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Abstract

In this article, we revisit Ramanujan’s cubic analogue of Jacobi’s inversion formula for the
classical elliptic integral of the first kind. Our work is motivated by the recent work of Milne
(Ramanujan J. 6(1) (2002) 7-149), Chan and Chua (Ramanujan J., to appear) on the
representations of integers as sums of even squares.
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The function ¢*(g) is the generating function of ry(n), the number of representations
of an integer as a sum of s squares. Recently, Milne [8] discovered a new expression
for ¢**(q), namely,

™ (q) = ${64(9)65(q) — 86¢(a)} (L.1)
where
0 k3qk
E4(q) =1+16 )
; 1—(—q)
0 kqu
66(q) =1-38
1; 1—(—g)*
and

o) k7qk
& =17+32 _
8<Q) ; 1 — (_q)k

Milne’s formula (1.1) led Chan and Chua [5] to conjecture certain explicit
expressions for ¢*(q), seN, in terms of Eisenstein series analogous to that of
84(q), 66(q) and &5(q). For any fixed s, their conjectures can be verified through a
table expressing the Eisenstein series in terms of two functions z = ¢*(g) and

4/ 2
= 16g” 4(q7 )
?*(q)
with
f: 1)/
U(g) =) """
n=0
For example if
0 2kl g2
M) = )
2k (q) — 1 _ q4n

then we have Table 1.

Table 1 is used to show that the set S = {7 2,(¢)7 2(q)|u+ v = 16} is linearly
independent over C. This in turn shows that qu/J32(q2) is a linear combination of the
elements in S, giving the formula

PP = 55 3 70 + 70T 00 -5 T w07 o). (1)
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Table 1

X b 31
Tﬁ) (1_5 <1 ‘c+1—6x)

M1, 259 , 61,
<1 A R VR

which is equivalent to the formula (for more details, see [9, (2.12)])

P(q) = 4725{ 40086(q)610(q) + 16612(q)64(q) + 2163(q)}-

In [5], Chan and Chua show that Table 1 can be extended indefinitely by using a
recurrence relation satisfied by 7 5 (¢). They show that the recurrence relation is a
consequence of the differential equation satisfied by the classical Jacobian elliptic
function sn?(u, k) (here, k* = x).

In this paper, we propose to study the functions

¢2k Zl-‘r(] +q2n

The functions ¥ (¢q) are perhaps first studied by Ramanujan [10, p. 257]. Let

% 2 2
m-+mn-+n-
>, 4

mpn=— o0
and
S
P d(g)
where

Z qm+1/3 m+1/3)(n+1/3)+(n+1/3)2.

m,n=— o0

Table 2 is given by Ramanujan.

Table 2 is clearly a cubic analogue of Table 1. For the proofs of these identities, see
[3] or [7]. In Section 2, we will show that Table 2 can be extended indefinitely using a
recurrence relation (see Corollary 2.4) satisfied by %, (g). This recurrence relation
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Table 2

S2(q) = 3 2%

74(q) =23 ;—;

Ss(q) =2 (—x (3; 4X3))

Sl =2 <X3(81 i 64387)(3 + 80x§)>

is obtained from a differential equation (see (2.1)) satisfied by the function

8
—
[\
<
~—
[
>

L) =S (“1)f o . 1.3
(ul7) k:l( )" 2 (q) 2] (1.3)

Note that the definition of L(u|t) is motivated by the following representation of
n®(u, k) [5]:

8 & (2u/z)*
i :_—ka:: VTV

The classical inversion formula for the incomplete elliptic integral of the first kind
is the following:

Theorem 1.1. Let ,Fi(a,b;c;z) be the Gaussian hypergeometric series. If
0<g<l1, 0<¢p<n/2, and

¢ 111
9¢2(Q) :/0 2 F <§,§;§;k2 sin’ t) dt,

then for 0<0<mn/2,

= i sm 2n0.

For a proof of this classical result, see [12].
On page 257 of his second Notebook, Ramanujan recorded the following
analogue of Theorem 1.1:

Theorem 1.2. If 0<g<1, 0<¢p<n/2 and
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then for 0<0<n/2,

76+3Z )sm2n9

Proof of Theorem 1.2 can be found in [3, Theorem 8.1, 13]. In Section 3, we will
sketch a proof of Theorem 1.2 based on the identity established in Section 2. We
wish to emphasize that Theorems 1.1 and 1.2 can be derived from certain differential
equations using suitable substitutions.

In the final section, we discuss a transformation formula satisfied by L(u|t).

2. The main identity

The main aim of this section is to derive a differential equation satisfied by L(u|)
defined in (1.3). Here and in subsequent sections, we set ¢ = ¢?**, with Im 7> 0.

Theorem 2.1.

d*L(ult)

5= —4a(g) - 4a*(q)L(ult) — 24a(q)L*(u|t) — 32L° (ulr).  (2.1)

The differential equation (2.1) first appeared in a different form in [3, p. 4209]. We
rediscover it in an attempt to construct a recurrence relation satisfied by % (q).
Note that Theorem 2.1 indeed provides us with such a relation by simply comparing
the coefficients of u>* on both sides. We emphasize here that our proof of (2.1) is new
and can be used to construct differential equations satisfied by functions analogous
to L(u|t) and sn?(u,k?).

We will prove (2.1) in several steps. Our first task is to find an alternative
expression for L(u|t). Recall that

91(z]7) :==24"® Z Vig"" D2 sin(2n 4 1)z
n=0

= —iq'%¢"(¢;q) , (ge*"

where

o0
(1- aq
k=1

The second equality follows from the Jacobi triple product identity.
In [13, p. 129], Shen shows that

/

! %
8—( —&-mBr)—E(u—mBr =-2i—4i Z 7

q" cos 2nu

Tra s (2.2)
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Substituting the series expansion

0
cos2nu =1+ Z (1)
k=1

(2.3)

into (2.2), interchanging the order of summation, and using the identity [3, p. 4173]

Solq) =g (alg) = 1),

we deduce that

Lemma 2.2.

/ /

3 3 2 C
j (u+ mt|37) — ﬁ (u — mt|37) = -3 (2 +a(q))i — 4iL(ul7). (2.4)

Now, since 3 (u + nt|37) and 3 (u — =t|37) appears in the expression of L(u|t), we
are led to the function

2 N (z + u+ nt|371)9(z — u + nt|37) 9 (z + nt|37)

[ = ERD

b

where |u|<m|t|. The construction of f(z,u|t) is guided by the transformation
formulas of 9;(z|t) given by

91 (z+7lt) = =% (z]t) and 9 (z+ ntlr) = —g 229 (2]n).

Basically, we need an elliptic function f(z,u|t) in the variable z with periods ©
and 3znt such that its logarithmic derivative at z = 0 involves the left-hand side
of (2.4).

Since 91 (z|t) has a simple zero at z = 0, the function f(z, u|t) has a pole of order 3
at z =0. The residue of f at z =0 is zero since the sum of residues of an elliptic
function is always zero. This implies, by logarithmically differentiating z*f(z,u|t),
that

1d?>
res(f;0) = EE(Zf(Z»”h))

=S S uf) (2o ufe) + 6 ()] =0, 23)

where

R I 9
d(z,ult) =2i+=—3—=(z]37) + — (z + n1|37)
VA 91 91

/

+&(z+u+m\3r)+9

/
3, 9—1(2—u+m\3r). (2.6)
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Since

H(u + nt|31)9) (u — nr|37) 9y (ne|37)

lim 23 f (z,ult) = #0,
iy =1 (& ule) 9,(037)°
we conclude from (2.5) that
¢*(0,ulz) + ¢'(0, ulr) = 0. (2.7)

We will first compute ¢(0,u). It is known that [14, p. 489]

s1n2nz——+ ( —242%: k' ) o(z%). (2.8)

By substituting u = 0 in Lemma 2.2, we find that

/
4
9—(z| )=cotz+4 E

9 1 .
9—: (nt|37) = -3 (2+a(q))i. (2.9)

Hence,
¢ (0,ult) = —a(q)i — 4iL(ul7). (2.10)

Next, differentiating both sides of (2.6), using (2.8) and evaluating at z = 0, we
find that

0 quk 9 /
¢'(0,ult) =1-24 Z [ ok + (9—1) (nt|37) + M (ult), (2.11)
k=1 q 1
where
AN N/
M@ut) = (L) (u+nt|37) + (=) (u— nt|37)
9 9
Now, since
9\’
o) =2(§) ael30)
and

¢'(0,0t) = —¢*(0,0[7) = a*(q)
by (2.7) and (2.10), we conclude that

(52) tmls) =5 (@) - Pl 1)

1
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where

Plg)=1-24>" —
k=1
Hence, by (2.7), (2.10) and (2.11), we conclude that

Lemma 2.3.

2P(¢°) + a*(q)

3 + (a(q) + 4L(ul7))*.

M(ult) = —

Our final step is to find another relation between M (u|t) and L(u|t). To achieve
our aim, we construct a second function

91(z + u+ 1t|30) 9 (z — u + nt|37) 93 (z — 7e37)
91(z[37)

g(z, Ll|‘l,') =

Y

where |u| <n|z|. The function g(z, u|7) is an elliptic function with periods 7 and 37t
having only one pole of order 4 at z = 0. This implies that

1 a4

res(g; 0) = |—— (z*g(z,ulr))| =0. (2.13)
24 dz* 720

On the other hand, by logarithmically differentiating z*g(z, u|t), we find that

d4
2 (9 ul) = 22, ult) (82, ult) + 3¢(z, ul0) (2, ul7) + &' (2, ul)),
where
4 9 9
q =——4_- 271,
&(z,ul7) -4y, (z]37) + 3, (z — mt|37)
9 9
+ 9—1(z+u+m|3f)+9—l(z—u+m|3r). (2.14)
1 1
Since

9y (u + mt|37) 8y (u — mt|37) 97 (n7|37)
81(03¢)°

lim (z*g(z, ulz)) = #0,

we conclude from (2.13) that

&0, u|t) 4 3E(0,ult)E (0, ult) + E"(0,ult) = 0. (2.15)
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From (2.8) and (2.14), we find that
9 9
E(z,ult) = 29—1 (z —mt|37) + 9—1 (z +u + nt|37)
1 1

(z—u+m|3r)+fp(q3)z+0(23). (2.16)

L9
3

!
bt
9
Substituting z = 0 into (2.16) and using (2.4) and (2.9), we find that

E(0,u|t) = —4iL(ul7). (2.17)

Next, differentiating both sides of (2.16) with respect to z, substituting z = 0 and
simplifying with (2.12), we deduce that

&'(0,ult) =3 (a*(q) + P(q)) + M (u|r). (2.18)
By Lemma 2.3, we find that from (2.18)
&(0,ult) =%a*(q) + 8a(q)L(ult) + 16L7(ur). (2.19)

Finally, by differentiating (2.16) twice with respect to z and setting z = 0, we
conclude that

&"0,ult) = -2 (9—11) (mt|37) + (9—,]) (u+ nt)37) — <‘9—/1> (u—mt|37).  (2.20)
9 9 9

Differentiating (2.2) twice with respect to u# and substituting # = 0, we deduce that

@D ' (nrf3) = 8ia(q).

Furthermore, observing the fact that the expression we obtain from differentiating
twice the function

/

3
(z 4+ u+ nt|31) + -z — u+ nt|37)

/
1
19] ‘91

with respect to z is the same as differentiating it twice with respect to u, we conclude

that
9\ 9\ d?L(ul7)
<9—1> (u+ mt|37) — (-9_1) (u — nt|37) = —4i 2

Hence, we may rewrite (2.20) as

(L)

&"(0,ult) = —16i%5(q) — 4 I

(2.21)
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Substituting (2.17), (2.19) and (2.21) into (2.15), we conclude the proof of
Theorem 2.1.
Let

V(u|t) = z3 + 6L(u|1). (2.22)

Then the differential equation (2.1) is equivalent to the differential equation given in
[3, (8.32)].

From Theorem 2.1, we obtain the following recurrence for %y = %% (q) by
comparing coefficients of u on both sides of (2.1):

Corollary 2.4. Let k be any positive integer and

n
Lok =S ulq) = Z Hniq

Then

u+v+w=k
u,o,w=1

Note that Corollary 2.4 shows that Table 2 can be extended indefinitely and that
Sk 1s a function of z3 and x3 for k>=1. This result is a cubic analogue of the well-
known recurrence relations for the classical Eisenstein series [1, p. 13] and the
functions 7 5 [9].

We end this section with another proof of (2.1) and show how this differential
equation is related to the Weiestrass g@-function.

Using (2.2) and the fact that [14, p. 465]

/ !/ /

:3—i(u +7lt) = 3—1 (ulr) and :Z—i(u + 7tjt) = :3—1 (ulr) — 21,

we find that

U

(u+ mt|37) — % (u — nt|37)
1

!
bt
9
is an even elliptic function with periods © and 3xz.

Now, 3 (z|t) has only one zero in the any period parallelogram. This implies that
the function L(u|t) has two simple poles in any period parallelogram. Now the
expansion of L(u|t) shows that it has a double zero at ¥ = 0 and these are the only
zeros since the number of zeros is equal to the number of poles for any elliptic
functions in a period parallelogram. Using the fact that any even elliptic function is a
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rational function of @, we conclude that

o (ul3t) = L(jh) +B
or
@ (|31)L(u|t) = A + BL(ult), (2.23)

for some functions 4 and B independent of u.
It is known [13, (2.4)] that the expansion of @ (u|7) is of the form

P S —~ ngq
@ (ult) = csc” u 8217

) n
n=1

1
2nu — = P
o cos 2 — = (9),

where

o0 nqn
Plg)=1-24)" o
n=

Substituting this expansion of g and the expansion of L(u|t) into (2.23), we deduce
that

1 1 LR 2,2 4
(1424 E —1 =2 z
<u2+15< + On:1 l—q”>u + >( S (q)u +3y4(q)u +
2
:A+B(—292(q)u2+§y4(q)u4+ ) (2.24)

Comparing coefficients of both sides of (2.24), we conclude from Table 2 that

2 % 72
A=292(q) = —pz50 and B= _3;;8) =3

Hence, we obtain the identity

2 Zix3 233
—— = 2.25
27 L(ult) 3 (2.25)

@ (u|37) =

We now give another proof of Theorem 2.1. Recall that the elliptic function @
satisfies the differential equation

3 3n

4 X n
(' (030))? =4 (wl37) - §<1 +2403" qq3n> olul3)
n=I1

5 ,3n

8 X nq
_ 27(1 — 504 ;‘ - q3n>. (2.26)
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By Berndt et al. [3, Theorem 4.4], we may rewrite (2.26) as
(9" (u|37))* = 40> (u|37) — gzgl (1 — gm) @ (u|37) — 2‘%22 (1 - §x3 + %x%) (2.27)
Substituting (2.25) into (2.27), we find that

(‘Z)z— —% 23x3L — 42307 — 162307 — 16L%. (2.28)

Differentiating with respect to u, we conclude the second proof of Theorem 2.1.

We now make a few remarks about (2.25). This should be viewed as a cubic
analogue of the relation between ¢ and the Jacobian elliptic function sn?(u, k) [14, p.
505, 22.351]. The identity in cite [p. 505, 22.351] Watson—Whittaker can also be
written as

4 2
_ . FaM
P2 = w3
where
o] 2u)2k
Ly(u|t) = (=) T ue42(v/4) )
2 (2Kk)!
7 = ¢*(q) + 169y* (%)
and

1 (R G
IS
X4 64q 1—gq

k=1

The functions z4 and x4 belong to the quartic theory of elliptic functions [4].

3. Proof of Theorem 1.2

Throughout this section, we let ¢ to be a real number between 0 and 1. From
(2.28), we find that

dL\?> 4 27022 4+ 1081223 + 10813
— ) =—=2zix;L[ 1 3 )
(du) 27 73 ( i 2233 >
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This prompted us to use the substitution

27Lz3 + 108L%z3 + 108L°

.2
sin“® =1
* 22%)(3

14 (3.1)

The validity of this substitution, namely the fact that —1 <% <0 for O<u<mn/2 is
shown in [3, pp. 4209-4211] and will not be repeated here. Our main aim is to
illustrate the possible origin of this substitution. From (3.1), we find that

do _ E (z3+6L)(z3 +2L) d_L

2sin @ b — = .
SRS T T2 %3 du

Squaring both sides and using (2.28), we deduce that

do

= —(z:+6L), (3.2)

Note that the right-hand side of the last equation is just V' by (2.22). Substituting
(2.22) into (3.1), we obtain the equation

4(1 — x3cos” @)S* — 35 — 1 =0, (3.3)
where
z3
S==
v

The unique solution to the equation 4(1 — y)T3(y) —3T(y) — 1 =0 with initial
condition 7(0) =1 is

T =,Fi(3%50).

Hence, we deduce from (3.3) that

.1 2
V(u|1:) =, F) (%,%, %, X3 COS dj) (34)

Substituting (3.4) back into (3.2), we conclude that

121 do

Hence,
Svac o
=— Fi(=3= 2 ) do.
Z3 /% 2 1(3,3,2,363005 )d

Substituting 6 =5 — @, we deduce Theorem 1.2.
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In a similar fashion, we can construct a quartic analogue of Theorems 1.1 and 1.2.
We first note that the quartic version of (2.28) is

2
(%) = f% (z3x4 4+ 322514 +256L3).

This prompted us to set

2221, + 25612
sin? @ = | 4 Sozaka + 2300 (3.6)
Z4X4

This implies, by direct computation, that

dd  z;+16L,

du \/8L4+Zi

Setting V4 = z3 + 8L4, we deduce from (3.6) that

Va 1++/1—x4c082P

2_ b)
zy 2

which implies that

3+ 16Ls  2Vi—zf Z
8Ly + z2 VVa 2F1 (4,345 x4 cos? @)

Substituting the last identity back into (3.7) and setting ¢ = Z — @ we deduce that

/d) F) 131 sin’ ¢ ) dr =
A 21442,x4 = Z4lU,

o= [ 2v/Tat -
0

where

id
Vi(t|r)
and

o0 k k vs] k k
V4(H|'E) = Z‘2‘ -8 Z ﬁ-'— 8 Z #COS 2ku.
k=1

By using the relation in [3, Theorem 9.11, 4, Theorem 2.9], we have

Va(ulr) _1+24Zl -+ La(ult).
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This integral should be compared to Shen’s result [12, Theorem C]. We are unable
to simplify further the expression for ¢.

4. Behavior of L(u|t) under the imaginary transformation t— — 5

First, recall that the imaginary transformation for 9(z|7) [2, p. 339, (0.54)]:

T

Differentiating (4.1) logarithmically with respect to z, we deduce that

2G-3) = Ereen 42)

Replacing z by z + % in (4.2), we have

Sifz m 1y _2iz 2 (42
I\t 3% 1) = 3 91 3

r). (4.3)

Next, we replace z by —z in (4.3) and find that

9 n| 1 2iz 29 s
e ———=+1—(z—%|7). 4.4
91( 37 r) n 3 +191 (Z 3’1) (44)

Subtracting (4.4) from (4.3), we deduce that

31(+%!—%) SE-5-Y)
e (BT - S(- 7)), 9

Recall from (2.4) and (2.22) that

V(ult) = _2+%l<;1 (z + mt|37) —;—i(z—m%)) (4.6)

Hence, (4.5) translates to a transformation formula for ¥V (u|t). Writing the right-
hand side of (4.5) using [14, p. 489]

'9/

-~ g
g (70 =cot(z )+4;1_

- sin 2nz,
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V(E
T

we deduce that

3r> —V3itU(z]1), (4.7)

where

7 cos 2nz, (4.8)

with z3(n) = (5) being the Legendre symbol. Substituting (2.3) and the following
expansion

m % cot! “(%
cot (z + 3) — cot(z — —) 2 kz:; ok (4.9)
into (4.8) and simplifying, we find that
9, 9wy e ot 2
91( ’ )- (2*5’7) =2 ; @iy L) (4.10)
where
22%k+1,/3 & 2k
Ex(ta;9) = 1+ (1) X3(”)1_—q” (4.11)
COt(Zk) <—> n=1 4q
3
Therefore, we have
V3([9 9 T
Ul —7(—1 (z+30) -5(: ‘3@)
o t(20) )
=V3 < = Ex(13:9) 7
kz:; (2k)!
~. cot?k)(T)
=a(g) + V3 Tszk(Xy )=, (4.12)
= @R
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since [2, p. 346, Entry 1(v)]

0 n

q

alg) =1+6 > 13(n) s
n=1

The first few E(y3;¢q) for k=1 are

© n2qn
Ex(ryia)=1-9) i p
n=1

0 n4qn
Ey(y3:9) =1+3 Z 23(n) =g
n=1

0 6 n

3 n°q
Eo(39) =15 13(n) ——.
7 n=1 - q

These are clearly the cubic analogue of the classical Eisenstein series. The series
E>i(13; q) were studied in [7], but the relation between Ey(y3;¢) and Sy (¢) was not
established there.

Recall from (2.22) that

0 2k
Vi) =alg) +6 3 <—1>k%%k<q>. (4.13)
: .

Using (4.12) and (4.13) in (4.7) and then equating the coefficients we deduce that

a(ef2ni/(3r)) _ —ﬁria(ezn”), (4.14)

2k+1 COt(Zk) (%)

—2ni/(3t k+1.7T 2mit
Pop(eF0)) = (1) 32k )

Ex(y3;e k=1 (4.15)

The transformation formula (4.14) is a special case of the formula given in
[11, p. 205].

Identities (4.14) and (4.15) have interesting applications. For example, when k = 1
we have

T

A 1
S (e 2037y = Z§T3 cot® (3

) Ea(: ). (4.16)

From the first identity of Table 2, we have

E¢2(672m’/(31)) _ i

. 1 .
5 C3 (672711/(31)) _ l"ES b3 (eZTIlT)’ (417)

3V3
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where

_ § n—m  n?-+mntm? _ 2mi/3
b(q) - w q 9 w=e / .

mp=—o0

The last equality of (4.17) follows from the n-product representations of 5(¢) and
¢(q) [3, Lemma 5.1] and the transformation formula

(1) = V=it

Therefore, we have

8

TP =co® (3) B2l €. (4.18)

We do not need to know in advance the value of cot(®) (5)- By setting ¢ = 0 in (4.18),
we deduce that

cot® (f) . (4.19)

Hence,

o0 2. .n
Ex139) = 1-9 3 m(n) - = b(g). (4.20)
n=1

Using exactly the same idea, one can obtain a representation of Ea;(y3; ¢) in terms of
x3 and z3 for any k> 1. This shows that there is a one to one correspondence between

the identities associated with the triplets (%2 (q), 23 ™, x3) and (Ex(13; ), 23, x3).
Formula (4.7) is equivalent to the formula
-1y = iH (z|7), (4.21)
o 3t) zf s '

where

TZ

cot@
=3 Z 3 e (73:9)2".

Using the transformation formulas for a(g), b(g), ¢(g) and the formula

o (ﬂ - 1) — (),
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we deduce from (2.25) that

izg — X3)
3

(1)
Hzo) 5

p(cle) =

Remark. The generalization of (4.7) can be found in the excellent article by Kolberg
[6, (2.20)].

5. Conclusion

It is clear that there are many identities associated with the cubic theory which
are yet to be discovered. Functions such as H(z|t) and L(z|t) provides us with
some insights in constructing cubic analogues of the Jacobian elliptic functions.
However, the study of such functions is far from complete. For example, we
are still unable to find a cubic analogue of the famous Landen’s transformation
formula [14, p. 507] despite the fact that we now have a better understanding of this
theory.
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