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Abstract

On page 209 of his lost notebook, Ramanujan records an unusual product for-
mula, reminiscent of a product of theta functions. The formula involves hyper-
geometric functions and has a connection with elliptic functions. In this paper, we
prove the formula, offer some generalizations, and indicate some further connections
with Ramanujan’s work.

1. Introduction

At the top of page 209 in the Narosa edition of his lost notebook [5], Ramanujan
recorded the enigmatic formula,{ ∞∏

n=0

(
1− (−1)nq(2n+1)/2

1 + (−1)nq(2n+1)/2

)2n+1
}log q{ ∞∏

n=1

(
1 + (−1)niq′n

1− (−1)niq′n

)n
}2πi

= exp

(
π2

4
−

k3F2
(
1, 1, 1; 32 ,

3
2 ; k

2
)

2F1
(
1
2 ,

1
2 ; 1; k

2
)

)
, (1·1)

where

q = exp(−πK ′/K), q′ = exp(−πK/K ′) and 0 < k < 1. (1·2)

Because of poor photocopying, (1·1) is very difficult to read in [5]. If the powers
2n+1 and n on the two pairs of large parentheses were absent, the products could
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be expressed in terms of theta functions. Ramanujan did not use the notation 3F2
and 2F1 for hypergeometric functions, but instead only recorded the first three terms
of each series. Also, Ramanujan did not divulge the meaning of the notations K and
K ′. However, from considerable work in both the ordinary notebooks [4] and the lost
notebook [5], we can easily deduce that K denotes the complete elliptic integral of
the first kind defined by

K � K(k)�
∫ π/2

0

dϕ√
1− k2 sin2 ϕ

,

where k, 0 < k < 1, denotes the modulus. Furthermore, K ′ = K(k′), where k′ �√
1− k2 is the complementary modulus.
There are no other formulas like (1·1) in Ramanujan’s work, and apparently there

are none like it in the literature either. The purpose of this paper is to prove (1·1). As
will be seen in our proof, the unique character of (1·1) derives from a single, almost
miraculous, connection with the theory of elliptic functions given in the identity

∞∑
n=0

1
(2n+1)2 cosh{(2n+1)α/2} =

k

2z 3F2
(
1, 1, 1; 32 ,

3
2 ; k

2
)
, (1·3)

where α=πK ′/K and z = 2F1( 12 ,
1
2 ; 1; k

2). The identity (1·3) is found in entry 6
of chapter 18 in Ramanujan’s second notebook [4], [1, p. 153]. Like many of
Ramanujan’s discoveries, (1·3) is not fully understood. Is this connection between
hypergeometric series and elliptic functions a singular accident, or are there deeper,
still to be recognized connections? In his notebooks [4, p. 280], Ramanujan also
attempted to find a formula similar to (1·3), but with (2n+ 1)2 replaced by (2n+ 1)4.
In fact, Ramanujan struck out his imprecisely stated formula by putting two lines
through it. See [2, pp. 397–403] for Berndt’s failed attempt to find a correct version.
In Section 2, we first establish in Theorem 2·1 an equivalent formulation of (1·1) as

an identity amongst infinite series of hyperbolic trigonometric functions. Secondly,
we prove this identity.
In Section 3, we briefly indicate generalizations of (1·1) and Theorem 2·1 and offer

some related hyperbolic series of Ramanujan.

2. An equivalent formulation of (1·1) in terms of hyperbolic series

Theorem 2·1. Let α and β be any complex numbers with nonzero real parts and with
αβ =π2. Then (1·1) is equivalent to the identity

α
∞∑

n=0

sinh{(2n+1)α/2}
(2n+1) cosh2{(2n+1)α/2}

+π
∞∑

n=0

(−1)n
(2n+1) cosh2{(2n + 1)β/2}

=
π2

4
− 2

∞∑
n=0

1
(2n + 1)2 cosh{(2n+1)α/2} . (2·1)

Proof. We assume that α and β are positive real numbers. The general result will
then follow by analytic continuation. Taking logarithms on both sides of (1·1), we
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find that

log


{ ∞∏

n=0

(
1− (−1)nq(2n+1)/2

1 + (−1)nq(2n+1)/2

)2n+1
}log q


 + log


{ ∞∏

n=1

(
1+ (−1)niq′n

1− (−1)niq′n

)n
}2πi




=
π2

4
−

k3F2
(
1, 1, 1; 32 ,

3
2 ; k

2
)

2F1
(
1
2 ,

1
2 ; 1; k

2
) . (2·2)

(Here and in the following step, we have ignored branches of the logarithm. The
justification lies in our eventual proof of (2·1).) For brevity, let L and R denote,
respectively, the left-hand and right-hand sides of (2·2). Then

L = log q

( ∞∑
n=0

(2n+1){ log
(
1− (−1)nq(2n+1)/2

)
− log

(
1+ (−1)nq(2n+1)/2

)
}
)

+2πi

( ∞∑
n=1

n{log(1+ (−1)niq′n)− log(1− (−1)niq′n)}
)

� log q(S1−S2) + 2πi(S3−S4). (2·3)

Recall that q and q′ are defined in (1·2). Set α=πK ′/K and β =πK/K ′, so that
αβ = π2. We now proceed to show that S1, . . . , S4 can be expressed as sums of
hyperbolic functions.
Using the Taylor series of log(1+ z) about z = 0 and recalling the definition of β,

we find that

S3 = −
∞∑

n=1

∞∑
m=1

n
(−1)m+mnime−βmn

m

= −
∞∑

m=1

(−i)m

m

∞∑
n=1

n{(−e−β)m}n

= −
∞∑

m=1

(ie−β)m

m(1− (−e−β)m)2
. (2·4)

By a similar calculation,

S4 = −
∞∑

m=1

(−ie−β)m

m(1− (−e−β)m)2
. (2·5)

Combining (2·4) and (2·5), we find that

S3−S4 =
∞∑

m=1

−(ie−β)m + (− ie−β)m

m(1− (−e−β)m)2

= −2i
∞∑

m=0

(−1)me−(2m+1)β

(2m+1)(1+ e−(2m+1)β)2

= − i

2

∞∑
m=0

(−1)m
(2m+1) cosh2{(2m+1)β/2}

. (2·6)

Next, again using the Taylor series of log(1+ z) about z = 0 and recalling the
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definition of α, we find that

S1 = −
∞∑

n=0

∞∑
m=1

(2n+1)
(−1)mne−α(2n+1)m/2

m

= −
∞∑

m=1

1
m

( ∞∑
n=0

(2n
(
−1)mne−α(2n+1)m/2 + (−1)mne−α(2n+1)m/2

))

= −
∞∑

m=1

1
m

(
2(−1)me−3αm/2

(1− (−e−α)m)2
+

e−αm/2

1− (−e−α)m

)

= −
∞∑

m=1

(−1)me−3αm/2 + e−αm/2

m(1− (−e−α)m)2
. (2·7)

By an analogous argument,

S2 = −
∞∑

m=1

e−3αm/2 + (−1)me−αm/2

m(1− (−e−α)m)2
. (2·8)

Thus, combining (2·7) and (2·8), we deduce that

S1−S2 =
∞∑

m=1

−(−1)me−3αm/2− e−αm/2 + e−3αm/2 + (−1)me−αm/2

m(1− (−e−α)m)2

= 2
∞∑

m=0

e−3(2m+1)α/2− e−(2m+1)α/2

(2m+1)(1+ e−(2m+1)α)2

= 2
∞∑

m=0

e−(2m+1)α/2− e(2m+1)α/2

(2m+1)(e(2m+1)α/2 + e−(2m+1)α/2)2

= −
∞∑

m=0

sinh{(2m+1)α/2}
(2m+1) cosh2{(2m+1)α/2}

. (2·9)

If we use (2·6) and (2·9) in (2·3) and recall that log q =−α, we deduce that

α

∞∑
m= 0

sinh{(2m+1)α/2}
(2m+1) cosh2{(2m+1)α/2}

+ π

∞∑
m= 0

(−1)m
(2m+1) cosh2{(2m+1)β/2}

=
π2

4
−

k3F2
(
1, 1, 1; 32 ,

3
2 ; k

2
)

2F1
(
1
2 ,

1
2 ; 1; k

2
) . (2·10)

We now invoke (1·3). If we substitute (1·3) into (2·10), we deduce (2·1) to complete
the proof.

It should be emphasized that the only time we used the definitions (1·2) of q and
q′ in our proof is in the application of (1·3). Thus, it would seem that (1·1) is a very
special result in that there are likely very few (if any) other results like it.
We now prove (2·1).

Proof of (2·1). Our first main idea is to introduce the functions F and G in (2·11)
and (2·13), respectively, and use them to find a simpler identity which is equivalent
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to (2·1). Define

F (α)�
1
α

∞∑
n=0

1
(2n + 1)2 cosh{(2n + 1)α/2} . (2·11)

Then

F ′(α)�− 1
2α2

(
α

∞∑
n=0

sinh{(2n + 1)α/2}
(2n + 1) cosh2{(2n + 1)α/2}

+2
∞∑

n=0

1
(2n + 1)2 cosh{(2n + 1)α/2}

)
. (2·12)

Set

G(β)�2β
∞∑

n=0

1
(2n + 1)2 cosh{(2n + 1)π2/(2β)} = 2π

2F

(
π2

β

)
, (2·13)

by (2·11) and the fact that αβ = π2. Thus, by (2·12),

G′(β) = 2π2F ′
(

π2

β

)(
−π2

β2

)
= α

∞∑
n=0

sinh{(2n + 1)π2/(2β)}
(2n + 1) cosh2{(2n + 1)π2/(2β)}

+2
∞∑

n=0

1
(2n + 1)2 cosh{(2n + 1)π2/(2β)} . (2·14)

If we define

H(β)�
βπ2

4
− 2π

∞∑
n=0

(−1)n tanh{(2n + 1)β/2}
(2n + 1)2

, (2·15)

then

H ′(β) =
π2

4
− π

∞∑
n=0

(−1)n
(2n + 1) cosh2{(2n + 1)β/2}

. (2·16)

In view of (2·14) and (2·16), we see that (2·1) is equivalent to

G′(β) = H ′(β).

It follows that for some constant c,

G(β) = H(β) + c. (2·17)

Clearly, from the definitions of G(β) and H(β) in (2·13) and (2·15), respectively, both
G(β) and H(β) tend to 0 as β → 0. Thus, in (2·17), c=0.
Hence, it now suffices to prove that

2β
∞∑

n=0

1
(2n + 1)2 cosh{(2n + 1)π2/(2β)} =

βπ2

4
− 2π

∞∑
n=0

(−1)n tanh{(2n + 1)β/2}
(2n + 1)2

.

(2·18)
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It is easily seen that (2·18) is equivalent to

β

∞∑
n=−∞

1
(2n+1)2 cosh{(2n+1)π2/(2β)} +π

∞∑
n=−∞

(−1)n tanh{(2n+1)β/2}
(2n+1)2

− βπ2

4
= 0.

(2·19)

The second primary idea is to introduce a function f of a complex variable and
use contour integration to prove (2·19). To that end, define, for fixed η > 0,

f (z)�
tan(ηz)
z2 cosh z

. (2·20)

The function f (z) is meromorphic in the entire complex plane with a simple pole at
z = 0 and simple poles at z = (2n + 1)πi/2 and z = (2n + 1)π/(2η) for each integer n.
Let γRm

be a sequence of positively oriented circles centred at the origin and with
radii Rm tending to∞ as m → ∞, where the radii Rm are chosen so that the circles
remain at a bounded distance from all the poles of f (z). From the definition (2·20)
of f , it is then easy to see that∣∣∣∣

∫
γRm

f (z)dz

∣∣∣∣�η

1
Rm

, (2·21)

as Rm → ∞.
For brevity, let R(a) denote the residue of f (z) at a pole a. Then, brief calculations

show that

R(0) = η, (2·22)

R

(
(2n + 1)π
2η

)
= − 4η

π2(2n + 1)2 cosh{(2n + 1)π/(2η)} , (2·23)

R

(
(2n + 1)πi

2

)
= −4(−1)

n tanh{(2n + 1)πη/2}
π2(2n + 1)2

, (2·24)

for each integer n. Hence, using (2·22)–(2·24) and the residue theorem, we deduce
that

1
2πi

∫
γRm

f (z)dz = η −
∑

|2n+1|<2ηRm/π

4η
π2(2n + 1)2 cosh{(2n + 1)π/(2η)}

−
∑

|2n+1|<2Rm/π

4(−1)n tanh{(2n + 1)πη/2}
π2(2n + 1)2

. (2·25)

Letting Rm tend to∞ in (2·25) and employing (2·21), we conclude that

0 = η − 4η
π2

∞∑
n=−∞

1
(2n + 1)2 cosh{(2n + 1)π/(2η)}

− 4
π2

∞∑
n=−∞

(−1)n tanh{(2n + 1)πη/2}
(2n + 1)2

. (2·26)

Now set η = β/π in (2·26). Then multiply both sides by −π3/4. We then readily
obtain (2·19), and so this completes the proof.
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3. Concluding remarks

Theorem 2·1 can easily be generalized in at least two directions.
First, in the proof of (2·1), we could replace f (z) by

fn(z)�
tan(ηz)
zn cosh z

,

where η is a positive integer exceeding 1. The generalization of (2·1) would then
involve Bernoulli numbers arising from the Taylor expansion of tan z about z = 0
and Euler numbers arising from the expansion of 1/cosh z about z = 0.
Second, in the proof of (2·1), we could replace f (z) by

f (z, θ)�
cosh(θz) tan(ηz)

z2 cosh z
,

where −1 < θ < 1. Then by a proof analogous to that given above, we can deduce
that, for any complex numbers α and β with Re α, Re β � 0 and αβ = π2, and for
any real number θ with |θ| < 1,

α

∞∑
n=0

sinh{(2n + 1)α/2} cosh{(2n + 1)θα/2}
(2n + 1) cosh2{(2n + 1)α/2}

− θα

∞∑
n=0

sinh{(2n + 1)θα/2}
(2n + 1) cosh{(2n + 1)α/2}

+π

∞∑
n=0

(−1)n cos{(2n + 1)πθ/2}
(2n + 1) cosh2{(2n + 1)β/2}

=
π2

4
− 2

∞∑
n=0

cosh{(2n + 1)θα/2}
(2n + 1)2 cosh{(2n + 1)α/2} .

(3·1)
The identity (3·1) is equivalent to


∞∏

n=0

((
1− (−1)nq(2n+1−θ)/2

)(
1− (−1)nq(2n+1+θ)/2

)(
1 + (−1)nq(2n+1−θ)/2

)(
1 + (−1)nq(2n+1+θ)/2

)
)2n+1



(log q)/2

×
{ ∞∏

n=0

(
1− (−1)nq(2n+1−θ)/2

)(
1 + (−1)nq(2n+1+θ)/2

)(
1 + (−1)nq(2n+1−θ)/2

)(
1− (−1)nq(2n+1+θ)/2

)
}−θ(log q)/2

×
{ ∞∏

n=1

( (
1 + (−1)nieθπi/2q′n

)(
1 + (−1)nie−θπi/2q′n

)(
1− (−1)nieθπi/2q′n

)(
1− (−1)nie−θπi/2q′n

)
)n}πi

= exp

(
π2

4
− 2

∞∑
n=0

cosh{(2n + 1)θα/2}
(2n + 1)2 cosh{(2n + 1)α/2}

)
. (3·2)

When θ = 0, (3·1) and (3·2) reduce to (2·1) and (1·1), respectively. If α, β > 0 and
θ�u + iv, where u and v are real, then (3·2) can be analytically continued to the
rectangle −1 < u < 1,−2π/α < v < 2π/α.
If we differentiate (3·1) 2k times with respect to θ and then set θ = 0, we deduce

that

α

∞∑
n=0

(2n + 1)2k−1 sinh{(2n + 1)α/2}
cosh2{(2n + 1)α/2}

+ (−1)kβ2kπ1−2k
∞∑

n=0

(−1)n(2n + 1)2k−1
cosh2{(2n + 1)β/2}

= (4k − 2)
∞∑

n=0

(2n + 1)2k−2

cosh{(2n + 1)α/2} , (3·3)
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which is valid for any integer k � 1 and any complex numbers α and β with Re α,
Re β � 0 and αβ = π2.
If we let α → ∞ (or β → 0) in (2·1), we deduce Leibniz’s well-known evaluation

∞∑
n=0

(−1)n
2n + 1

=
π

4
,

while if we let α → 0 (or β → ∞) in (2·1), we deduce Euler’s well-known evaluation
∞∑

n=0

1
(2n + 1)2

=
π2

8
.

(We remark that care must be taken when taking certain limits inside summation
signs above.)
Ramanujan examined several other infinite series of hyperbolic functions in [4]

and [5]. We cite two examples giving evaluations of series involving cosh z which are
very similar to those arising above.
First, in entry 16(x) of chapter 17 in his second notebook [4], [1, p. 134],

Ramanujan asserted that
∞∑

n=0

(2n + 1)2

cosh{(2n + 1)π/2} =
π3/2

2
√
2Γ6

(
3
4

) . (3·4)

In fact, it is shown in [1, pp. 134–138] that one can also evaluate in closed form the
more general sum

∞∑
n=0

(2n + 1)2m

cosh{(2n + 1)α/2} , (3·5)

where m is a positive integer. However, the evaluations are in terms of z�
2F1( 12 ,

1
2 ; 1; k

2) (see [1, p. 101, eq. (6·3)] for the relation between α and k, where
in [1], y = α). Note that the sums (3·5) appear on the right-hand side of (3·3), and so
these evaluations also automatically yield evaluations for the left-hand side of (3·3).
Second, the evaluation

∞∑
n=0

(2n + 1)2

cosh2{(2n + 1)π/2}
=

π2

12Γ8
(
3
4

)
arises in Ramanujan’s formulas for the power series coefficients of the reciprocals, or,
more generally, quotients, of certain Eisenstein series [3, cor. 3·9].
In a future paper, the authors will study a multi-variable generalization of the

products in (1·1) and derive a transformation formula for them.
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