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In this paper, we use the explicit Shimura Reciprocity Law
to compute the cubic singular moduli α∗

n, which are used in
the constructions of new rapidly convergent series for 1/π.
We also complete a table of values for the class invariant λn

initiated by S. Ramanujan on page 212 of his Lost Notebook.

1. Introduction.

In his famous paper [26], S. Ramanujan offers several beautiful series rep-
resentations for 1/π, one of which is

4
π

=
∞∑

k=0

(6k + 1)
(

1
2

)3
k

(k!)34k
,(1.1)

where (a)0 = 1 and for each positive integer k,

(a)k = (a)(a + 1)(a + 2) . . . (a + k − 1).

Motivated by Ramanujan’s series, J.M. Borwein and P.B. Borwein [10] ob-
tained many general representations for 1/π. One generalization of (1.1)
takes the form

1
π

=
∞∑

k=0

{(
1
2

)
k

k!

}3

(an + bnk)(G−12
n )2k,(1.2)

where n is a positive integer (usually odd) and an, bn and Gn are certain
special values of modular forms. It turns out that these special values can
be expressed in terms of the singular modulus αn, which is defined to be the
unique positive number between 0 and 1 satisfying

2F1(1
2 , 1

2 ; 1; 1− αn)

2F1(1
2 , 1

2 ; 1; αn)
=
√

n, n ∈ Q,

where

2F1(a, b; c; z) :=
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, |z| < 1.
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In his Notebooks, S. Ramanujan recorded many values of αn, one of which
is

α3 =
2−

√
3

4
.

This value, when substituted into the Borweins’ formula (1.2) yields (1.1).1

The proofs for all the singular moduli recorded in Ramanujan’s Notebooks
can now be found in [9] and [6].

Recently, B.C. Berndt, S. Bhargava and F.G. Garvan [3] succeeded in de-
veloping theories of elliptic functions to alternative bases vaguely mentioned
by Ramanujan in [26]. As indicated in [3], Ramanujan’s elliptic functions to
alternative base 3 turns out to be the most interesting case of his theories.
For this particular base, an analogue of the singular modulus, which we shall
call “cubic singular modulus”, is defined as the unique positive number α∗n
between 0 and 1 such that

2F1(1
3 , 2

3 ; 1; 1− α∗n)

2F1(1
3 , 2

3 ; 1; α∗n)
=
√

n, n ∈ Q.

Although Ramanujan did not record any cubic singular moduli in his Note-
books or Lost Notebook, he must have computed some of them since these
values (see [10]) are essential in his derivations of the series [26]

27
4π

=
∞∑

k=0

(2 + 15k)
(1
2)k(1

3)k(2
3)k

(k!)3

(
2
27

)k

and

15
√

3
2π

=
∞∑

k=0

(4 + 33k)
(1
2)k(1

3)k(2
3)k

(k!)3

(
4

125

)k

.

The first discussion of the computations of the cubic singular moduli was
given by the Borweins [10]. They determined α∗n for n = 2, 3, 4, 5 and 6
from known values of Ramanujan-Weber class invariants G3n and g6n, and
deduced three new series for 1/π corresponding to n = 2, 3 and 6. Recently,
Chan and Liaw [16] succeeded in evaluating α∗n for n = 2, 5, 7, 11, and 23
using cubic Russell-type modular equations. From the values of α∗7 and
α∗11, they discovered that when 3n is an Euler convenient number, α∗n can
be determined using Kronecker’s Limit Formula. Using these new α∗n’s,
they derived many new series for 1/π. Their method, however, cannot be
extended to include the computations of α∗n when 3n is not convenient.

In Sections 2 and 3, we use an explicit version of the Shimura Reciprocity
Law to extend the list of α∗n. We show that when the class group of Q(

√
−3n)

1The determination of an from αn is very challenging. It involves modular equations
of degrees dividing n.
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takes the form Zt
2⊕Zk, with t ∈ N and k = 4, 6 and 8, α∗n can be determined

explicitly.
On page 212 of his Lost Notebook, Ramanujan defined a certain function

λn (see (3.1)) and recorded its values for n = 1, 9, 17, 25, 33, 41, 49, 73, 97,
and 121. He also indicated that he could compute λn when n = 57, 65, 81,
89, 169, 193, 217, 241, 265, 289, and 361 but did not supply any values for
these n’s. Using cubic Russell-type modular equations, Kronecker’s Limit
Formulas and other techniques, Berndt, Chan, S.-Y. Kang and L.-C. Zhang
[7] provided proofs of all these values except for n = 73, 97, 193, 217, and
241. In Section 4, we modify our method in Sections 2 and 3 and determine
rigorously these remaining values of λn.

2. Some properties of α∗
n.

Let

η(τ) := q1/24
∞∏

k=1

(1− qk), where q = e2πiτ with Im τ > 0,(2.1)

and

µn =
1

3
√

3

η
(√

−n/3
)

η
(√
−3n

)


6

, n ∈ Q.(2.2)

The relation between µn and the cubic singular moduli α∗n is given by [17]

1
α∗n

= 1 + µ2
n.(2.3)

Identity (2.3) shows that in order to determine α∗n, it suffices to compute
µ2

n. First, we need the following:

Theorem 2.1. Suppose that n is squarefree so that −12n is a fundamental
imaginary quadratic discriminant. Then µ2

n is a real unit contained in K1,
the Hilbert class field of K := Q(

√
−3n).

To prove Theorem 2.1, we need the following lemmas:

Lemma 2.2 ([23, p. 159, Corollary]). Let K be as defined in Theorem 2.1,
and let OK be the ring of integers of K. Let a = [τ1, τ2] be an OK-ideal and
define

∆(a) := τ−12
2 η24(τ),(2.4)

where τ = τ1/τ2 with Im τ > 0. Then the value ∆(a)/∆(OK) lies in K1,
where K1 is the Hilbert class field of K.
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Lemma 2.3 ([23, p. 166, Corollary]). Let N(a) denote the index (OK : a)
where a is an OK-ideal. Then the number

N(a)12
|∆(a)|2

|∆(OK)|2

is a unit.

Lemma 2.4. Recall that for τ ∈ C, with Im τ > 0, the j-function is defined
by

j(τ) = 1728
g3
2(τ)

g3
2(τ)− 27g2

3(τ)
,

with g2 and g3 given by

g2(τ) = 60
∞∑

m,n=−∞
(m,n) 6=(0,0)

(m + nτ)−4, and

g3(τ) = 140
∞∑

m,n=−∞
(m,n) 6=(0,0)

(m + nτ)−6.

If

g(τ) :=
1

3
√

3

(
η(τ)
η(3τ)

)6

,

then

j(τ) = 27
(1 + g2(τ))(9 + g2(τ))3

g6(τ)
.(2.5)

Lemma 2.4 follows from the fact that g2(τ) generates the function field
associated with the group Γ0(3), which implies the j(τ) is a rational function
of g2(τ). For a more elementary proof of this lemma using Ramanujan’s
identities, see [14] and [5].

Proof of Theorem 2.1. Let a = [3,
√
−3n] with n ≡ 3 (mod 4). By (2.4),

µ4
n = 3−12 η24(

√
−n/3)

η24(
√
−3n)

=
∆(a)

∆(OK)
= N(a)6

|∆(a)|
|∆(OK)|

.(2.6)

From the second equality of (2.6) and Lemma 2.2, we find that µ4
n belongs

to K1 and from the last equality of (2.6) and Lemma 2.3, we conclude that
µ2

n is a real unit. To complete the proof of Theorem 2.1, it remains to show
that µ2

n is in K1.
Now, when τ =

√
−n/3, g(τ) = µn and

µ8
n + 270µ4

n + 36 = ((j(
√
−n/3)/27− 28)µ4

n − 972)µ2
n,
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by Lemma 2.4. Since both µ4
n and j(

√
−n/3) are in K1, we can conclude

that µ2
n ∈ K1 unless (j(

√
−n/3)/27 − 28)µ4

n − 972 = 0. If this is the case,
we can deduce that j(

√
−n/3) satisfies the quadratic equation

X2 + 8208X − 5832000 = 0.

But the two roots of this equation has numerical values 657.8 and -8865.8.
This contradicts the fact that j(

√
−m) ≥ 1728 for any m ≥ 1. This com-

pletes the Proof of Theorem 2.1. �

A class invariant γ of a field K is defined to be a generator for the Hilbert
class field of K, i.e., K1 = K(γ). Theorem 2.1, Lemma 2.4 and the fact that
j(
√
−n/3) is a class invariant [20] imply that µ2

n is a class invariant of
Q(
√
−3n) when n ≡ 3 (mod 4). Hence, we conclude that α∗n is also a class

invariant of Q(
√
−3n) by Theorem 2.1 and (2.3).

We remark here that our result given in this section is not “optimal”. We
have shown that µ2

n is a class invariant whenever 3 - n and n squarefree.
It is possible to show further that smaller powers of the η-quotients given

in the definition of µ2
n, namely, 1

3
√

3

η(
√
−n/3)s

η(
√
−3n)s , with s|12 and s < 12, is a

class invariant if we impose further congruence conditions on n. This can
be established using Gee’s results [21, Section 5].

3. The explicit Shimura reciprocity law and new values of α∗
n.

We have seen in Section 2 that µ2
n is a class invariant whenever n satisfies

the hypothesis of Theorem 2.1. In this section, we identify µ2
n as a value of

a modular function, construct the explicit action of Gal(K1|K) on µ2
n and

as a result, evaluate µ2
n.

Let M+
2 (Z) denote the set of 2× 2 matrices with integer coefficients and

positive determinant. For each
(

a b
c d

)
∈ M+

2 (Z), define the function

η ◦
(

a b
c d

)
η

: τ 7→
η

(
aτ + b

cτ + d

)
η(τ)

.

It is easy to see that µn is the value of g0(τ)6/(3
√

3) at τ =
√
−3n where

g0(τ) :=
η ◦
(

1 0
0 3

)
η

(τ).

The function g0(τ) is an element of F72, the modular function field of level 72
defined over Q(ζ72). This means that it is meromorphic on the completed
upper half plane H ∪ Q ∪ {∞}, admits a Laurent series expansion in the
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variable q1/72 = e2πiτ/72 centered at q = 0 having coefficients in Q(ζ72) and
invariant with respect to the matrix group

Γ(72) := ker[SL2(Z) → SL2(Z/72Z)].

From (2.5), we find that the minimal polynomial for g12
0 over the modular

function field Q(j) is

X4 + 36 X3 + 270 X2 + (756− j)X + 36.

Over Q(j), the conjugates of g12
0 are g12

1 , g12
2 and g12

3 defined by

g1 := ζ−1
24

η ◦
(

1 1
0 3

)
η

, g2 :=
η ◦
(

1 2
0 3

)
η

, and g3 :=
√

3·
η ◦
(

3 0
0 1

)
η

.

If K is an imaginary quadratic field of discriminant D, class field theory
gives an isomorphism

Gal (K1/K) ' C(D)

between the Galois group for K ⊂ K1 and the form class group of dis-
criminant D. Among the primitive forms [a, b, c] having discriminant D =
b2 − 4ac, one obtains a complete set of representatives in C(D) by choosing
the reduced forms

| b |≤ a ≤ c and b ≥ 0 if either | b |= a or a = c.

The class of [a,−b, c] is the inverse of [a, b, c] in C(D), and the elements
having order 2 in C(D) correspond to ambiguous forms. These are the
reduced forms [a, b, c] for which a = b, a = c or b = 0 occurs.

Given h ∈ Fm, if h(θ) ∈ K1 where θ is the generator of OK over Z (we
assume here the algebraic closure of K is embedded in the complex plane
such that θ lies in the upper half plane H), there is an explicit formula for
computing the action of C(D) on h(θ) which is a consequence of the Shimura
Recirpocity Law. This is given as follows:

Lemma 3.1. Let K be an imaginary quadratic number field of discriminant
D and let h ∈ Fm be such that h(

√
D
2 ) ∈ K1. Given a primitive quadratic

form [a, b, c] of discriminant D, let M = M[a,b,c] ∈ GL2(Z/mZ) be the matrix
that satisfies the congruences

M ≡



(
a b

2

0 1

)
(mod pr) if p - a,(

− b
2 −c

1 0

)
(mod pr) if p | a and p - c,(

− b
2 − a − b

2 − c

1 −1

)
(mod pr) if p | a and p | c.
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at all prime power factors pr | m. The Galois action of the class of [a,−b, c]
in C(D) with respect to the Artin map is given by(

h

(√
D

2

))[a,−b,c]

= hM

(
−b +

√
D

2a

)
,

where hM denote the image of h under the action of M .

For a proof of Lemma 3.1 and the description of the action of M on h,
see [21].

In view of Lemma 3.1, we first need to discuss the action of M ∈
GL2(Z/mZ) on functions h ∈ Fm. The action of such an M depends only on
Mprp for all prime factors p | m where MN ∈ GL2(Z/NZ) is the reduction
modulo N of M and rp is the largest power of p such that prp divides m.

Now every MN with determinant x decomposes as

MN =
(

1 0
0 x

)
N

(
a b
c d

)
N

for some
(

a b
c d

)
N

∈ SL2(Z/NZ). Since SL2(Z/NZ) is generated by SN

and TN where S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
, it suffices to find the action

of
(

1 0
0 x

)
prp

, Sprp and Tprp on h for all p | m.

For
(

1 0
0 x

)
prp

, the action on Fm is given by lifting the automorphism of

Q(ζm) determined by

ζprp 7→ ζx
prp and ζqrq 7→ ζqrq

for all prime factors q|m such that q 6= p.
In order that the actions of the matrices at different primes commute with

each other, we have to lift Sprp and Tprp to matrices in SL2(Z/mZ) such
that they reduce to the identity matrix in SL2(Z/qrqZ) for all q 6= p. In our
case for m = 72, the prime powers are 8 and 9 and we have

S8 7→
(
−8 9
−9 −8

)
72

, T8 7→
(

1 9
0 1

)
72

,

S9 7→
(

9 −8
8 9

)
72

, T9 7→
(

1 −8
0 1

)
72

.

When h ∈ Fm is an η-quotient, we can use the transformation rule

η ◦ Sm(τ) =
√
−iτη(τ) and η ◦ Tm(τ) = ζ24η(τ)

to determine the action of any Mm ∈ SL2(Z/mZ). In particular, we have

(g0, g1, g2, g3) ◦ S72 = (g3, ζ
10
24g2, ζ

14
24g1, g0),
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and
(g0, g1, g2, g3) ◦ T72 = (g1, ζ

−2
24 g2, g0, ζ

2
24g3).

Consequently, we derive the following actions:

g12
0 g12

1 g12
2 g12

3(
1 0
0 x

)
8

g12
0 g12

1 g12
2 g12

3

S8 g12
0 g12

1 g12
2 g12

3

T8 g12
0 g12

1 g12
2 g12

3(
1 0
0 x

)
9

, 3|(x− 1) g12
0 g12

1 g12
2 g12

3

(
1 0
0 x

)
9

, 3|(x− 2) g12
0 g12

2 g12
1 g12

3

S9 g12
3 g12

2 g12
1 g12

0

T9 g12
1 g12

2 g12
0 g12

3

Using this, together with Lemma 3.1, we have:

Theorem 3.2. The action of a reduced primitive quadratic form [a, b, c]
with discriminant D in C(D) on g0(

√
D
2 )12 is given by

g0

(√
D

2

)12


[a,−b,c]

=


g0(−b+

√
D

2a )12 if b ≡ 0, a 6≡ 0 (mod 3),
g1(−b+

√
D

2a )12 if ab ≡ −1 (mod 3),
g2(−b+

√
D

2a )12 if ab ≡ 1 (mod 3),
g3(−b+

√
D

2a )12 if a ≡ 0 (mod 3).

Proof. The above result follows from the observation that the action of M8

on g12
0 is trivial. Hence, it suffices to consider the action of M9 on g12

0 . When
3 - a,

M9 =
(

a b−1
2

0 1

)
≡
(

a 0
0 1

)(
1 b−1

2a
0 1

)
≡ S9

(
1 0
0 a

)
S9T

b−1
2a

9 .

When 3 | a, then 3 - c, so

M9 =
(−b−1

2 −c
1 0

)
≡
(

c −b−1
2

0 1

)
S9 ≡

(
c 0
0 1

)(
1 −b−1

2c
0 1

)
S9

≡ S9

(
1 0
0 c

)
S9T

−b−1
2c

9 S9.
�
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Theorem 3.2 should be viewed as a cubic analogue of the results of N.
Yui and D. Zagier [28, Proposition, Section 2] and it indicates that all the
conjugates of µ2

n can be computed numerically once we determine the class
group of Q(

√
−3n), n ≡ 3 (mod 4). Using these numerical values, we could

then determine the minimal polynomial satisfied by µ2
n. If the degree of the

minimal polynomial is at most 4, we could solve the minimal polynomial
and determine µ2

n explicitly. In order to calculate µ2
n for which the class

number of Q(
√
−3n) is greater than 4, we need the following lemma, which

essentially tells us the action of the ambiguous forms (see the remarks before
Lemma 3.1 for the definition of ambiguous forms) on µ2

n.

Lemma 3.3. Let n ≡ 3 (mod 4) and K = Q(
√
−3n), where n is squarefree.

Then
(µ2

n)[2,2, 3n+1
2

] = −λ2
n,

where

λn =
1

3
√

3

η(1+
√
−n/3

2 )

η(1+
√
−3n

2 )


6

.(3.1)

If n = p1p2 . . . pk then

(µ2
n)

[p1p2...pj ,0, 3n
p1p2...pj

]
= µ2

n/(p1p2...pj)2
,

where j ≤ k.

Proof. We apply Theorem 3.2 with ab ≡ 1 (mod 3) and b ≡ 0 (mod 3),
respectively and note that

λ2
n =− 1

27
g12
1

(
1 +

√
−3n

2

)
and

µ2
n/(p1p2...pj)2

=
1
27

g12
0

(√
− 3n

(p1p2 . . . pj)2

)
.

�

We can now explicitly determined µ2
n by first collecting in a symmetric

way the products of the real conjugates of µ2
n.

For example, when n = 23, C(−276) ' Z2⊕Z4, generated by a = [2, 2, 35]
and b = [5, 2, 14]. Now define

P23 := (µ23λ23)2 + (µ23λ23)−2 and Q23 := (µ23/λ23)2 + (µ23/λ23)−2.

These numbers are fixed by the Galois action of a2 and b and since P23 and
Q23 are algebraic integers, one concludes that P23 +P a

23, P23P
a
23, Q23 +Qa

23,
and Q23Q

a
23 are integers. These integers can be found by approximating
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the numerical values of the g12
i at the corresponding arguments given by

Theorem 3.2. Hence, we obtain

P23 + P a
23 = 296143772,

P23P
a
23 = −389054012,

Q23 + Qa
23 = 5980,

and

Q23Q
a
23 = −17852.

Solving the quadratic polynomials satisfied by P23 and Q23 and simplifying,
we deduce that

µ2
23 = (5

√
3 + 24)1/2(13

√
23 + 36

√
3)1/2

(√
84 + 48

√
3 +

√
83 + 48

√
3
)3

.

Substituting the value µ2
23 into (2.3), we easily determine α∗23, which is

crucial in the derivation of the following series.

1
π

=
∞∑

m=0

(a23 + b23m)
(1
2)m(1

3)m(2
3)m

(m!)3
Hm

23,

z23 =
1
23

(√
−83 + 48

√
3(444 + 252

√
3)− 56 + 54

√
3
)

,

a23 = − 1
6
√

3

(
z23 + (8α∗23 − 4)

√
23
)

,

b23 =
2
√

23√
3

µ2
23 − 1

µ2
23 + 1

, and

H23 =
1

24233

(
6
√
−83 + 48

√
3 + 9

√
3
√
−83 + 48

√
3− 2− 3

√
3
)3

.

For methods of deriving series of the above type, and the relation between
µ2

n and series for 1/π, see [17] and [18].

Remarks.
(a) The method illustrated above for the case n = 23 works for any n such

that C(−12n) is of the type Z2 ⊕ Z2s, where s = 1, 2, 3, or 4.
(b) If C(−12n) is of the type Zt

2 ⊕ Z2s with s = 1, 2, 3 or 4 and t ∈ N, we
need to construct more numbers analogous to Pn and Qn. Examples
of such constructions can be found in [15] and Section 4.

(c) One can modify the method in [15] to evaluate the corresponding µ2
n

whenever the class group is of the form Zt
2 ⊕ Z2s, where s = 2, 3,

or 4. The method used there avoids the use of the explicit Shimura
Reciprocity Law but it cannot be extended to compute µ2

n when the
associated class groups are different from those mentioned above.
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(d) Gee and M. Honsbeek [22] have recently devised a method of comput-
ing class invariants without solving their minimal polynomials. Their
method involves determining the Lagrange resolvents of these minimal
polynomials by determining the conjugates of the corresponding class
invariants explicitly.

4. The class invariant λ2
n and the missing entries in the Lost

Notebook.

We first note that

λ2
n = − 1

27
g12
2

(
−1 +

√
−3n

2

)
.

To compute λn, it suffices to determine the action of the elements in the
corresponding class groups. This is given by the following analogue of The-
orem 3.2:

Theorem 4.1. The action of a reduced primitive quadratic form [a, b, c]

with discriminant D in C(D) on g2

(
−1+

√
D

2

)12
is given by

g2

(
−1 +

√
D

2

)12


[a,−b,c]

=


g0(−b+

√
D

2a )12 if b ≡ 0, a 6≡ 0 (mod 3),
g1(−b+

√
D

2a )12 if ab ≡ −1 (mod 3),
g2(−b+

√
D

2a )12 if ab ≡ 1 (mod 3),
g3(−b+

√
D

2a )12 if a ≡ 0 (mod 3).

To facilitate the computations of λn we need the analogue of Lemma 3.3.

Lemma 4.2. Let n ≡ 1 mod 4 and K = Q(
√
−3n), where n is squarefree.

If n = p1p2 . . . pk then

(λ2
n)

»
p1p2...pj ,p1p2...pj ,

3n+(p1p2...pj)2

4p1p2...pj

–
= λ2

n/(p1p2...pj)2
,

where j ≤ k.

Lemma 4.2 indicates that instead of calculating the conjugates of λ2
n di-

rectly, it suffices to calculate the conjugates of symmetric combinations of
all the real conjugates of λ2

n.
We may now proceed to complete the table of λn initiated by Ramanujan

on page 212 of his Lost Notebook. For p = 73, 97, and 241, all of which are
primes, set

Pp = λ2
p +

1
λ2

p

.(4.1)

Since the class groups corresponding to these p’s are of the form Z4, we
conclude that Pp each satisfies a quadratic polynomial. We now derive the
polynomial satisfied by P73.
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Now the class group of Q(
√
−219) is generated by the form [5, 1, 11]. By

Theorem 4.1, we easily deduce that

P73 + P
[5,1,11]
73 = 199044,

and

P73P
[5,1,11]
73 = 287491,

where P
[5,1,11]
73 denotes the image of P73 under the action of [5, 1, 11]. Hence,

P73 satisfies the quadratic polynomial

x2 − 199044x + 287491 = 0.

Solving and simplifying, we deduce that

λ73 =

√11 +
√

73
8

+

√
3 +

√
73

8

6

.

The cases for n = 97 and 241 are similar.
We now turn to the case n = 217. Here 217 is divisible by two primes,

namely, 7 and 31. In this case we consider two numbers Q217 and R217

defined by

Q217 = λ2
217λ

2
31/7 +

1
λ2

217λ
2
31/7

and

R217 =
λ2

217

λ2
31/7

+
λ2

31/7

λ2
217

.

Note that the class group of Q(
√
−651) is generated by a := [5, 3, 33] and

b := [3, 3, 55]. The order of a is 4 and the group generated by a2 and b fixes
Q217 and R217. Hence it suffices to determine the action of a on Q217 and
R217, which can be easily done by Theorem 4.1. The value of λ217 which
results from this consideration is a product of two units, given by

λ217 =

√1901 + 129
√

217
8

+

√
1893 + 129

√
217

8

3/2

·

√1597 + 108
√

217
4

+

√
1593 + 108

√
217

4

3/2

.

Finally, consider the case n = 193. This is the case which we cannot
evaluate using the previous method given in [15]. Here the class group of
Q(
√
−579) is generated by a := [5, 1, 29] and it is of order 8. We consider the
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expression P193 where Pp is given by (4.1). To determine P193 we compute
the image of P193 under a, a2, and a3. Our computations show that if

α := P193,

β := P a
193 = − 1

27
g12
2

(
1 +

√
−579

10

)
− 27g−12

2

(
1 +

√
−579

10

)
γ := P a2

193 = − 1
27

g12
0

(
3 +

√
−579

14

)
− 27g−12

0

(
3 +

√
−579

14

)
and

δ := P a3

193 = − 1
27

g12
0

(
−9 +

√
−579

22

)
− 27g−12

0

(
−9 +

√
−579

22

)
,

then

α + β + γ + δ = 3251132424,

αβ + αγ + αδ + βγ + βδ + γδ = 82707128352,

αβγ + αβδ + βγδ + αγδ = 9465475096,

and

αβγδ = 176664526832.

Solving the quartic polynomial satisfied by P193 and simplifying, we de-
duce that

λ
1/3
193 +

1

λ
1/3
193

=
1
4

(
39 + 3

√
193 +

√
2690 + 194

√
193
)

.

It was not clear to us what motivated Ramanujan to construct the table
of values for λn. Perhaps he intended to set up a table for λn similar to that
for the Ramanujan-Weber class invariants Gn and g2n (see [26]). Recently,
Chan, Liaw and Tan offered another reason for the existence of Ramanujan’s
table. They succeeded in deriving a new class of series for 1/π associated
with λn. Two of such series are

4
π
√

3
=

∞∑
k=0

(5k + 1)

(
1
3

)
k

(
2
3

)
k

(
1
2

)
k

(k!)3

(
− 9

16

)k

,

and

12
√

3
π

=
∞∑

k=0

(51k + 7)

(
1
3

)
k

(
2
3

)
k

(
1
2

)
k

(k!)3

(
− 1

16

)k

.

These simple series came as a surprise as it was thought that all the possible
simple series should have been exhausted after the work of Ramanujan, the
Chudnovskys [19] and the Borweins.
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