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Abstract. In this paper, we derive a new explicit formula for r32(n), where rk (n) is the number of representations
of n as a sum of k squares. For a fixed integer k, our method can be used to derive explicit formulas for r8k (n). We
conclude the paper with various conjectures that lead to explicit formulas for r2k (n), for any fixed positive integer
k > 4.
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1. Introduction

Following Ramanujan’s notation, let

ϕ(q) :=
∞∑

k=−∞
qk2

and

ψ(q) :=
∞∑

k=0

qk(k+1)/2,

where |q| < 1. It is immediate from the above definitions that if

ϕ2s(q) =
∞∑

n=0

r2s(n)qn

and

ψ2s(q) =
∞∑

n=0

t2s(n)qn,
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then r2s(n) and t2s(n) are the number of representations of n as a sum of 2s squares and 2s
triangular numbers, respectively.

The famous Four Squares Theorem states that every positive integer is a sum of four
squares and was first proved by Lagrange in 1772. Lagrange’s proof, however, contains
no further quantitative information about r4(n) besides the fact that r4(n) > 0 for all
n ∈ N.

An explicit formula for r4(n) was first discovered by C.G.J. Jacobi around 1829. Using
the identity,

ϕ4(q) = 1 + 8
∞∑

k=1

kqk

1 + (−q)k
, (1.1)

he deduced that

r4(n) = 8σ ′(n),

where

σ ′(n) =
∑
d|n

d 
≡0(mod 4)

d.

Jacobi’s identity clearly implies that r4(n) > 0 and his method suggests that the problem of
finding explicit formulas for r2s(n) is equivalent to finding an analogue of (1.1) for ϕ2s(q).

For s = 1, 3, and 4, Jacobi proved that

ϕ2(q) = 1 + 4
∞∑

k=1

(−1)k−1 q2k−1

1 − q2k−1
, (1.2)

ϕ6(q) = 1 + 16
∞∑

k=1

k2qk

1 + q2k
+ 4

∞∑
k=1

(−1)k (2k − 1)2q2k−1

1 − q2k−1
, (1.3)

and

ϕ8(q) = 1 + 16
∞∑

k=1

k3qk

1 − (−q)k
. (1.4)

For s > 4, identities analogous to (1.1)–(1.4) are also known. The identity for s = 5 is
given by Liouville as follows:

ϕ10(q) = 1 + 4

5

∞∑
k=1

(−1)k−1 (2k − 1)4q2k−1

1 − q2k−1
+ 64

5

∞∑
k=1

k4qk

1 + q2k

+ 32

5
qϕ2(q)ϕ4(−q)ψ4(q2). (1.5)
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Liouville’s identity (1.5) is the first instance where an even power of ϕ(q) is expressed
as a sum of a Generalized Lambert series1 and a cusp form. This phenomenon turns
out to be true for any s > 4 and was first established in Ramanujan’s famous paper
“On Certain Arithmetical Functions” [10]. In [11, Chapter 7], R. A. Rankin explains,
using the theory of modular forms, a uniform way to construct identities associated with
ϕ2s(q), s > 1.

Recently, S. Milne [8] revisited the problem of representing an integer as a sum of an
even number of squares. He succeeded in expressing ϕ2s(q), where s = 2n2 or 2n(n + 1),
as an n × n determinant and also a sum of determinants of certain Generalized Lambert
series. His most elegant identity is perhaps the following:

ϕ24(q) = 1

32
det

∣∣∣∣∣
16S4(q) + 1 16S6(q) − 2

32S6(q) − 4 32S8(q) + 17

∣∣∣∣∣
= 1 + 16

9
(17S4(q) + 8S6(q) + 2S8(q)) + 512

9

(
S4(q)S8(q) − S2

6 (q)
)
, (1.6)

where

S2s(q) =
∞∑
j=1

j2s−1q j

1 − (−q) j
.

Milne’s identity (1.6) differs from the classical formula ϕ24(q) discovered by Ramanujan
[10], namely,

ϕ24(q) = 1 + 16

691
S12(q) + 33152

691
q f 24(q) − 65536

691
q2 f 24(−q2),

where

f (−q) =
∞∏

k=1

(1 − qk).

One key advantage of Milne’s representations is that his identities yield immediately the
exact order of r24(n).

It is not an overstatement to say that the present paper is motivated by (1.6). We first
observe that if we define the “normalization” of S2m(q), m = 2, 3, 4 by

E4(q) = 1 + 16
∞∑

k=1

k3qk

1 − (−q)k
,

E6(q) = 1 − 8
∞∑

k=1

k5qk

1 − (−q)k
,



82 CHAN AND CHUA

and

E8(q) = 17 + 32
∞∑

k=1

k7qk

1 − (−q)k
,

then we can rewrite (1.6) as

ϕ24(q) = 1

9

{
E4(q)E8(q) − 8E2

6 (q)
}
. (1.7)

This example suggests that perhaps ϕ8t (q) is a linear combination (over Q) of E2u(q) E2v(q),
such that u + v = 2t , with u, v ≥ 2. We record this observation as follow:

Conjecture 1.1. Let

sec2 u =
∞∑

k=0

a2k
u2k

2k!
,

and suppose that

Ak

Bk
= a2k

22k+3
,

where k > 1 and gcd(Ak , Bk) = 1. Then for any positive integer t ≥ 1,

ϕ8t+8(q) =
t∑

l=1

αlE4t+2−2l(q)E2l+2(q),

where

E2k+2(q) = Ak − (−1)k Bk

∞∑
j=1

j2k+1q j

1 − (−q) j
, and αl ∈ Q.

Conjecture 1.1 can be shown to be equivalent [9] to the following conjecture associated
with ψ(q):

Conjecture 1.2. For k > 1, let

T2k(q) :=
∞∑

n=1

n2k−1q2n

1 − q4n
.

Then for any positive integer t > 1,

q2tψ8t (q2) =
∑

m+n=2t
m≥n>1

αm,nT2m(q)T2n(q).

where αm,n ∈ Q.
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In this short note, we will give a proof of (1.7) by proving that

q6ψ24(q2) = 1

72

(
T8(q)T4(q) − T 2

6 (q)
)
. (1.8)

We will also establish the new formula

q8ψ32(q2) = 1

75600

(
−25

4
T10(q)T6(q) + 21

4
T 2

8 (q) + T4(q)T12(q)

)
. (1.9)

Using the method as illustrated in [9, (2.12)], we deduce the new formula

ϕ32(q) = 1

4725

{ − 400E6(q)E10(q) + 16E12(q)E4(q) + 21E2
8 (q)

}
.

2. Modular properties of T2n(q)

As usual, let �(1) = SL2(Z) and define

�0(2) :=
{

S ∈ �(1) : S ≡
(

1 ∗
0 1

)
(mod 2)

}
.

Let {�0(2), 4t , 1} be the space of entire modular forms of weight 4t with multiplier
system 1. We first show that

Lemma 2.1. If u + v = 2t then

T2u(q)T2v(q) ∈ {�0(2), 4t, 1}.

Proof: First, note that

T2m(q) = (2m − 1)!

2(2π i)2m
{G2m(τ ) − G2m(2τ )},

where

G2m(τ ) = 2ζ (2m) + 2(2π i)2m

(2m − 1)!

∞∑
n=1

n2m−1qn

1 − qn

is the classical Eisenstein series. Let S =
( a b

2c d

)
∈ �0 (2). Then

G2m(Sτ ) − G2m(2Sτ ) = (2cτ + d)2m G2m(τ ) − G2m

(
2aτ + 2b

2cτ + d

)

= (2cτ + d)2m G2m(τ ) − G2m

(
a(2τ ) + 2b

c(2τ ) + d

)

= (2cτ + d)2m(G2m(τ ) − G2m(2τ )).
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Hence,

T2u(q)T2v(q) ∈ {�0(2), 4t, 1}.

It is known [11, p. 218] that the function z4 := ϕ8(q) is in {�(2), 4, 1}, where

�(2) :=
{

S ∈ �(1) : S ≡
(

1 0
0 1

)
(mod 2)

}
.

Since T2u(q)T2v(q) ∈ {�0(2), 4t, 1}, T2u(q)T2v(q) ∈ {�(2), 4t, 1}. Hence,

T2u(q)T2v(q)

z4t
∈ {�(2), 0, 1},

since z4 is never zero on Im τ > 0. It is well known that elements in {�(2), 0, 1} are
generated by

x := 16q
ψ4(q2)

ϕ4(q)
.

Therefore, we have

Lemma 2.2.

(a) T4(q) = z4( x
16 )2,

(b) T6(q) = z6( x
16 )2(1 − x

2 ),

(c) T8(q) = z8( x
16 )2(1 − x + 17

32 x2),

(d) T10(q) = z10( x
16 )2(1 − x

2 )(1 − x + 31
16 x2),

(e) T12(q) = z12( x
16 )2(1 − 2x + 291

32 x2 − 259
32 x3 + 691

256 x4).

Remark. Lemma 2.2(a)–(d) can also be found in [2, p. 132, Entry 15(v)–(viii)]. We
also mention here that in [3], B.C. Berndt gave a proof of the sum of six triangular
numbers using tables of identities similar to Lemma 2.2. Our method of deriving iden-
tities for sums of squares and triangular numbers from Lemma 2.2 is motivated by his
approach.

By considering the parametrizations in the above lemma, we conclude immediately that
for t = 3 and 4, the elements in Ct := {T2u(q)T2v(q) | u + v = 2t} are linearly independent
modular forms in {�0(2), 4t, 1}. Note that the number of elements in Ct is t − 1, which is
exactly the dimension of the space of modular forms with q-expansion beginning with q2l ,
l ≥ 2. [11, p. 222]. Hence, every modular form with q-expansion beginning with q2l , l ≥ 2,
can be written as a linear combination of the elements in Ct . This completes the proof of
(1.8) and (1.9).

We remark here that the linear independence of the elements in Ct for t = 3 and 4 can be
verified directly by considering the first few terms of their series expansions. The purpose
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of stating Lemma 2.2 is to indicate that the proof of Conjecture 1.2 may be derived if
one can prove the linear independence of the products of polynomials which appear in the
parametrizations of T2k(q).

If we set C ′
t := Ct ∪ {T4t (q)}, then we see this gives a new basis for the space of modular

forms with q-expansion beginning with q2l , l ≥ 1. An application of this observation in the
case t = 3 gives the following new identity:

q2
∞∏

n=1

(1 − q2n)24 = T12(q) − 13112

9
T 2

6 (q) − 5536

9
T4(q)T8(q).

This yields immediately the following congruence due to Bambah, Chowla and Gupta
[1]:

τ (n) ≡
{

0 (mod 8) if n is even
σ11(n) ≡ σ (n) (mod 8) otherwise.

We conclude this section with a formula which allows us to express T2m(q) in terms of z
and x for any m ≥ 2. This will allow us to extend the table in Lemma 2.2.

Theorem 2.3. Let

T2(q) = 1 + 24
∞∑
j=1

jq2 j

1 + q2 j
.

Then for n ≥ 0,

T2n+8(q) = T2(q)T2n+6(q) + 12
n∑

j=0

(
2n + 4

2 j + 2

)
T2 j+4(q)T2n−2 j+4(q). (2.1)

Proof: It is known that [8, (2.14)]

sn2(u, k) = K − E

k2 K
− 2π2

k2 K 2

∞∑
j=1

jq j

1 − q2 j
cos

2 ju

z
, (2.2)

where

K = K (k) = π

2
2 F1

(
1

2
,

1

2
; 1; k2

)
,

E = π

2
2 F1

(
1

2
; −1

2
; 1; k2

)
,

q = e−π K (
√

1−k2)/K (k)

and

z = 2K/π. (2.3)



86 CHAN AND CHUA

First, write

∞∑
j=1

jq j

1 − q2 j
=

∞∑
j=1

jq j

1 + q j
+

∞∑
j=1

jq2 j

1 − q2 j
. (2.4)

From [2, Entry 13(viii)] and [4, p. 164, Ex. 15(a)], we find respectively that

1 + 24
∞∑
j=1

jq j

1 + q j
= z2(1 + k2), (2.5)

and

1 − 24
∞∑
j=1

jq2 j

1 − q2 j
= z2

(
3

E

K
− 2 + k2

)
, (2.6)

Substituting (2.5) and (2.6) into (2.4), we deduce that

∞∑
j=1

jq j

1 − q2 j
= z2

8

(
1 − E

K

)

and this implies that

K − E

k2 K
= 2π2

k2 K 2

∞∑
j=1

jq j

1 − q2 j
,

by (2.3). Hence, we may define D2n+2(k) by writing

sn2(u, k) =
∞∑

n=0

D2n+2(k)
u2n+2

(2n + 2)!
. (2.7)

This is the representation of sn2(u, k) that Brillhart and Lomont used in [7, p. 119,
(8.26a)].

Comparing the coefficients of u2n, n ≥ 2 in (2.2) and (2.7), we conclude that

∞∑
j=1

j2n+1q j

1 − q2 j
= (−1)n+12−2n−3z2n+2 D2n(k)k2. (2.8)

From [7, p. 123] and [7, p. 51, (4.33)], we find that

D2n+6 = −4(k2 + 1)D2n+4 + 6k2
n∑

j=0

(
2n + 4

2 j + 2

)
D2k+2 D2n−2 j+2, (2.9)
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where D2m := D2m(k). Substituting (2.5) and (2.8) into (2.9), and replacing q by q2, we
deduce (2.1).

Remarks

1. The first few cases of (2.1) are used by Liu recently [6] to derive new proofs of the
classical formulas for the sums of 8, 12, 16,20 and 24 squares.

2. We mention here another proof of (2.1). From the well-known differential equation
satisfied by U = sn(u, k) [5, p. 121], namely,

(
dU

du

)2

= (1 − U 2)(1 − k2U 2),

we find that

4U 2

(
dU

du

)2

= 4U 2(1 − U 2)(1 − k2U 2).

This implies that

(
dV

du

)2

= 4V (1 − V )(1 − k2V ),

with V = U 2 = sn2(u, k). Differentiating the last identity with respect to u again using
(2.7), we deduce (2.9), and hence (2.1).

3. Conjectures for sums of 8m + 2, 8m + 4 and 8m + 6 squares

We conclude this paper with conjectures associated with the formulas for sums of 8m +
2, 8m + 4 and 8m + 6 squares. These are all analogues of Conjecture 1.1.

Conjecture 3.1. Let Ak , Bk and E2k(q) be as defined in Conjecture 1.1. Then for any
positive integer t ≥ 1,

ϕ8t+4(q) =
t∑

l=1

βlE4t+2−2l(q)F2l(q),

where

F2k+2(q) = Ak + (−1)k Bk

∞∑
j=1

j2k+1q j

1 + (−q) j
, and βl ∈ Q.
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Conjecture 3.2. Let F2k(q) and E2k(q) be as defined in Conjecture 3.1 and Conjecture 1.1
respectively. Set

sec u =
∞∑

k=0

Ck
u2k

(2k)!

and let

G2k+1(q) = Ck − (−1)k22k+2
∞∑
j=1

j2kq j

1 + q2 j
− (−1)k4

∞∑
j=1

(−1) j (2 j − 1)2kq2 j−1

1 − q2 j−1
.

Then for any positive integer t ≥ 1,

ϕ8t+2(q) =
t∑

l=1

γlG2l+1(q)F4t−2l(q),

and

ϕ8t+6(q) =
t∑

l=1

δlG2l+1(q)E4t+2−2l(q),

where γl , δl ∈ Q.
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Note

1. Lambert series are usually defined as series of the form
∑∞

k=1 ak
qk

1−qk , where ak (q) is a polynomial in q. We

shall refer to the linear combinations of Lambert series as Generalized Lambert series.
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