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On page 212 of his lost notebook, Ramanujan defined a new class invariant λ
n

and constructed a
table of values for λ

n
. The paper constructs a new class of series for 1}π associated with λ

n
. The new

method also yields a new proof of the Borweins’ general series for 1}π belonging to Ramanujan’s
‘ theory of q

#
’.

1. Introduction

For any positive integer k, let

(a)
k
B a[(a­1)… (a­k®2)[(a­k®1).

In his famous paper ‘Modular equations and approximations to π ’ [13],

S. Ramanujan recorded many elegant series for 1}π. Among his list of series, he

remarked that the series
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belong to the ‘theory of q
#
’, where

q
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Ramanujan did not develop his theory, neither did he record his proofs of (1.1) and

(1.2).

The first proofs of (1.1) and (1.2) are due to J. M. Borwein and P. B. Borwein

[7, Chapter 5]. In order to describe their proofs, define α
n

(the cubic singular modulus)

to be the unique number satisfying the equation
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then the Borweins show that the following theorem holds.

T 1.1.
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For each rational number n, the Borweins’ formula yields a corresponding series

for 1}π if the explicit values of α
n

and ε(n) are known. For example, the Borweins

derive Ramanujan’s series (1.1) and (1.2) by computing α
n

and ε(n) for n¯ 4 and 5

respectively. They also added three new series which correspond to n¯ 2, 3 and 6.

The Borweins’ method of computing α
n
is rather complicated. To obtain α

n
, they need

to solve a quartic polynomial equation which involves Ramanujan–Weber class

in�ariants G
n

and g
n
, where

G
n
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g
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When G
n

or g
n

gets too complicated, their method fails to yield a simple expression

for α
n
. The computation of ε(n) is even more difficult in such cases. As such, for

several years, the aforementioned series have been the only known series belonging

to the theory of q
#
.

Around 1995, after the work of the Borweins and F. G. Garvan [8, 9], B. C.

Berndt, S. Bhargava and F. G. Garvan [5] succeeded in developing Ramanujan’s

theories of elliptic function to alternative bases, which includes Ramanujan’s ‘ theory

of q
#
’. Recently, using identities from [5], H. H. Chan and W.-C. Liaw [11] noticed

that by expressing α
n

in terms of values of certain modular functions, one can

evaluate α
n

explicitly whenever the class groups of the imaginary quadratic fields

1(o®3n) are isomorphic to :t

#
, t `.. With these new cubic singular moduli, they

managed to derive many new series for 1}π by using the following alternative form

of the Borweins’ result.
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The original proof of Theorem 1.2 given by Chan and Liaw [11] begins with the

Borweins’ Theorem 1.1 and follows closely the treatment given in the classical case

[7, Chapter 5]. One advantage of using Theorem 1.2 is that it shows clearly that the

number a
n

is algebraic since α
n

is algebraic. This is not so apparent in the Borweins’

formula since it involves two hypergeometric series in the definition of ε(n). A quick

comparison also shows that Theorem 1.2 is simpler than that of the Borweins and

that there should be a direct proof of this result.

In this paper, we provide a new proof of Theorem 1.2 using ideas which originated

from Ramanujan’s work [13]. We then derive a new class of series for 1}π

corresponding to Ramanujan’s class invariant λ
n

defined by

λ
n
¯

e(π/#)
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3o3
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, (1.13)
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f(®q)¯ 0
¢

k="

(1®qk).

In terms of the Dedekind η-function,

λ
n
¯

1
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2 1
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2 1
.

We conclude this section with some elegant series which arise from this new class,

namely,
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These series correspond to n¯ 9, 17, 25, 41, 49 and 89, respectively.

2. Borweins’ in�ersion formula, Clausen’s formula and the series L(q)

For rqr! 1, let

L(q)¯ 1®24 3
¢

k="

kqk

1®qk
. (2.1)

In this section, we state a few important lemmas and derive an interesting identity

associated with L(q).

L 2.1 (Clausen’s formula [7, Proposition 5.6(b), p. 178]). For ®1! t! 1,
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L 2.2 (Borweins’ inversion formula [5, Theorem 2.10; 10, (4.4)]). Let
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L 2.3 [5, Lemma 2.9]. Let 0! q! 1. Then
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.

R 2.4. It can be shown that α(q)¯α
n

when q¯ e−#
πon/$ [11].

L 2.5 [5, (4.4) ; 10, (4.7)]. Let α¯α(q) and z¯ z(q). Then

q
dα

dq
¯α(1®α) z#.

L 2.6 [5, Lemma 4.1; 10, (4.8)]. Let LBL(q). Then

L¯ 12
q

z

dz

dq
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From Lemmas 2.1 and 2.2, with t¯α¯α(q), we conclude that
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2z
dz

dα
¯ 3

¢

k="

A
k
4k(1®2α)Hk−", (2.7)



’   λ
n

97

where HBH(q) and

A
k
¯

("
$
)
k
(#
$
)
k
("
#
)
k

(1)$
k

. (2.8)

Next, by Lemmas 2.5 and 2.6, we find that
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Substituting (2.9) into (2.7) and simplifying, we obtain our first result.

T 2.7.
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3. Second identity associated with L(e−#
πon/$) and the proof of Theorem 1.2

From Lemma 2.3, we deduce that for any positive integer n,
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On the other hand, the definition of β in (1.12) shows that
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when q is given by (3.1) with n¯ 1. Comparing (3.1) and (3.2) and using the

monotonicity of
#
F
"
("
$
, #
$
; 1 ;x) for real 0!x! 1, we conclude that

β¯α(qn)

if β and α¯α(q) satisfy (1.12). Using this identification, and Lemma 2.2, we may

rewrite m, which is defined in (1.11), as

m(q)B
z(q)

z(qn)
. (3.3)

Note that since m(q) can be expressed in terms of α¯α(q) and βBα(qn), we will write

m(q)¯m(α, β) when necessary.

Now, differentiating (3.3) with respect to q, we obtain

q
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¯

z(q)

z(qn) 0
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q
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dq 1 ,
which, by Lemma 2.5, can be written as
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with m¯m(α, β). If we replace q by qn in (2.5), we find that

nL(qn)¯ 12
q

z(qn)

dz(qn)

dq
­nz#(qn) (1®4β(q)). (3.5)

Subtracting (2.5) from (3.5), and dividing by z(q) z(qn), we obtain

nL(qn)®L(q)

z(q) z(qn)
¯
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z(q) z(qn) 0
q

z(qn)

dz(qn)

dq
®

q

z(q)

dz(q)

dq 1
­(1®4β)

n

m
®(1®4α)m

¯ (1®4β)
n

m
®(1®4α)m®12

dm

dα
α(1®α). (3.6)

The expression dm}dα makes sense since β can be expressed implicitly in terms of α

by (1.12).

Now, for any positive real n, the function z(q) satisfies

z(e−#
π/o$n)¯onz(e−#

πon/$). (3.7)

This transformation formula follows from the transformation of f(®q) [1, Entry

27(iii), Chapter 16], namely,

e−π/("#t)f(®e−#
π/t)¯ote−πt/"#f(®e−#

πt), t `2+, (3.8)

and the relations

z(q)¯ 1­6 3
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®
q$k+#

1®q$k+#
1¯

f $(®q"/$)

f(®q)
­3q"/$

f $(®q$)

f(®q)
. (3.9)

The proof of the first equality and the second equality in (3.9) can be found in

[2, Chapter 33, (2.6)] and [1, p. 346, Entry 1(v)], respectively.

By setting q¯ e−#
π/o$n in (3.7) we find that

m(e−#π/o$n)¯on. (3.10)

Next, by (3.8) and (2.3), we find that

α(e−#π/o$n)¯ 1®α
n

and β(e−#π/o$n)¯α(e−#πon/$)¯α
n
. (3.11)

Thus, using (3.10), (3.7) and (3.11) in (3.6) (with q¯ e−#
π/o$n), we deduce that

nL(e−#
πon/$)®L(e−#
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n
)®on(1®4(1®α

n
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®12α
n
(1®α

n
)
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n
,α

n
)

¯ 4on(1®2α
n
)®12α

n
(1®α

n
)
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(1®α

n
,α

n
),

where we have used thwe fact that α(e−#πon/$)¯α
n
. Hence we obtain

nL(e−#
πon/$)®L(e−#

π/o$n)¯ 4z#
n 0n(1®2α

n
)®3onα

n
(1®α

n
)
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dα
(1®α

n
,α

n
)1 , (3.12)
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where

z
n
¯ z(e−#

πon/$). (3.13)

Next, we establish another relation satisfied by these functions.

Now, (3.7) holds for any real number n. Thus, differentiating with respect to n, we

find that

®
π

o3
zd (e−#

πon/$)­
1

2on
z(e−#

πon/$)¯
π

o3n$/#

zd (e−#
π/o$n), (3.14)

where

zd (q)B q
dz(q)

dq
.

By (2.5),

zd (q)¯ z(q)
L(q)®z#(q) (1®4α(q))

12
,

and hence

zd (e−#
πon/$)¯ z

n

L(e−#
πon/$)®z#

n
(1®4α

n
)

12
, (3.15)

where z
n

and α
n

are defined as in (3.13) and (1.3) respectively. Using (2.5), (3.7) and

(3.11), we deduce that

zd (e−#
π/o$n)¯ z(e−#

π/o$n)
L(e−#

π/o$n)®z#(e−#π/o$n) (1®4α(e−#π/o$n))

12

¯onz
n

L(e−#
π/o$n)®nz#

n
(4α

n
®3)

12
. (3.16)

Substituting (3.15) and (3.16) into (3.14) and simplifying, we conclude that

nL(e−#
πon/$)­L(e−#

π/o$n)­2nz#
n
¯

6o3n

π
. (3.17)

Adding (3.12) to (3.17), we arrive at a second expression for L(e−#
πon/$), namely,

L(e−#
πon/$)¯

3o3

πon
­01®4α

n
®

6

on
α
n
(1®α

n
)
dm

dα
(1®α

n
,α

n
)1 z#

n
. (3.18)

Now, by (2.6), we may rewrite (3.18) as

L(e−#
πon/$)¯

3o3

πon
­3

¢

k=!

01®4α
n
®

6

on
α
n
(1®α

n
)
dm

dα
(1®α

n
,α

n
)1A

k
Hk

n
, (3.19)

where A
k

and H
n

are given by (2.8) and (1.10) respectively. Combining (3.19) and

(2.10) we arrive at Theorem 1.2.

We conclude this section with an interesting identity which arises from our

computations.

C 3.1.

L(e−#
π/$)¯ 1®24 3

¢

k="

ke−#
πk/$

1®e−#
πk/$

¯
9

π
®

6π

12"/%(o3®1)Γ%($
%
)
, (3.20)
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where

Γ(x)¯&
¢

!

e−ssx−" ds.

Proof. Set n¯ 1}3 in (3.17). We find that

L(e−#
π/$)¯

18

π
®2z#

"/$
®3L(e−#

π)¯
18

π
®6z#

$
®3L(e−#

π), (3.21)

by (3.7). Now, it is well known that [7, p. 163]

L(e−#
π)¯

3

π
. (3.22)

Furthermore, from [4, Theorem 12], we find that

z
$
¯ 3

¢

m,n=−¢

e−#
π(m#

+mn+n
#
) ¯

oπ

12"/)oo3®1Γ#($
%
)
. (3.23)

Substituting (3.22) and (3.23) into (3.21), we complete our proof. *

There are very few known values of L(q). Previous methods used in proving those

values cannot be applied to establish our new identity (3.20).

4. λ
n

and a new class of series for 1}π

The new proof of Theorem 1.2 which we present here avoids the use of the

Legendre-type relation [7, p. 178], namely,

EK «­KE «®KK «¯
3o3

16
π, (4.1)

where E and K are given by (1.6) and (1.5) respectively, and

K «¯
#
F
"
("
$
, #
$
; 1 ; 1®α

n
)

and
E «¯

#
F
"
(®"

$
, #
$
; 1 ; 1®α

n
).

Relation (4.1) plays an important role in the Borweins’ derivation of Theorem 1.1 and

the advantage of avoiding the use of this relation is that it allows us to derive new

classes of series for 1}π even if analogues of (4.1) fail to exist. This is precisely the case,

as we will show in this section, when we attempt to find a new class of series for 1}π

using Ramanujan class invariant λ
n

defined in (1.13).

Motivated by (2.2) and (2.3), we define z(q) and α(q) by

z(q)¯ z(®q)¯ 3
¢

m,n=−¢

(®q)m#
+mn+n

# (4.2)

and

1

α(q)
¯®

1

27q 0
f(q)

f(q$)1
"#

­1. (4.3)

Note that

1

α(q)
¯®λ#

n
­1
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when q¯ e−πon/$. We set α
n
¯ α(e−πon/$). Note that for rqr! 1, Lemma 2.2 holds and

so, replacing q by ®q, we deduce that

z(q)¯
#
F
"
("
$
, #
$
; 1 ; α(q)) . (4.4)

Furthermore, analogues of Lemmas 2.5 and 2.6 hold, namely,

q
dα

dq
¯ α(1®α) z#, (4.5)

and

L¯ 12
q

z

dz

dq
­(1®4α) z#, (4.6)

where LBL(®q), zB z(q) and α¯ α(q). Thus, by following exactly the steps given

in Section 2, we deduce the following analogue of (2.10) :

L(e−πon/$)¯ 3
¢

k=!

(6(1®2α
n
)k­1®4α

n
)A

k
Hk

n
, (4.7)

where H
n
¯ 4α

n
(1®α

n
).

Next, define the analogue m(q) of m(q) (see (3.3)) by

m(q)¯
z(q)

z(qn)
. (4.8)

By (4.4), one can easily express m(q) as

m(q)¯m(α, β)¯ #
F
"
("
$
, #
$
; 1 ; α)

#
F
"
("
$
, #
$
; 1 ; β)

,

where β¯ α(qn). Thus, we may write m(q)¯m(α, β). At this point, in order to

continue, we need two transformation formulae analogous to that of (3.7) and (3.11).

L 4.1. The functions α(q) and z(q) satisfy the transformation formulae

α(e−π/o$n)¯ 1®α(e−πon/$), (4.9)

and

z(e−π/o$n)¯®onz(e−πon/$). (4.10)

Proof. Formula (4.9) follows immediately from (4.3) and the transformation

formula for f(q) [1, Entry 27(iv), Chapter 16], namely,

e−π/(#%t)f(e−π/t)¯ote−πt/#%f(e−πt), t `2+. (4.11)

Formula (4.10) follows from the transformation formula [1, Entry 27(ii),

Chapter 16]

}(®e−π/t)¯ 2e−πt/%otψ(e−#πt),

where

}(q)¯ 3
¢

k=−¢

qk
# and ψ(q)¯ 3

¢

k=!

qk(k+")/#,

and the identity [3, Entry 27, Chapter 25]

z(q)¯}(®q)}(®q$)®4qψ(q#)ψ(q'). *
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Now, following exactly the same steps as we have given in Section 3, together with

Lemma 4.1 and (2.5), we deduce the following two relations which are analogues of

(3.12) and (3.17) :

nL(e−πon/$)®L(e−π/o$n)¯ 4z#
n 0n(1®2α

n
)­3onα

n
(1®α

n
)
dm

dα
(1®α

n
, α

n
)1 , (4.12)

nL(e−πon/$)­L(e−π/o$n)­2nz#
n
¯

12o3n

π
, (4.13)

where z
n
¯ z(e−πon/$). Using (4.12), (3.17) and (4.7), we conclude that the following

theorem holds.

T 4.2 (new class of series for 1}π).

1

π
A3

n
¯ 3

¢

k=!

(a
n
­b

n
k)

("
#
)
k
("
$
)
k
(#
$
)
k

(k !)$
Hk

n
,

where

a
n
¯®

α
n
(1®α

n
)

on

dm

dα
(1®α

n
, α

n
),

b
n
¯ 1®2α

n
,

and
H

n
¯ 4α

n
(1®α

n
).

It is unlikely that Theorem 4.2 follows from the Borweins’ method, the main

reason being that the analogue of the cubic singular modulus here, namely, α
n
, is a

negative number for n" 1. This implies that the value 1®α
n
is greater than 1, causing

the series K «(α
n
)¯

#
F
"
("
$
, #
$
; 1 ; 1®α

n
) to diverge and hence, the analogue of the

Legendre-type identity (4.1) does not exist.

5. Proofs of (1.14)–(1.16)

The values b
n

and H
n

follow easily from Ramanujan’s table of λ
n

[14, p. 212] (see

[6] for the proofs of these values). We reproduce these values in Table 1.

Thus, in order to derive our new series, it suffices to determine the a
n
. In [11], we

discuss a way to compute a
n

given in Section 2 via ‘cubic ’ modular equations. A

similar method can be applied to give values of a
n
, using the representation in

Theorem 4.2. Unfortunately, the method given in [11] requires a huge amount of

computation. Thus, more efficient methods are needed to derive these a
n
. We now

take this opportunity to discuss some alternative methods for computing a
n
. These

methods will be illustrated in the proofs of (1.14), (1.15) and (1.16).

T 1.

n λ
n

9 3
17 4­o17
25 (2­o5)#

41 32­5o41
49 55­12o21
89 500­53o89
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Proof of (1.14). From [1, p. 460, Entry 3(i)] and (3.9) with q replaced by ®q, we

have

3L(q$)®L(q)¯ 2z(q)#. (5.1)

By setting n¯ 1 in (4.10), we find that

z(e−π/o$)¯ 0. (5.2)

Substituting q¯ e−π/o$ in (5.1) and using (5.2), we conclude that

3L(e−$π/o$)¯L(e−π/o$). (5.3)

Next, set n¯ 1 in (4.13) to deduce that

L(e−π/o$)¯
6o3

π
®z#

"
. (5.4)

Therefore, by (5.2) and (5.3). we deduce that

L(e−πo
$)¯

2o3

π
.

This is of course another new value for L(q). Finally, by (4.7), we conclude our

result. *

Proof of (1.15). Now, set

t
k
(q)¯

kL(qk)®L(q)

z(q) z(qk)

and for k3 2 (mod 3), let

x
k
(q)¯ (α(q) α(qk))"/$.

It can be shown that when q¯ e−π/o$n,

x
k
(q)¯ (α

n
(1®α

n
))"/$¯ (H

n
}4)"/$. (5.5)

Then from the theory of modular forms, there exists a relation between t
k
(q) and

x
k
(q). When k¯ 17, we find that

S '®2")[3"#[T®2"&[3"![37[TS®2"#3)[7[73[T[S #

®2"![3*[61[T[S $®2'3*[41[T[S %®2&[3$[947[TS &

­2")[3"#[139[T#­2"'[3"![1117[T#S­2"#[3"#[7[T#S $

­2"#[3""[11[47[T#S #­2([3&[7951[T#[S %®2")[3"#[5[71T$

®2"'[3"$[67[T$S®2"#[3"$[7#[T$S #®2"#[3'[1699[T$S $

­2")[3"([11[T%­2"'[3"&[41[T%S­2"#[3*[12107[T%S #

®2##[3"([T&®2"([3""[1187[T&S­2#![3"#[457[T'¯ 0 (5.6)

where S¯ t
"(

(q)®16 and T¯x
"(

(q)}9. Now, since λ
"(

¯ 4­o17, by (5.5),

x
"(

(q)¯ (α
"(

(1®α
"(

))"/$¯®1}4.
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Therefore, when q¯ e−π/o$
[
"(, T¯®1}36 and substituting this value of T into (5.6),

we conclude that S¯®26. From (4.12) and (4.10), we conclude that

a
"(

¯®
1

3 0
S­16

4o17
®(1®2α

"(
)1¯ *

')

o17.

Together with the values b
"(

¯o17}4 and H
"(

¯®1}16, we complete the proof of

(1.15). *

The method illustrated in the above proof works for n¯ 41 and 89. However,

modular equations of degrees 41 and 89 (of polynomial degrees 14 and 30) would

need to be generated respectively in order to compute the a
n
.

It is also possible to obtain the value of t
"(

(e−π/o$
[
"() using the identity

Z¯ 16­36X­32Y®36oXY®12oX(5Y®6oXY­5X­4), (5.7)

where Z¯ t
"(

(q), X¯x
"(

(q) and

Y¯ y
"(

(q)B ²(1®α(q)) (1®α(q"())´"/$.

Note that when q¯ e−π/o$
[
"(, X¯®1}4¯Y and substituting these values into (5.7),

we conclude that Z¯®10. Analogues of (5.7) exist when n¯ 41 and 89, but at

present, we have not determined these identities.

We now illustrate a method used to compute a
n

when n is a perfect square.

Proof of (1.16). It can be shown that

5L(q&)®L(q)

z(q) z(q&)
¯ 4(1­2(α(q)α(q&))"/$). (5.8)

For an elementary proof of this, see [12]. Now, when q¯®e−π/o$, z(®eπ/o$)¯ 0, by

(5.2). Hence,

5L(e−&π/o$)®L(e−π/o$)¯ 8
c(®e−π/o$)

c(®e−&
π/o$)

[α#/$

#&
[z#(e−&π/o$), (5.9)

where c(q) satisfies the relation

c$(®q)

z$(q)
¯ α(q).

The function c(q) has a product representation given by [5, (5.5)]

c(q)¯ 3q"/$
f $(®q$)

f(®q)
. (5.10)

Now, using (5.10) and (4.11), we find that

c(®e−π/o$)

c(®e−&
π/o$)

¯
1

o5
eπ/o$

f #(e−πo
$)

f #(e−&πo
$)

[eo
$
π/&

f(e−πo
$/&)

f(e−&
πo

$)
. (5.11)

Now, it is known that if S(q) is the Rogers–Ramanujan continued fraction

S(q)¯
q"/&

1
®

q

1
­

q#

1
®

q$

1
­… , rqr! 1,
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then

1

S(q)
­1®S(q)¯ q−"/&

f(q"/&)

f(q&)
, (5.12)

and

1

S &(q)
­11®S &(q)¯

f '(q)

q f '(q&)
. (5.13)

S(e−πo
$) was evaluated by first establishing [10] that

eo
$
π/& f(e−πo

$/&)

f(e−&
πo

$)
¯

5­o5

2
. (5.14)

Hence we find that

S(e−πo
$)¯

®3®o5­o30­6o5

4
. (5.15)

Substituting (5.15) into (5.13), we immediately deduce that

eπ/o$

f #(e−πo
$)

f #(e−&πo
$)

¯ (50o5­125)"/$. (5.16)

Substituting (5.14) and (5.16) into (5.11) and using the value α
#&

¯ "

#
® *

%!

o5, we

deduce that

5L(e−&π/o$)®L(e−π/o$)¯
8

o5
(50o5­125)"/$

5­o5

2 012®
9

40
o51#/$[z#(e−&π/o$)

¯ 3
¢

k=!

(®5­3o5)A
k
(® "

)!
)k, (5.17)

by (4.4) and Lemma 2.1. Using (4.7) and (5.4), we complete our proof of

(1.16). *

The proof of (1.18) is similar to that of (1.16).

We have shown here a few ways to obtain the value of a
n

rigorously. However,

these methods are difficult to apply for large integer n even if the corresponding a
n

is

relatively simple, and therefore more efficient algorithms are needed.
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