

, (4.6)

was surprisingly omitted by Ramanujan and apparently has not been
recorded anywhere in the literature. However, it is not difficult to see that
it follows from substituting the values [6, p. 172, Table 5.2b]

g12
4 =2 - 2 and :(4)=2(- 2&1)2 (4.7)

into (4.4). We shall give an alternate derivation of (4.6) from our new
version of (4.4) which we prove below.

Ramanujan's series (35)�(39) in [11] are the special cases of (4.5),
corresponding to n=5, 9, 13, 25, and 37, respectively. In this class,
Ramanujan omitted the series

1

? - 7
= :

�

k=0

Ak \65
63

k+
8

63+ \&
256

3969+
k

. (4.8)

This new series is the case n=7 of (4.5). It can be obtained by substituting
the values [6, p. 172, Table 5.2a]

G12
7 =8 and :(7)=

- 7&2
2

(4.9)

into (4.5). At the end of this section, based on our new version of (4.5), we
will sketch a different proof of (4.8) without using values from the
Borweins' tables.

The Borweins' series were derived from certain transformation formulas
for hypergeometric series and series for 1�? in the classical base. In this
section, we prove alternative forms of (4.4) and (4.5) by using the theory
of signature 4 given in the previous sections. Our derivation is motivated
by a new method illustrated in a recent paper by Chan, Liaw, and V. Tan
[8].

We begin with Clausen's transformation [6, p. 178, Proposition 5.6(b)].
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Lemma 4.2. For &1<t<1,

2F 2
1 ( 1

4 , 3
4 ; 1; t)= 3F2 ( 1

4 , 3
4 , 1

2 ; 1, 1; 4t(1&t)). (4.10)

Setting t=x in (4.10), where x is given by (3.8), and using Theorem 2.9,
we conclude that

z2= 3F2 ( 1
4 , 3

4 , 1
2 ; 1, 1; H), (4.11)

where H=4x(1&x). Differentiating (4.11) with respect to x=x(q), using
(4.3), and substituting in (3.16), we conclude that

L(q)= :
�

k=0

Ak (6(1&2x(q)) k+1&3x(q)) H k (q). (4.12)

We derive another formula for L(q), which will be important later for us.
Recall from (1.1) and (3.14) that q=e&y. Using the chain rule and (3.15),
we find that

q
dx
dq

=q
dx
dy

dy
dq

=x(1&x) z2. (4.13)

Substituting the right side of (4.13) into (3.16), we find that

L(q)=12
q
z

dz
dq

+(1&3x(q)) z2 (q). (4.14)

Recall that the multiplier of degree n is defined by [3, p. 214, Eq. (24.14);
p. 101, Eqs. (6.2), (6.4)]

m(q)=
z(q)
z(qn)

. (4.15)

Note that by Theorem 2.9, m(q) may be expressed in terms of x(q) and
x(qn); i.e., m(q)=m(x(q), x(qn)). Differentiating m(q) with respect to q and
following exactly the steps given in [8], we deduce that

nL(qn)&L(q)
z(q) z(qn)

=(1&3x(qn))
n

m(q)
&(1&3x(q)) m(q) (4.16)

&12x(q)(1&x(q))
dm

dx(q)
(x(q), x(qn)).
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To obtain an equivalent form of the Borweins' formula (4.4), we need the
transformation formula [3, p. 43, Entry 27(iii)]

e&?�(12{)f (&e&2?�{)=- { e&?{�12f (&e&2?{), (4.17)

where {>0. Next set q=e&2?�- 2n in (3.8) to deduce that

1

x(e&2?�- 2n)
=1+

f 24 (&e&2?�- 2n)

64e&2?�- 2nf 24 (&e&4?�- 2n)
. (4.18)

By (4.17),

e&2?�- 2nf 24 (&e&2?�- 2n)=(2n)6 e&2? - 2nf 24 (&e&2? - 2n) (4.19)

and

e&2? - 2�nf 24 (&e&2? - 2�n)=(n�2)6 e&2? - n�2f 24 (&e&2? - n�2), (4.20)

which, when substituted in (4.18), gives

1

x(e&2?�- 2n)
=1+64e&? - 2n f 24 (&e2? - 2n)

f 24 (&e&? - 2n)
=

1

1&x(e&? - 2n)
, (4.21)

by (3.7). Hence,

1&x(e&2? - n�2)=x(e&2?�- 2n). (4.22)

We next derive a similar transformation for z. Recall from Theorem 2.9
that z(q)=- A(q). Now go to (3.3), square it, and then use (3.6) to deduce
that

z4 (q)=A2 (q)=
f 16 (&q)
f 8 (&q2) \1+64q

f 24 (&q2)
f 24 (&q) + .

Let q=e&2?�- 2n. Then, using the transformations (4.19) and (4.20), we find
that

z4 (e&2?�- 2n)=n2z4 (e&2? - n�2).

Taking the fourth root of each side and remembering that z(q)>0 for
q>0, we conclude that

z(e&2?�- 2n)=- n z(e&2? - n�2). (4.23)
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By (4.15) and (4.23), we also find that

m(e&2?�- 2n)=- n. (4.24)

If we set

Ln=L(e&2? - n�2), L1�n=L(e&2?�- 2n),

xn=x(e&2? - n�2), and zn=z(e&2? - n�2), (4.25)

then, by (4.16), (4.22), (4.23), and (4.24), we conclude that

nLn&L1�n=- n z2
n \3 - n (1&2xn)&12xn (1&xn)

dm
dx

(1&xn , xn)+ . (4.26)

Now, differentiating both sides of the identity (4.23) with respect to n
and setting, for brevity, q=e&2?�- 2n and q$=e&2? - n�2, we find that

?

- 2 n3�2
q

dz
dq

(q)=&
?

- 2
q$

dz
dq$

(q$)+
1

2 - n
z(q$). (4.27)

Next, from (4.14), we find that

q$
dz
dq$

(q$)=zn
Ln&z2

n (1&3xn)
12

(4.28)

and

q
dz
dq

(q)=z1�n
L1�n&z2

1�n (1&3x1�n)
12

=- n zn
L1�n&nz2

n (3xn&2)
12

, (4.29)

by the transformation formulas (4.23) and (4.22). Substituting (4.28) and
(4.29) into (4.27), we find, after simplification, that

nLn+L1�n+nz2
n=

6 - 2n
?

. (4.30)

Adding (4.26) and (4.30), we conclude that

Ln=
6

? - 2n
+z2

n \1&3xn&6
xn (1&xn)

- n

dm
dx

(1&xn , xn)+ . (4.31)
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Substituting (4.12) and (4.11), with q=e&2? - n�2, into (4.31), we deduce
that

1

? - 2n
= :

�

k=0

Ak \(1&2xn) k+
xn (1&xn)

- n

dm
dx

(1&xn , xn)+ H k
n , (4.32)

where

Hn=4xn (1&xn). (4.33)

By employing (3.7), (3.8), and (4.1), we find that

Hn=\ 2
g12

2n+ g&12
2n +

2

. (4.34)

Using this in (4.32), we see that (4.32) is an alternative formula to (4.4).
To derive the second general formula, first set L(q)=L(&q), x(q)=

x(&q), z(q)=z(&q), and

m(q)=
z(q)
z(qn)

. (4.35)

These definitions need some clarification. First, the identity of L(q)=
L(&q) is clear from (3.10). However, throughout the theory developed in
Section 2, it was necessarily assumed that 0<x<1. In particular, see
Theorem 2.9. Thus, more precisely, we define x(q)=x(&q) by (3.8). We
next define A(&q) by (1.10) and z(q)=z(&q) by (1.13). However,
A(&q)<0 for q>0. Thus, we unambiguously define z(q) by taking the
principal branch of - A(&q).

Proceeding as in [8], we derive the analogue of (4.16), namely,

nL(qn)&L(q)
z(q) z(qn)

=(1&3x(qn))
n

m(q)
&(1&3x(q)) m(q)

&12x(q)(1&x(q))
dm

dx(q)
(x(q), x(qn)). (4.36)

Recall the transformation formula for f (q) [3, p. 43, Entry 27(iv)]. If {>0,

e&?�(24{)f (e&?�{)=- { e&?{�24f (e&?{). (4.37)
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Using (4.37) with {=- n and (4.19) with n replaced by n�2, we find from
(3.8) that

1

x(e&?�- n)
=1&

f 24 (e&?�- n)

64e&?�- n f 24 (&e&2?�- n)

=1&
n6e&? - n+?�- n f 24 (e&?- n)

64e&?�- ne&2? - n+2?�- n f 24 (&e&2? - n)

=1&
f 24 (e&? - n)

64e&? - n f 24 (&e&2? - n)

=
1

x(e&? - n)
. (4.38)

To derive the corresponding formula for z(q), we need the transforma-
tion formula [3, p. 43, Entry 27(ii)]

.(&e&?{)=2{&1�2e&?�(4{)�(e&2?�{), (4.39)

where {>0. From (1.10) and (4.39),

A(&e&?�- n)=.4 (&e&?�- n)&16e&?�- n�4 (e&2?�- n)

=16ne&? - n�4 (e&2? - n)&e&?�- nne?�- n.4 (&e&? - n)

=&nA(&e&? - n).

Thus, recalling (1.13) and choosing the principal square root, we conclude
that

z(e&?�- n)=- &n z(e&? - n). (4.40)

Define

Ln=L(e&? - n), L1�n=L(e&?�- n),

xn=x(e&? - n), and zn=z(e&? - n). (4.41)

Thus, by (4.36), (4.38), and (4.40),

nLn&L1�n=\2n(1&3xn)&12 - &n xn (1&xn)
dm
dx

(xn , xn)+ z2
n . (4.42)
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For brevity, we temporarily set q=e&?�- n and q$=e&? - n. Thus, dif-
ferentiating (4.40) with respect to n, we find that

?
n3�2 q

dz
dq

(q)=
i

- n
zn&?iq$

dz
dq$

(q$). (4.43)

By (4.14),

q$
dz
dq$

(q$)=zn
Ln&z2

n (1&3xn)
12

, (4.44)

and by (4.14), (4.38), and (4.40),

q
dz
dq

(q)=z1�n
L1�n&z2

1�n (1&3x1�n)
12

=i - n zn
L1�n+nz2

n (1&3xn)
12

. (4.45)

Substituting (4.44) and (4.45) into (4.43), we conclude, after multiplying
both sides by 12n�(i?zn) and simplifying, that

nLn+L1�n=
12 - n

?
. (4.46)

Adding (4.42) and (4.46), we find that

2nLn=\2n(1&3xn)&12 - &n xn (1&xn)
dm
dx

(xn , xn)+ z2
n+

12 - n
?

. (4.47)

Now, with q=&e&? - n, substitute (4.11) and (4.12) into (4.47) to con-
clude that

1

? - n
= :

�

k=0

Ak \(1&2xn) k&
xn (1&xn)

- &n

dm
dx

(xn , xn)+ Hk
n , (4.48)

where Hn=4xn (1&xn). Using (3.7), (3.8), and (4.1), we find that

1
xn

=1&G24
n and

1
1&xn

=1&
1

G24
n

. (4.49)

Thus,

1
xn (1&xn)

=2&G24
n &

1
G24

n

=&\G12
n &

1
G12

n +
2

,
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and so

Hn=&\ 2
G12

n &G&12
n +

2

. (4.50)

Thus, in summary, we have proved the following theorem, which should
be compared with Theorem 4.1.

Theorem 4.3. Let Ak be defined by (4.3). Suppose that xn and xn are
defined by (4.25) and (4.41), respectively. Define m(q) and m(q) by (4.15)
and (4.35), respectively. Last, let Hn and Hn be given by (4.34) and (4.50),
respectively. Then

1

? - 2n
= :

�

k=0

Ak \(1&2xn) k+
xn (1&xn)

- n

dm
dx

(1&xn , xn)+ H k
n (4.51)

and

1

? - n
= :

�

k=0

Ak \(1&2xn) k&
xn (1&xn)

- &n

dm
dx

(xn , xn)+ Hk
n . (4.52)

We now establish the new series for 1�? offered in (4.6). Recall, from
(4.13), that

q
dx(q)

dq
=x(q)(1&x(q)) z2 (q). (4.53)

Replacing q by qn in (4.53), we find that

q
dx(qn)

dq
=nx(qn)(1&x(qn)) z2 (qn). (4.54)

Dividing (4.54) by (4.53), we find that

dx(qn)
dx(q)

=
n

m2 (x(q), x(qn))
x(qn)(1&x(qn))
x(q)(1&x(q))

. (4.55)

When q=e&2?�- 2n, x(qn)=xn , x(q)=1&xn by (4.22), and m2 (1&xn , xn)
=n by (4.24). With these substitutions in (4.55), we arrive at

dx(qn)
dx(q)

(1&xn , xn)=1. (4.56)
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Examining (2.19) carefully, we see that

z$=z(q)=- 1+3- x(q2) z(q2).

Thus, with n=2,

m2 (x(q), x(q2))=1+3 - x(q2). (4.57)

Differentiating (4.57) with respect to x(q2), we deduce that

dm
dx(q2)

=
1

2m
3

2 - x(q2)
. (4.58)

Therefore, by the chain rule, (4.56), (4.58), and the fact that m(1&xn , xn)
=- n,

dm
dx(q)

(1&x2 , x2)=
dx(q2)
dx(q)

(1&x2 , x2) }
dm

dx (q2)
(1&x2 , x2)

=
1

2 - 2

3

2 - x2

. (4.59)

By (4.7), g12
4 =2 - 2, and so by (4.34), H2= 32

81 . It follows from (4.33) that
x2= 1

9 . Using (4.56) and this value of x2 in (4.59), we conclude that

x2 (1&x2)

- 2

dm
dx

(1&x2 , x2)=
1
9

.

Together with the values 1&2x2= 7
9 and H2= 32

81 , we immediately deduce
(4.6) from (4.51).

In our derivation of (4.6), we calculated directly the value

xn (1&xn)
dm
dx

(1&xn , xn).

We now illustrate another method of deriving such series for 1�? in our
second example, (4.8).

By (4.42) and (4.52), we see that to calculate

xn (1&xn)
dm
dx

(xn , xn)
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it suffices to calculate

nLn&L1�n

- &n z2
n

. (4.60)

To calculate (4.60) when n=7, we employ the identity

7L(q7)&L(q)

- A(q) A(q7)
=6 \�B(q) B(q7)

A(q) A(q7)
+2 �C(q) C(q7)

A(q) A(q7)

+2 - 2 {B(q) B(q7) C(q) C(q7)
A2 (q) A2 (q7) =

1�4

+ , (4.61)

which we discovered with the help of Garvan's etamake package on Maple V.
By (3.8), observe that

1
x(q)

=\1&
f 24 (q)

64q f 24 (&q2)+ . (4.62)

Setting n=7 in (4.49) and employing (4.9), we conclude that

x7=& 1
63 . (4.63)

It follows from (2.26) and the equality z2
n=A(&qn) that

C2 (&q7)
A2 (&q7)

=&
1

63
. (4.64)

Recall from (1.11) that

C(&qn)=8i - qn .2 (&qn) �2 (q2
n).

Using the transformation formula (4.39), we deduce that

C(&q7) C(&q1�7)=&7C2 (&q7). (4.65)

Recall also from (4.40) that

A(&q1�7)=&7A(&q7). (4.66)

Thus, by (4.65) and (4.66),

�C(&q7) C(&q1�7)
A(&q7) A(&q1�7)

=�C2 (&q7)
A2 (&q7)

=&
i

- 63
. (4.67)
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By (1.12) and (4.64),

B2 (&q7)
A2 (&q7)

=
64
63

. (4.68)

Also, by (1.10), (2.25), and the equality z2
n=A(&qn), we can see that

B(&q7) B(&q1�7)=7B2 (&q7). (4.69)

Thus, from (4.66), (4.69), and (4.68),

�B(&q7) B(&q1�7)
A(&q7) A(&q1�7)

=� B2 (&q7)
&A2 (&q7)

=&i
8

- 63
. (4.70)

It follows from (4.70) and (4.67) that

{B(&q1�7) B(&q7) C(&q1�7) C(&q7)
A2 (&q1�7) A2 (&q7) =

1�4

={ B2 (&q7)
&A2 (&q7)

C 2 (&q7)
A2 (&q7)=

1�4

=i
2 - 2

- 63
. (4.71)

Substituting (4.67), (4.70), and (4.71) into (4.61), we conclude that

7L7&L1�7

- &7 z2
7

=&
4i

- 7
. (4.72)

Now using (4.42), (4.52), and (4.72), we may complete the proof of (4.8).
We conclude this section with one additional series for 1�?. By using

(2.25), (2.26), (3.7), (3.8), (4.1), and (4.21), we find that

C2 (e&? - 2�7)
A2 (e&? - 2�7)

=
B2 (e&? - 14)
A2 (e&? - 14)

=\1+
1

g24
14+

&1

=
1
2

&
1
7

- &50+44 - 2 (4.73)

and

C2 (e&? - 14)

A2 (e&? - 14)
=

B2 (e&? - 2�7)

A2 (e&? - 2�7)
(4.74)

=(1+ g24
14)&1=

1
2

+
1
7

- &50+44 - 2 .
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We have also used the value of g14 , given by Weber [14, p. 721] in the
form

g2
14=�3+2 - 2

4
+�&1+2 - 2

4
.

Substituting these values into (4.61) and using (4.51), we conclude that

1

? - 14 - &50+44 - 2
= :

�

k=0

Ak \2
7

k+
3

196
(3&- 2)+ \249&176 - 2

49 +
k

.

(4.75)

Deriving (4.75) by using the Borweins' method would require the value of
:(14), which is more complicated than the radicals used here.
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