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NEW RAMANUJAN-KOLBERG TYPE PARTITION
IDENTITIES

Heng Huat Chan, Heekyoung Hahn, Richard P. Lewis,
and Siew Lian Tan

Abstract. In this article, we use functions studied by N. J. Fine and R. J. Evans
to construct analogues of modular equations first discovered by S. Ramanujan. We
then use these functions to construct new identities satisfied by

∑ ∞
n=0 p(ln+k)qn,

with odd prime l and 0 ≤ k ≤ (l − 1). Our new partition identities are inspired
by the work of O. Kolberg and Ramanujan.

1. Introduction

Let p(n) denote the number of unrestricted partitions of the non-negative
integer n. Let l and k be non-negative integers and set

Pl,k(q) :=
∞∑

n=0

p(ln + k)qn, |q| < 1.

In [13], S. Ramanujan stated and sketched the proofs of the identities

P5,4(q) = 5
∞∏

n=1

(1 − q5n)5

(1 − qn)6
(1.1)

and

P7,5(q) = 7
∞∏

n=1

(1 − q7n)3

(1 − qn)4
+ 49q

∞∏
n=1

(1 − q7n)7

(1 − qn)8
.(1.2)

Ramanujan then deduced from (1.1) and (1.2) that

p(5n + 4) ≡ 0 (mod 5), p(25n + 24) ≡ 0 (mod 25),

p(7n + 5) ≡ 0 (mod 7) and p(49n + 47) ≡ 0 (mod 49).
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Around 1939, H. S. Zuckerman discovered the analogue of (1.1) and (1.2) for
l = 13 and k = 6, namely,

P13,6(q) = 11
∞∏

n=1

(1 − q13n)
(1 − qn)2

+ 468q
∞∏

n=1

(1 − q13n)3

(1 − qn)4
+ 6422q2

∞∏
n=1

(1 − q13n)5

(1 − qn)6

(1.3)

+ 43940q3
∞∏

n=1

(1 − q13n)7

(1 − qn)8
+ 171366q4

∞∏
n=1

(1 − q13n)9

(1 − qn)10

+ 371293q5
∞∏

n=1

(1 − q13n)11

(1 − qn)12
+ 371293q6

∞∏
n=1

(1 − q13n)13

(1 − qn)14
.

The pairs (l, k) = (5,4), (7,5), and (13,6) in (1.1)–(1.3) satisfy the congruence

24k ≡ 1 (mod l).(1.4)

From now on, we will denote the integer 1 ≤ k ≤ (l − 1) satisfying (1.4) by δl.
When k �= δl, formulas for Pl,k are much more complicated. For example, for

l = 7 and k = 0, A. B. Ekin [5] discovered that

P7,0(q)W7,3 = W 7
7,3 − W 5

7,3W7,1 + 17W 3
7,3W

2
7,1 + 10W7,3W

3
7,1 + 2W−1

7,3 W 4
7,1,

(1.5)

where

(1.6) Wl,j = Wl,j(z) = q
6j2

l −j
∞∏

n=1

(1 − ql(n−1)+4j)(1 − qln−4j)
(1 − ql(n−1)+2j)(1 − qln−2j)

,

q = e2πiz, 1 ≤ j ≤ l − 1
2

,

and

(1.7) Pl,k = Pl,k(q) = q(l2+l−l3+24k−1)/(24l)
∞∏

n=1

(1 − qn)l+1

(1 − qln)l
Pl,k(q),

0 ≤ k ≤ (l − 1).

Besides (1.5), Ekin also discovered identities for P7,i for i = 1, 2, 3, 4 and 6.
Ekin’s identities are not surprising in view of O. Kolberg’s identity (see [9,
Lemma 4]). However, his identities are simpler than those obtained from Kol-
berg’s formula. It was from Ekin’s identities that R. P. Lewis [11] noticed that
the group Γ0(7) acts on {P7,i|0 ≤ k ≤ 6} giving the orbits {P7,0,P7,2,P7,6},
{P7,1,P7,3,P7,4} and {P7,5}. He proved that for every prime l > 3, the group
Γ0(l) acts on {Pl,k|0 ≤ k ≤ l− 1} and partitions this set into three orbits deter-
mined by the Jacobi symbol

(
24k−1

6l

)
. Note that there is always one orbit that

contains a single element, namely, the one with k = δl.
The evidence that {Pl,k} can be partitioned into these three sets as indicated

by Lewis can be found in Kolberg’s paper. For example, Kolberg proved that
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[9, eqs. (5.2),(5.3)]

P7,1P7,3P7,4 = 15h4
7 + 12 · 72h3

7 + 24 · 73h2
7 + 3 · 75h7 + 76(1.8)

and

P7,0P7,2P7,6 = 22h4
7 + 2 · 73h3

7 + 25 · 73h2
7 + 3 · 75h7 + 76,(1.9)

where

h7 := h7(q) =
1
q

∞∏
n=1

(
(1 − qn)
(1 − q7n)

)4

.

The identities (1.8) and (1.9) suggest that their left hand sides are the “norms” of
certain modular functions. If this were the case, then there should be identities
associated with the “trace” of such functions. A natural guess would be certain
expressions of P7,1 +P7,3 +P7,4 and P7,0 +P7,2 +P7,6 in terms of h7. This initial
guess turns out to be incorrect. The right functions to consider are functions of
the type Pl,iWl,j for some integers i and j. For example, we have

P7,0W7,3 + P7,2W7,2 + P7,6W7,1 = −h2
7 − 7h7 − 49.(1.10)

Note that if we interpret (1.10) as the “trace” of P7,0W7,3 then indeed (1.9) is
the “norm” since

W7,1W7,2W7,3 = 1.

The aim of this article is to establish and prove identities such as (1.10), as
well as identities considered in Kolberg’s paper.

2. Properties of the functions Wl,j(z)

The functions Wl,j(z) were studied by Fine [7] and they occur in the following
result of A.O.L. Atkin and P. Swinnerton-Dyer [3, Lemma 6]:

Theorem 2.1. Let l = 6λ ± 1 (not necessary prime). Then

(−1)λ η(z/l)
η(lz)

= 1 +
(l−1)/2∑

j=1

Wl,j(z),

where

η(τ) = q1/24
∞∏

n=1

(1 − qn), q = e2πiz.

The properties of Wl,j are best summarized as follows:

Theorem 2.2. [7], [8, Proposition 2.4.6] Let l > 3 be a prime and let k ∈ Z
with k �≡ 0 (mod l). Then

(i) Wl,k = Wl,−k = Wl,k+l,

(ii) Wl,k

((
a b
c d

)
z

)
= e12πik2ab/lWl,ak, for

(
a b
c d

)
∈ Γ0(l),

(iii) Wl,k(−1/(lz)) = 2 cos(2kπ/l) + O(q), q = e2πiz.
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Fine called the function

F (z) = Φ(Wl,1(z), · · · , Wl, l−1
2

(z))

cyclic if Φ is invariant under k �→ αk for every α prime to l. If Φ is a polynomial,
he called F (l, m)-isobaric whenever each term has “weight” ≡ m (mod l), pro-
vided that Wl,k is assigned “weight” k2. From Theorem 2.2 (ii), he concluded
that every cyclic function is invariant under Γ0

0(l), where

Γ0
0(l) =

{(
a b
c d

) ∣∣∣∣b ≡ c ≡ 0 (mod l)
}

,

and every cyclic, (l, 0)-isobaric polynomial is invariant under Γ0(l). A simple
example of an isobaric (l, 0)-polynomial is

l−1
2∏

j=1

Wl,j .

Instead of studying (cyclic) combinations of Wl,j as functions on Γ0
0(l), we

consider certain combinations of Wl,j as functions on Γ1(l). This is motivated
by the work of R.J. Evans [6].

If αk ∈ Z, then from Theorem 2.2,

Wαk

l,k

((
a b
c d

)
z

)
= e12πi(k2)αkb/lWαk

l,k (z),
(

a b
c d

)
∈ Γ1(l).

Hence, the following lemma is immediate.

Lemma 2.3. If
l−1
2∑

k=1

k2αk ≡ 0 (mod l),(2.1)

then
l−1
2∏

k=1

Wαk

l,k (z)

is a modular function on Γ1(l).

Condition (2.1) is precisely the one given in [4, p. 339, (0.56)]. It is known
that [12, p. 106, Theorem 4.2.5 (3)] the index [Γ0(l) : Γ1(l)] = l − 1. We choose
the coset representatives for Γ1(l) in Γ0(l) as

γk, 1 ≤ k ≤ l − 1,

where

γ :=
(

g b
c d

)
∈ Γ0(l),

with g a primitive root modulo l.
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By Theorem 2.2 (ii),
l−1
2∏

k=1

Wαk

l,k (γz) =

l−1
2∏

k=1

Wαk

l,gk(z).

The following theorem then follows.

Theorem 2.4. If αk satisfies (2.1), then
l−1
2∑

j=1

l−1
2∏

k=1

Wαk

l,gjk(z)

is a modular function on Γ0(l). Moreover, the function has no poles on the upper
half plane and at the cusp zero.

Theorem 2.4 is similar to [4, p. 339, Theorem 0.4]. The second statement of
Theorem 2.4 follows from Theorem 2.2 (iii).

For convenience, we will refer to functions satisfying the hypothesis of Theo-
rem 2.4 as Fine-Evans functions. We now apply Theorem 2.4 to construct new
identities associated with Fine-Evans functions. Recall that when l = 13, the
group Γ0(13) has genus 0 and every modular function on Γ0(13) can be expressed
as a rational function of

h13 :=
1
q

∞∏
n=1

(
(1 − qn)

(1 − q13n)

)2

.

In particular, if the only singularity of the function is i∞ then the function is
a polynomial of h13. It is clear that

∑6
j=1 W 13

13,j(z) satisfies the conditions of
Theorem 2.4 and hence by the above remark, it is a polynomial in h13, namely,
6∑

j=1

W 13
13,j(z) = h7

13 +13h6
13 +91h5

13 +377h4
13 +962h3

13 +1040h2
13−845h13−4083.

We next construct a slightly less obvious example. We know that 2 is a primitive
root modulo 13. Suppose in the equation (2.1), we set α1 = α5 = 1 and αj = 0
for j �= 1, 5 so that 12 + 52 ≡ 0 (mod 13). Then W13,5W13,1 is invariant under
Γ1(13). Now, W13,2·5W13,2 = W13,3W13,2 and W13,22·5W13,22 = W13,6W13,4 are
the distinct images under the map W13,k �→ W13,2j ·k, 1 ≤ j ≤ 6. Hence, we
conclude that

W13,5W13,1 + W13,3W13,2 + W13,6W13,4 = −1 − h13.(2.2)

This identity is due to Ramanujan [4, p. 373, (8.2)]. Infinite families of identities
of the type (2.2) can be constructed using the above method. In particular,
Ramanujan’s modular equations of degrees 5, 7, and 13 which involve Wl,j can
be proved in this manner since Γ0(5),Γ0(7) and Γ0(13) has genus 0.

We now consider Γ0(l) with genus > 0. We want to study the modular
functions on Γ0(l) with only singularity at i∞. In this case, the functions can no
longer be expressed using only η-quotients. However, we conjecture that these
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functions can be expressed as sums of Fine-Evans functions. This conjecture
can also be found in [8, Proposition 2.4.12] and [1, p. 418, third paragraph]. An
evidence of this conjecture is (2.2), which can be viewed as expressing h13 as a
polynomial of Fine-Evans functions.

In what follow, we describe a method of constructing Fine-Evans functions
for which every modular function on Γ0(11) is a polynomial of these functions.
Examples of such functions have already been given in [7], [8] and [3]. Our
method here, however, allows us to have a systematic way of constructing such
functions with specified order at i∞. We have no proof that this method will
always work for a general prime l. But given N , our search for such functions
can be performed in a finite number of steps.

We first observe that the order of the pole at i∞ of Wl,j is given by

vi∞(Wl,j) =

{
6j2/l − j if 1 ≤ j < l/4
6j2/l − 5j + l if l/4 ≤ j ≤ l−1

2 .

Let l = 11 and let C be the 5 × 5 matrix such that

Ci,j = vi∞(W11,2i−1j),

since 2 is a primitive root modulo 11. In order to construct a function

F (α1, α2, α3, α4, α5) =
5∑

j=1

5∏
k=1

Wαk

11,2jk,

with a specified vi∞(F ) = −N , say, we need to know the image of x =
(α1, · · · , α5) under C subject to the condition

12α1 + 22α2 + 32α3 + 42α4 + 52α5 − 11t = 0.

In other words, we consider the system




−5 2 10 −3 −4 0
2 −3 −4 10 −5 0
−3 10 −5 −4 2 0
10 −4 2 −5 −3 0
−4 −5 −3 2 10 0
1 4 9 16 25 −11







α1

α2

α3

α4

α5

t




=




11a
11b
11c
11d
11e
0




.(2.3)

Solving the system, we conclude that

a + b + c + d + e = 0,
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and

α1 =
1
25

a +
12
25

b +
13
25

c +
29
25

d +
1
5
k,

α2 =
16
25

a +
17
25

b +
33
25

c +
14
25

d +
1
5
k,

α3 =
21
25

a +
2
25

b − 2
25

c +
9
25

d +
1
5
k,

α4 =
6
25

a +
22
25

b +
3
25

c − 1
25

d +
1
5
k,

α5 = −14
25

a − 18
25

b − 7
25

c − 6
25

d +
1
5
k,

where k ∈ Z. Note that in order to have integral αj , 1 ≤ j ≤ 5, the integers
a, b, c, and d must satisfy

a + 2b + 3c + 4d ≡ 0 (mod 5).

Our hope is to fix a, b, c, d, e in such a way that only one of them takes the
value −N and the rest are > −N and it is clear that this is always possible for
N > 1. By setting (a, b, c, d, k) = (−2, 1, 0, 0, 8), (−3, 0, 1, 0, 13), (−4, 0, 0, 1, 15),
we obtain the functions

F (2, 1, 0, 2, 2) = q−2 + 2q−1 + 1 + 5q + · · · ,

F (3, 2, 0, 2, 4) = q−3 + 4q−2 + 9q−1 + 16 + 22q + · · · ,

F (4, 1, 0, 2, 5) = −q−4 − 5q−3 − 14q−2 − 31q−1 − 59 − 86q − · · · ,

respectively.
As an application, we consider the function P11,6. In the next section, we will

show that this function is on Γ0(11) with i∞ as its only pole. Assuming this for
the moment, we conclude, by eliminating the negative q-powers in the expansion
of P11,6 using the F ’s, that

P11,6 = −11F (4, 1, 0, 2, 5) + 110F (3, 2, 0, 2, 4) + 154F (2, 1, 0, 2, 2) + 990.(2.4)

In particular, we conclude that

p(11n + 6) ≡ 0 (mod 11),

another congruence due to Ramanujan. Similar identities (with different Fine-
Evans functions) for P11,6 are first independently given by Atkin and Hussein
[2] and Fine [7]. We have illustrated here that there are infinitely many different
expressions for P11,6 and these can be obtained by varying (a, b, c, d, k).

It is interesting to note here that there is no solution for the above problem
if exactly one of the numbers a, b, c, d and e is −1 and that the rest is strictly
greater than −1. This turns out to correspond to the fact that there are no
functions on Γ0(11), with exactly a pole of order 1 at i∞.
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3. The functions Pl,k and Wl,j

The main purpose of this section is to prove (1.10). It will be clear that
our method can be used to construct many identities such as (1.10). To prove
(1.10), the usual approach is to first establish the behavior of P7,k and W7,j

(this is already given in Theorem 2.2) under Γ0(7), verify that the expression on
the left hand side of (1.10) is invariant under Γ0(7) with pole only at i∞, and
conclude that it is a polynomial in h7 where

h7 =
1
q

∞∏
n=1

(
1 − qn

1 − q7n

)4

.

However, this method does not tell us how to construct identities such as (1.10).
Furthermore, it is not clear how one can obtain the modular behavior of P7,k

under Γ0(7).

Proof of (1.10). We check that

Wl,k

(
l

(
a b

l2c d

)
z

)
= Wl,k

(
a(lz) + lb

lc(lz) + d

)
= Wl,ak(lz).

It follows that for any positive integers α,
l−1
2∑

k=1

Wα
7l,k(lz)

is on Γ0(l2) for any fixed integer α. In particular, when l = 7,

W7,1(7z) + W7,2(7z) + W7,3(7z)

is a modular function on Γ0(49) with poles at i∞. Consider the function

G(z) :=
η(49z)
η(z)

(W7,1(7z) + W7,2(7z) + W7,3(7z)) .

This is a function on Γ0(49) with pole of order 2 at 0 and a pole of certain order
at i∞.

We now introduce the U(m)-operator defined on a formal power series∑∞
n=0 anqn by

∞∑
n=0

anqn

∣∣∣∣
U(m)

=
∞∑

n=0

amnqn.

It can be checked that( ∞∑
n=0

bnqmn
∞∑

n=0

anqn

)∣∣∣∣
U(m)

=
∞∑

n=0

bnqn
∞∑

n=0

amnqn.(3.1)

Since
∞∏

n=1

1
(1 − qn)

=
∞∑

n=0

p(n)qn,



NEW RAMANUJAN-KOLBERG TYPE PARTITION IDENTITIES 809

we find that

G(z) =
∞∏

n=1

(1 − q49n)
( ∞∏

n=1

(1 − q49n−21)(1 − q49n−28)
(1 − q49n−14)(1 − q49n−35)

∞∑
n=0

p(n − 1)qn

(3.2)

−
∞∏

n=1

(1 − q49n−42)(1 − q49n−7)
(1 − q49n−21)(1 − q49n−28)

∞∑
n=0

p(n − 5)qn

−
∞∏

n=1

(1 − q49n−14)(1 − q49n−35)
(1 − q49n−7)(1 − q49n−42)

∞∑
n=0

p(n)qn

)
.

Using the method illustrated in [10, p. 499-501] together with Theorem 2.2 (iii),

we deduce that G(z)
∣∣∣∣
U(7)

is a modular function on Γ0(7) with a pole of order 2

at the cusp 0. Therefore, the function

G(z)
∣∣∣∣
U(7)

· η8(τ)
η8(7τ)

is holomorphic everywhere except at i∞ and we conclude that it is a polynomial
in h7 given by the right hand side of (1.10). (Note that similar argument for
l = 11 allows us to conclude that P11,6 is a function on Γ0(11) with just pole at
i∞. This is assumed in the previous section). On the other hand, by applying
(3.1) to the right hand side of (3.2) and multiplying by η8(τ)

η8(7τ) , we obtain the left
hand side of (1.10) and we conclude our proof.

Remarks. We may rewrite the left hand side of (1.10) in terms of Fine-Evans
functions, namely,

P7,0W7,3 + P7,2W7,2 + P7,6W7,1 = F7(7, 0, 0) + 7F7(3, 2, 0) − 27,(3.3)

where

F (α1, α2, α3) =
3∑

j=1

3∏
k=1

Wαk

7,2jk.

In a similar way, we establish the following two identities:

P7,0W
2
7,1 + P7,2W

2
7,3 + P7,6W

2
7,2 = −3F7(7, 0, 0) + 7F7(3, 2, 0) + 39,(3.4)

and

P7,0W
4
7,2 + P7,2W

4
7,1 + P7,6W

4
7,3 = −13F7(7, 0, 0) − 7F7(3, 2, 0) − 69.(3.5)

This sets up the system of equations
W7,3 W7,2 W7,1

W 2
7,1 W 2

7,3 W 2
7,2

W 4
7,2 W 4

7,1 W 4
7,3





P7,0

P7,2

P7,6


 =


 1 7 −27

−3 7 39
−13 −7 −69





F (7, 0, 0)

F (3, 2, 0)
1


 .(3.6)
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Solving (3.6), we obtain expressions of P7,k, k = 0, 2 and 6 in terms of W7,j , say,

P7,k =
Nk(W7,1, W7,2, W7,3)
Dk(W7,1, W7,2, W7,3)

,

where Nk(X, Y, Z), Dk(X, Y, Z) ∈ Z[X, Y, Z]. These final expressions are then
simplified using the Gröbner basis package in Maple V and Ramanujan’s iden-
tities [4, Chapter 19, (18.8)]

W7,1W7,2W7,3 = 1 and W7,1W
2
7,2 + W 2

7,1 + W7,3 = 0.

For example, we find that

P7,0W7,3 = W 7
7,3 − 2W 5

7,1W7,3 − 10W 3
7,2W7,3 + 3W7,1W

3
7,3 − 14,

an expression similar to (1.5).
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