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Abstract
In this article, we discuss two applications of the operator U(m) (see (1.1)) defined on the product of two

power series.
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1. Introduction

Let m be a positive integer and define the operator U(m) on a formal power series » .~ a,q" by

o0 o0

anqn = Zamnqn-

n=0 U(m) n=0

The operator U(m) acts on the product of two power series as follows:

00 00 00 0o
> bug™> anq" = bug"Y  amgq". (1.1)
n=0 n=0 U(m) n=0 n=0

* Corresponding author.

E-mail addresses: chanhh@math.nus.edu.sg (H.H. Chan), r.p.lewis@susx.ac.uk (R.P. Lewis).

"The first author is funded by National University of Singapore Academic Research Fund, Project Number
R146000027112.

0377-0427/$ - see front matter (©) 2003 Published by Elsevier B.V.
doi:10.1016/S0377-0427(03)00618-6


mailto:chanhh@math.nus.edu.sg
mailto:r.p.lewis@susx.ac.uk

70 H.H. Chan, R.P. Lewis!/Journal of Computational and Applied Mathematics 160 (2003) 69-75

Relation (1.1) shows that under U(m), we may “shift” the “m” from the power of ¢ in the first
series to the subscript of the coefficients of the second series. This fact was known to Atkin and
O’Brien [1, (28)].

In Section 2, we prove, with the aid of (1.1), Ramanujan’s famous congruences [7]

p(5n+4)=0(mod?5), (1.2)

p(Tn+5)=0(mod7) (1.3)
and

p(11ln+6) = 0(mod 11), (1.4)

where p(n) denotes the number of unrestricted partitions of the nonnegative integer 7.
It is obvious that (1.2) and (1.3) follows from Ramanujan’s identities

_ Sn 5
Zp(5n+4)q —SH“ n))6, (15)
Zp(7n—|—5)q"=7H 7n)3 H( qqm)); (1.6)

n=1

Identities such as (1.5) and (1.6) are more difficult to establish than congruences (1.2) and (1.3).
In [10, (1.15)], Zuckerman obtained the following analogue of (1.5) and (1.6):

> p(13n+6)q"
n=0
( 7ql3n) ( 7ql3n)3 s o0 (1 7q13n)5
=11 + 468¢g + 6422¢g —_—
H n)2 H (1 n)4 nH (1 _qn)é
0 (1 o q13n)7 . ( o q13n)9
439404 | | ——— + 171
+439 oql:[l(l_qn)8 + 1713664 H )10
13ny\11 13n 13
5 (I—¢g"") 6 (1 )
+371293¢ Hi)u+371293 HW' (1.7)
In Section 3, we use (1.1) and results in [4] to establish identities associated with
> pln+684)q", 1=5,7 and 13,
n=0
where
1— [k
L) if k is even,
5 . = 24
Lhkr = . (1.8)
r(1 =171

o if k£ is odd
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and

H(l —-q"y —Zpr(nm” (1.9)

n=1
When (L kr) = (5,1,—1),(7,1,—1), and (13,1,—1) we obtain (1.5)~(1.7) and when (L kr) =
(5,1,=2) and (/,k,r)=(5, 1,—3) we find that
5n)4 5n)10

Y poa(5n—2)¢" = 10g H T 125 2H( —4 ot (1.10)

n=0
and
S5n )3 S5n )9

Zp (51— 3)q" =9 H( — 4 o 375 2H( _"”)12

n=0 n=1
_ 5ny\15
+3125 3H( 1 ))18 (1.11)

Identities (1.10) and (1.11) appear to be new.

2. Ramanujan’s congruences

Congruence properties of p.(n) (see (1.9)) were studied by Ramanujan, who deduced (1.2) and
(1.3) from

ps(Sn+4)=0(mod5) and pe(7n+5)=0(mod?7),
respectively. In [9], Winquist showed (1.4) by proving that
pro(1ln+6) = 0(mod 11).

Since then, many congruences have been discovered for p.(n) (see for example [2,5]). In this section,
we show that in order to obtain congruences for p.(n) of the type

p(ln—N)=0(mod!/), n=>1,
it suffices to check if / divides ty(/j), 1 <j < N, where

e} e}
M@ =g T[T =g PN =) ", g=e
n=1 n=0

Note that 7y(n) is the famous Ramanujan’s t-function.
Proof of (1.2): Tt is known that A(z) is an eigenform in & 1,(SLy(Z)), where S (SLy(Z)) denotes
the space of weight k& cusp forms invariant under SL,(Z). Hence,

A(2)|7, = (p)A(2),
where 7, is the Hecke operator defined by

o0

Y ag"| =) (alpn)+ p*la(n/p))g"
n=0

7, n=0
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with & being the weight of the modular form ) ° a,q" invariant under SL,(Z). Note that since the
coefficient of ¢° in 4(z) is 7(5) = 4830, we conclude that

A(2)|r, = 1(5)A(z) = 0(mod 5). (2.1)
We now write
oo [e.e] [ee] o0
A =q[Ja =g ] =gy =] =4y D p(n—1)g" (mod5), (2.2)
n=1 n=1 n=1 n=0
where r and s are integers. Since
o0 oo
Z anqn = Z anqn (mOd S)a
n=0 U(p) n=0 T,

P

we find by (1.1), (2.2) and (2.1) that

[Ta="> ne-1g"| =][0-¢"y>_ pGn—1)"
n=1 n=0

UGs) n=l n=0
= A(z)|r, = 0(mod 5). (2.3)
This implies that p.(57 — 1) = 0(mod 5) for all » satisfying the equation

24 =5s+r
or
Pru—ss(5n—1)=0(mod5), seZ,
which immediately yields Ramanujan’s congruences for p(5n +4) and ps(5n + 4).
Our computation shows that one only needs to know 7(5) in 4(z) in order to deduce the above
congruences. In general, we always obtain a collection of congruences of the form
Pas—is(In — 1) =0(mod /)
for each / satisfying
7(l) = 0(mod /). (2.4)

Questions involving primes satistfying (2.4) can be found in [8, 5.2(b)].
Proof of (1.3): To prove Ramanujan’s congruences for p(7n + 5), we express 4%(z)|z, in terms
of A%(z) and 4(z)Q%(g), where

O(q)=1+240)
n=1

n3qn

1—q"
This turns out to be
A*(2)|r, = —9858244(z)Q°(q) — 525803 6564%(z2). (2.5)

Note that the coefficients of A(z)Q%(g) and 4*(z) in the above identities are both divisible by 7.
Hence we conclude that

Ppag—75(7Tn —2)=0(mod 7), seZ.

In particular, we obtain (1.3), as well as the congruence for pg(7n + 5).
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It is clear from the above calculations that to obtain congruences such as
Paan—is(In — N) = 0(mod /),
it suffices to compute the image of A"V (z) under 7. If
AV(2)|r, =a1By + @By + - -+ + ayBy,

where N= dimension of ¥;(SL,(Z)), then each a; is a Z-linear combination of ty(/j) for N values
of j, 1 < j < N. For example, in order to verify that

tyv(lj) = 0(mod /)
holds, it suffices to verify it for 1 < j < N. Therefore, to prove (1.4), it suffices to check that
11 divides 75(11j), 1 <j < 5.
3. Partition identities
In this section, we give proofs of (1.5)—(1.7) and their generalizations.

We begin this section with the proof of (1.5). It is known that #(25z)/n(z) is a modular function
on Iy(25) [6], where

n@)=q"* (1 —q".
n=1

Since

2 o0 oo
D LA - s 1"
n=1 n=0

we conclude by (1.1) that

T — ™)™ p(sn— 1)g" = 1352
E( q ),;p(n =0

UGs)

Following the method illustrated in [4, Theorem 4], we find that "fijj)w(s) 1s an entire modular
function on Iy(5). It is known that these functions are polynomials in As(z) = 7°(5z2)/n%(z) [3].

Hence, we conclude immediately that

[o@) o0 6
[T -3 psn =g =520 G.1)
n=1 n=0

which is (1.5).

The proof of (1.6) and (1.7) is similar since #(/?z)/n(z) is an entire modular function on Iy(/?)
and entire modular functions on I5(7) and Iy(13) are polynomials in #*(7z)/n*(z) and #*(132)/n*(z)
[3], respectively.

The method of proof illustrated above yields the following:
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Theorem 3.1 (Lehner [4, Theorem 4]). Let | > 3 be an odd prime. Then
[Ta—=a™>" ptin+1 - 2)24)q"
n=1 n=0

is an entire modular function on I'y(1).

It is also known that U(/) sends an entire modular function f(z) on Iy(/) to an entire modular
function on Iy(/) if f satisfies the transformation formula [4, (2.2)]

f(=Viz)y=cf(z) or f(=1/lz)=c/f(2). (3.2)

This is clearly satisfied by the functions 1%(5z)/n%(z), n*(7z)/n*(z) and n*(13z)/m*(z), for [ =5,7
and 13, respectively.
In the case of / =5, we apply U(5) to the left-hand side of (3.1) to conclude that [10, (1.13)]

[Ta-4¢m>" p@2sn—1)g"
n=1 n=0

6352 <11(52)>6 5.5 (n(52)>12
n(z) n(z)
46357 <’7(52)>18 16510 <'7(52)>24+512 <'7(52)>30. (3.3)
n(z) n(z) n(z)
To obtain identities associated with higher power of 5, we first multiply

[Ta=am> p5°n—1)"
n=1

n=0

by 7(25z)/n(z) and note that each function on the right-hand side satisfies (3.2). Therefore, by
applying U(5), we conclude that

[Ta =" p(5°n—26)g"
n=1 n=0

is an entire modular function on IH(5) and is expressible in terms of /s(z). It is clear that when
we pass from an identity involving k, where k is an odd integer, to the corresponding identity for
k + 1, we only need to apply U(5) to

[T =" p(5*n+ ds.0)q",
n=1 n=0

where 05 1= 051, With J; 4, defined as in (1.8). To obtain an identity corresponding to k41 from
an identity involving k, where k is even, we have to first multiply the identity involving
o0

[T =4 p(5*n+ ds.)q"
n=0

n=1
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by n(25z)/n(z) before applying U(5). In this way, we obtain an expression for
[ee] [ee]
1A =45 p(5n + 8s.4)q"
n=1 n=0

in terms of As(z) for all k € N, with

[ if k is odd,
g = (3.4)
1 if k is even.
This method can be found in [4, Theorem 7], where the case [ =11 is discussed.

The advantage of using (1.1) to obtain partition identities is that one does not need to know the
modular behavior of the expressions such as >~ 2, p(5¥n 4+ 954)q". The method can be modified to
obtain identities for > >, p_.(5n+ 6s4,)q", where p.(n) and J,, are defined in (1.9) and (1.8),
respectively. All we have to do is to use

(n(250)/n(0))

and follow the arguments illustrated as above to conclude that []°° (1 — ¢%") >.° p_.(5n +
0s.kr)q" 1s a polynomial in As(z), where ¢&s is defined in (3.4). For (k,7)=(5,—2) and (5,—-3), we
obtain (1.10) and (1.11), respectively.
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