Ramanujan’s Elliptic Functions to
Alternative Bases and Approximations to

Heng Huat Chan

1 Introduction
Define (a)o := 1 and, for each positive integer m,
(@) = (@)(a+ 1)@ +2) - (a+m—1).
Recall that the classical Gaussian hypergeometric series o F} is defined by

- (a)m(b)mﬁ
m!’

2F1(a,b;c;z) = Z (C)m

m=0
The classical singular modulus «,., 7 > 0, is the unique real number between
0 and 1 satisfying the relation

|z| < 1.

o1 (5.5 51— ap)

B (3,3 Tra)

—F

In [4, Chapter 5], J.M. Borwein and P.B. Borwein introduce the new sin-
gular value function (of the second kind)

b E
)
where
T
K(r) = §2F1 (3,3 Lar)
and

B(r) = S2F (-3 5L,

T 99

and show, via the Legendre relation [4, p. 24, Theorem 1.6}, that [4, p. 153,

(5.1.5)]
a <1> _ Vo), (L1)

r r
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Using the transformation formula (1.1), together with various identities
associated with the Eisenstein series and the Jacobi theta functions, the
Borweins succeeded in relating a(r) with Ramanujan’s series for 1/, one
of which is [4, p. 182] given by

00 1 3
L3l () — R+ kR 200) a1 -0}, > 1

(1.2)
When r =3, a(3) = Y31 and a3 = L — %3 [4, p. 172], and (1.2) takes the
simple form

Besides the application to the derivation of rapidly convergent series for
1/, the Borweins also establish several sequences which converge rapidly
to 1/m using the properties of a(r). For example, they obtain the following
iteration:

Iteration 1.1. Let to = a(r), so = /a,
1—4/1-52

Spyl = ——— 2
m 1+\/1—s%,

Then ¢! converges quadratically to 7.

and  tpy1 = (14 8pp1)’tn — 2" /T80t

When r = 1, a(1) = 1 and a; = 3, Iteration 1.1 takes the following
form:

Iteration 1.2. Let tp =

M

_ 1
» 50 = 5

1-/1-52
S and tpy1 = (1 + 8,01)%t, — 2" s

Spt1 = ——— F—— 1.
B T " "
Then ¢! converges quadratically to 7.

In [9], Ramanujan introduces the theory of elliptic functions to alter-
native bases, where the corresponding singular modulus a; , is defined as
the real number between 0 and 1 satisfying the relation

o1 (5—s,5+s11—a,,)

2F1 (% -5, % +5;1;as,r)

:\/F7
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where s = %, %, and %. For a complete account of these alternative theories,
see [2]. In their attempts to prove all series for 1/7 given in [9], the Borweins
define the corresponding analogues of a(r), namely,

() = s ST (5 - 1) ,

T4K? 1+42s K,
where
K, .= ggFl (% — s,% + s; l;asyr>
and
B, = gm (—% —s, % + s 1;as,r> .
For s = ¢ and I, the Borweins supply the following respective analogues

of Iteration 1.2 [5]:

Iteration 1.3 (Cubic, s = %) Let tg = %, S0 ‘/5271,

1—(1—s3 ,)1/3

n—1

= — 2 __aqn—1 2
Sn =TT 2(1—s3_,)L/3’ and  t, = (142s,)7t, 13" ((1+2s,)"—1).

Then ¢! converges cubically to 7.

Iteration 1.4 (Quartic, s = %) Let tg = %, So = %,
Sp =

1+3/1-52_,

Then ¢, ! converges quadratically to 7.

and  t, = (14 35,)%tn_1 — 2"s,.

These iterations are consequences of the Borweins’ cubic and quartic
analogues of the classical Arithmetic-Geometric Mean, although their gen-
eralizations in the same spirit as that of Iteration 1.1 (which is a general-
ization of Iteration 1.2) can be given along the same line as illustrated in
[4, p. 169], using a,(r) for s = 1 and 1 respectively.

In [6], J.M. Borwein and F.G. Garvan provide an alternative approach
to the derivations of Iterations 1.3 and 1.4. First, recall that the Dedekind
eta-function 7(7) is defined by

n(r) := emim/12 H (1—€>™™) Imrt > 0.
n=1
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For each integer p > 1, define the three functions

_nP(7)
Bylr) = n(pr)’
. 0" (pr)
Cp(r) = o)

and

Ap(r) =q<l%> {g —g},

where 7 = i\/r/p and ¢ = exp(—2m\/r/p), and ;EZ = dloiij(q). Borwein
and Garvan construct an infinite famlly of functlons o, defined by

1 (1 8sr B
)=\ 7 oo “1)pB

and derive the following result:

Theorem 1.1. Let N,p > 1 be fized. Then

ap(N?r) = o (r)ymn p(r) + Vren p(r),

where . )

_p+1 ] qB—N¢VE (V)

N =73 c B
VP [ NE@@N) = gV E (V)
and
MmNy = Ap(r)
P AN

Furthermore,

Ap = > 1 (PP(¢”) = P(a)),
where

7

The function ey, is very complicated but when N = p, it simplifies to

give
VP (1

€pp(T) = ER myp,p(T)),
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so that

0y (°r) =ty (hmy (1) + YoP (1 (7). (1.9

Using (1.3) and various modular equations, Borwein and Garvan discovered
many new results analogous to Iterations 1.1-1.4. Their results for p = 3
and 2 coincide respectively, with the Borweins’ Iterations 1.3 and 1.4.

In this paper, we construct a new class of functions Ky, (n) and establish
two properties of these functions. The properties of these functions are then
used to establish the following iterations:

. 1
Iteration 1.5.' Let kg = 0 and s¢ = 7 Set
1—/1-§2
Sp=—t—
L+4/1-82

and
kn = (1 + 5)%kn_1 +27(1 — 5,)5p,.

Then k,,! tends to m quadratically.

Iteration 1.6. Let ky = 0 and sg =

and

1—s
kp = (14 8,) k1 +4%s,—2.
(14 55) 1+ 81+8n

Then k,! tends to m quartically.

1
Iteration 1.7. Let kg = 0 and sg = —. Set
0 0 /2
1—4/1-482
Sp = ————
1+34/1-52_,

IThe author wishes to thank J.M. Borwein for suggesting the use of the sequence
{sn} which simplifies considerably his original iteration.
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and
kpn=(143s.)kn 1 +3-2""'V2s L- s,
n — n/)hn—1 n 1+ 33n .
Then k! tends to 7 quadratically.
1
Iteration 1.8. Let ky =0 and sp = —=. Set
0 0 7
1—¢1-s3 |
Sp = —————
1+281—53
and
Ep=(1+25,)%kn 1 +8-3"2V/3s L= sy

Then k! tends to 7 cubically.

2 The Definition of Ky, (n) and its Properties

Suppose P(q) is a function satisfying the relation

NoA (6—2” ”/8) =y, (e_Qﬁ/m). (2.1)
Let B Iy
Ko, (n) = 1 _ 4\ﬁ o () (2.2)

T2 (6—277 n/s)

~ dv.
where ¥s(q) = q%.
By logarithmically differentiating (2.1) with respect to n, we deduce
that
T ~ 1 T o~
_TF ( —2r n/s) o ( —2r n/s) _ 7 ( —277/\/%),
N ¢ +2\/ﬁ s \° nyns o\

which, upon simplifying, yields

) o e
S

2
erw_\/EnW

“gy ()

()
9 @S (672“/\/%)
Vg (o)
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where the last equality follows from (2.1). This implies that

2 T(e7V) +2\/§@3(6_2ﬂ )

Vs g, (e-2r/var) @, (e 2V i 23

Next, by (2.3) and (2.1),

1
= —;prs (T)

This gives our first identity, namely,

Ko, (%) + K () = 0. (2.4)

Next, set
mnw, (0% (aV) = ¥s(q). (2.5)

Setting ¢ = e~2"V"/* and differentiating (2.5) with respect to r and sim-
plifying, we find that

\/%ﬁlN,ws (6_2” r/s) W, (6_2“ ’“/s)
i

Jrs
( ) (26)
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where
dmn,w,(q)

myw,(q) = q a1

Simplifying (2.6), we deduce that

i, (V) 4 Ny, (7277 5: (e 2V
S
v, (eﬁﬁm)

ws (6—27rN r/s) ’

or

m (6—277 r/s) + N% (6—27r\/N2r/s) — % (6—277 T/S) , (2.7)

my,w, s

by (2.5). Rewriting (2.7) in terms of Ky, and using (2.2), we deduce that
ﬁ,LN,‘I’s ( —27 r/s)
—= (e

my,w,
Ws2 (67271'\/N2r/s) \/E 1
-

+

Simplifying (2.8), we find that

. (N2r) - Q/S2 (623\/N27‘/s) ggziz (efznm)

+ K, (r)mi g, (e727V7F7)

= m?\rw (q) (WSQ (ej“m) 2215 (e*%\/m) + Ko, (7“)>.

(2.9)

We are now ready to prove Iterations 1.5-1.8. Our main idea is to
express myw, (q) in terms of ¥2(q) and ay, (¢), where ay,(q) is a certain
modular function associated with ¥4(q).
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3 Elliptic Functions in the Classical Base and a Proof
of Iteration 1.5

In this section, we first state the main results arising from the classical
theory of elliptic functions. Let

plg) = > "

k=—o00

It is known that [1, p. 102, Corollary] the function ¢?(g) satisfies the trans-
formation formula

i () = (7).

This implies that we may take s = 4 and ¥4(q) = ¢*(q) where s and ¥,(q)
are given as in (2.1). Now, let

aQWﬂ%@$f=“£xﬁﬁf: (31

where .
U@ =3 gD
n=0
and -
f=a) = [ -q".
n=1

Note that f(—q) = ¢~'/**5(r) when ¢ = €™ and that the last equality
of (3.1) follows from the famous Jacobi identity [1, p. 40, Entry 25(vii)]

©'(q) — ¢"(—q) = 16qv*(¢?)

and the product representations of ¢(q) and ¥(gq) [1, p. 36, Entry 22(i),
(ii)]. It is known that [1, p. 120, Entry 9(i)]

dOé2
¢ »2(q)

i = <p4(q)awz ({1 —ayu2(q)} (3.2)

Replacing ¢ by ¢" in (3.2), we deduce that

qw = Ny* (qN) Q2 (qN) {1-ap (qN)} : (3.3)
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From (3.2) and (3.3), we find that

() = N2 ) - g ()} dage(a)
N a2 (q) {1 — Qe (q)} day2 (gN) )

where my ,2(q) is given by (2.5) with ¥,(q) = ¢*(q).

Let N be a prime. From the second equality of (3.1) and Newman’s cri-
terion [8], we find that a2 (g) is a modular function invariant under I'g(4).
It follows immediately from the theory of modular forms that there is a rela-
tion between a2 (q) and ay2(¢"). This relation, say Fy(a,2(q), a2 ("))
= 0, is known as a modular equation of degree N associated with ay2(q).
Differentiating Fyy with respect to a,2(q), we deduce from (3.4) that
my »2(q) may be expressed in terms of a2(g) and a,2(¢") and that

(3.4)

dmNMz
dOé(pz (q) ’

dog2(g) dmi, g2

TAfLN7(p2 =q dq (35)

y = 804((])%72 ({1 —ap2(9)}
Q2 (q)

by (3.2). Hence we may rewrite (2.9) as
0 =1 (s () ()
x (2 (0){1 - a2 ()}
X %ﬁj (Chp2 (e*“\/F) , QL2 (efﬂm)) + K2 (1“)), (3.6)

where
_ dmy

N doy2(q)
We are now ready to prove Iteration 1.5. First, recall that when N = 2,
[1, p. 213, (24.11)]

!
My, p2

2 —2/T—a,(q)

My o2 = e (q) . (37)
Hence, ,
A 1 V1—ag(q) -1
my ,2 = . (38)
e 1 —a,2(q) ay2(q)

Substituting (3.7) and (3.8) into (3.6), we deduce that

2
1—4/1— (e*”\ﬁ“)

Q2 (e*”\ﬁ“)

v {\/F 1 — ays(e—mV7) <1 - \/m> +/cg,2(r)}.

K2 (4r) = 4 (3.9)
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This gives the most important relation leading to Iteration 1.5.
Next, recall that [1, p. 215, (24.21)]

o (1=VT—az@)
awz(q)_ (14_\/%) . (310)

From (3.10), we easily compute a2 (e —mVAry from a2 (e”™VT), which to-
gether with KCy,> (4r) obtained from (3.9), determines K2 (16r). Repeating
the process using (3.10) and (3.9) shows that K,2(4"r) can be explicitly
determined for any positive integer n.

We are now ready to state our generalization of Iteration 1.5:

Iteration 3.1. Define {s,} by sop = /a2 (e=7V7T) and

v S
JT

and the sequence {k,} by ko = Ky2(r) and
k‘n = ’sz (4”7‘)
= (14 82)kp—1 + 2"Vr(1 = sp)sp
Then k, tends to  quadratically.

Note that our sequences are obtained directly from (3.10) and (3.9). To
complete the proof of Iteration 3.1, it suffices to show that

lim &k, = lim K,2(n) = 1
T

n—o0 n—o0

quadratically. However, this follows from the fact that

™

1 8
0< = —Kp(t) = <— + 4\/5) eT™i 10 (6_277\/{) < 8te ™Vt
T
which implies that
1 n
0< = —k, <8:-2"/re 2"™VT,
m

Iteration 1.5 is Iteration 3.1 when r = 1. Note that when r =1,

Ky2(1) =0 (3.11)
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by (2.4). Furthermore, by using the transformation formula [1, p. 43, En-
try 27(iii)]
e—7r/(12‘r)f(_e—2ﬂ'/7') — \/7_'6_7TT/12f(—6_27rT), (312)

with 7 = 2 and the second equality of (3.1

~—

, we deduce that

(3.13)

N | =

ayz(e ™) =

This completes the proof of Iteration 1.5.

Theoretically, when p is a prime, a pt"-order iteration associated with
©%(q) may be obtained as long as we know the modular equation of order
p, namely the relation between a2(g) and a,2(g”), and the expression
my »2(q) in terms of a,2(g) and ay2(g?). In practice we find it difficult to
construct such iterations unless we are able to write a,2(g”) explicitly in
terms of a,2(q).

We end this section with a quartic iteration associated with ©?(q). Note
that although 4 is not a prime, the fact that o (¢*) can be expressed in
terms of a,z2(gq) allows us to construct such an iteration. The relations
which we need in order to construct a quartic iteration are [1, p. 215,
(24.22)]

a 2( 4) _ 1-— (]. — atpz(q))l/4 ! (3 14)
P = TR A= age(q) /2 ‘

and [1, p. 216, (24.23)]

m _ 4
YT I (= e (@)

Using (3.14) and (3.15) and following exactly the same steps illustrated
in our proof of Iteration 1.5, we deduce the following generalization of
Iteration 1.6:

Iteration 3.2. Let so = {/a,2(e~™V") and kg = K,2(r). Suppose that

1— ¢1—st |

(3.15)

n

and
1—st

n

1+s,

kn =k, = (]- + Sn)4kn71 + 4n\/F5n

Then k,, tends to % quartically.

Iteration 1.6 follows easily from Iteration 3.2 by setting r = 1 and using
(3.11) and (3.13).
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4 Ramanujan’s Quartic Theory of Elliptic Functions
and Iteration 1.7

The function that plays the key role in Ramanujan’s quartic theory of
elliptic functions [3] is
4 47,2\\1/2
Alg) = (#*(a) + 16¢9*(¢*)) "
This function is the quartic analogue of p?(q) defined in Section 3, and it
satisfies the transformation formula [3, (4.23)]

A (6_2”/‘/%) =+/nA (e_%m) )

This implies that we may take s = 2 and ¥,(q) = A(g) where s and Wy(q)
are given as in (2.1). In this theory, the function that plays the role of
a,2(q) is the function defined by

1 24(_
=1+ %-
a(q) 64¢/**(—¢?)

It turns out that the functions A(q) and a4(q) satisfy a relation similar to
that of (3.2), namely [3, (4.13)],

(4.1)

qd%(q) — A(oa(@){1 - aal)}. (4.2)

Using identity (4.2) and a similar argument outlined in Section 3, we deduce
that
dmN’A

daa(q)

my.a(q) = A(Qaa(@){l — aalq)} (4.3)

From (4.3), we may rewrite (2.9) as

Ka(N?r) = m?\,’A (aA (e_”‘/fr) , QLA (e_’T 2Nz’”))

X (2\/2_1“a,4(q){1 —aalg)}

< I (o (¢ 7Y s (6 ™)) +Ka0)- (00

It is known that when N =2 [3, (2.20)],

2

4
m =
>4 14+ 3y/1—aalq)

(4.5)
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and [3, (2.18)]

o (1-VT—au@ \

Using (4.5) and (4.6) and following exactly the steps illustrated in Section 3,
we deduce the following generalization of Iteration 1.7:

Iteration 4.1. Let so = y/a4(e~™V27) and ko = K.4(r). Suppose that

Spn =

1+34/1-52_,

kp = (14 3sp)kn_1 +3-2""'V2rs,

and )
1—s;

14 3s,

Then ki, tends to  quadratically.

Iteration 1.7 follows immediately from Iteration 4.1 by observing that
Ka(1)=0

by (2.4), and that

i) -}

which follows from (4.1) and (3.12) with 7 = /2.

5 Ramanujan’s Cubic Theory of Elliptic Functions and
Iteration 1.8

The two important functions in Ramanujan’s cubic theory of elliptic func-

tions are a(q) and a,(q) defined by [2],[7],

o0

2 2
o= Y g

m,n=—00

and [7, (2.7)]

1 )
vl T Ty -1
These functions satisfy the relation [7, (4.7)]
20e0) _ ¢2(g)an ()1 - (o)}, 65:2)

dq
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which is clearly an analogue of (3.2) and (4.2). Identity (5.2) then implies

that my,(g) may be expressed in terms of a,(q) and a,(¢") and that the
relation (2.9) may be written as

Ka(N?r) = mdy o (0 (e27V75) o (o 2mV/N773))
X (iﬁaa(q){l — aqlq)}

V3
< I (g (o VY sy (e V) ) K 0)
(5.3)
When N = 3, it is known that [2, Lemma 7.4]
M30 = 7 n 2\3/3_7(1((]) (5.4)

and

[ 1= Y1 = aulq) ’
aa(q3) - <1+2m> - (55)

Using (5.4), (5.5) and (5.3), and following the argument as in Section 3, we
deduce the following iteration:

Iteration 5.1. Let so = \/ aq(e 2"V"/?) and ko = K, (r). Suppose that

and
1—s3

Ep = (14 258,)%k_ .3n—2 n .
(1+25,)%, 1+8-3 \/3751+28n

Then k, tends to < cubically.

Once again, when r = 1, £, (1) =0 by (2.4) and
1
Qg (672”/\/5) = 5;

where the last equality follows from (5.1) and (3.12) with 7 = /3. Substi-
tuting these values into Iteration 5.1 yields Iteration 1.8.



212 Heng Huat Chan
6 Conclusion

Iterations 1.5-1.8 are some of the simplest iterations which we obtain using
our new class of functions Ky, (). They are clearly the analogues of the
Borweins’ Iterations 1.2-1.4. One common feature in our examples is that
the initial values ko are all equal to zero and that our sg’s are relatively
simple. This feature is not present in the Borweins-Garvan iterations.

Another feature of this method is that, unlike the Borwein-Garvan
method described in Section 1, our method allows us to derive p-th or-
der iterations even when p # s, where s is given as in (2.1) (see also the
remarks after the proof of Iteration 1.5). This may be difficult in the
Borwein-Garvan method since no simple expression is known for ey ,(r)
when N # p.

A final feature of this method is that, with appropriate functions ¥,(q)
and ay, (q), we could easily derive iterations from (2.9) in a uniform manner
as shown in the previous sections.

An interesting future project will be to study other functions satisfy-
ing (2.1), derive their corresponding a(q)’s, and construct new iterations
to 7.

Acknowledgements. The author wishes to thank B.C. Berndt, J.M.
Borwein and F.G. Garvan for their fruitful suggestions during the prepa-
ration of this article.
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