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Abstract

In this article, we discuss two applications of the operator U (m) (see (1.1)) de4ned on the product of two
power series.
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1. Introduction

Let m be a positive integer and de4ne the operator U (m) on a formal power series
∑∞

n=0 anq
n by

∞∑
n=0

anqn
∣∣∣∣∣
U (m)

=
∞∑
n=0

amnqn:

The operator U (m) acts on the product of two power series as follows:( ∞∑
n=0

bnqmn
∞∑
n=0

anqn
)∣∣∣∣∣

U (m)

=
∞∑
n=0

bnqn
∞∑
n=0

amnqn: (1.1)
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Relation (1.1) shows that under U (m), we may “shift” the “m” from the power of q in the 4rst
series to the subscript of the coe'cients of the second series. This fact was known to Atkin and
O’Brien [1, (28)].
In Section 2, we prove, with the aid of (1.1), Ramanujan’s famous congruences [7]

p(5n+ 4) ≡ 0 (mod 5); (1.2)

p(7n+ 5) ≡ 0 (mod 7) (1.3)

and

p(11n+ 6) ≡ 0 (mod 11); (1.4)

where p(n) denotes the number of unrestricted partitions of the nonnegative integer n.
It is obvious that (1.2) and (1.3) follows from Ramanujan’s identities

∞∑
n=0

p(5n+ 4)qn = 5
∞∏
n=1

(1− q5n)5

(1− qn)6
; (1.5)

∞∑
n=0

p(7n+ 5)qn = 7
∞∏
n=1

(1− q7n)3

(1− qn)4
+ 49q

∞∏
n=1

(1− q7n)7

(1− qn)8
: (1.6)

Identities such as (1.5) and (1.6) are more di'cult to establish than congruences (1.2) and (1.3).
In [10, (1.15)], Zuckerman obtained the following analogue of (1.5) and (1.6):

∞∑
n=0

p(13n+ 6)qn

=11
∞∏
n=1

(1− q13n)
(1− qn)2

+ 468q
∞∏
n=1

(1− q13n)3

(1− qn)4
+ 6422q2

∞∏
n=1

(1− q13n)5

(1− qn)6

+ 43940q3
∞∏
n=1

(1− q13n)7

(1− qn)8
+ 171366q4

∞∏
n=1

(1− q13n)9

(1− qn)10

+ 371293q5
∞∏
n=1

(1− q13n)11

(1− qn)12
+ 371293q6

∞∏
n=1

(1− q13n)13

(1− qn)14
: (1.7)

In Section 3, we use (1.1) and results in [4] to establish identities associated with
∞∑
n=0

p−r(lkn+ l;k; r)qn; l= 5; 7 and 13;

where

l;k; r =



r(1− lk)
24

if k is even;

r(1− lk+1)
24

if k is odd

(1.8)
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and
∞∏
n=1

(1− qn)r =
∞∑
n=0

pr(n)qn: (1.9)

When (l; k; r) = (5; 1;−1); (7; 1;−1); and (13; 1;−1) we obtain (1.5)–(1.7) and when (l; k; r) =
(5; 1;−2) and (l; k; r) = (5; 1;−3), we 4nd that

∞∑
n=0

p−2(5n− 2)qn = 10q
∞∏
n=1

(1− q5n)4

(1− qn)6
+ 125q2

∞∏
n=1

(1− q5n)10

(1− qn)12
(1.10)

and
∞∑
n=0

p−3(5n− 3)qn=9q
∞∏
n=1

(1− q5n)3

(1− qn)6
+ 375q2

∞∏
n=1

(1− q5n)9

(1− qn)12

+ 3125q3
∞∏
n=1

(1− q5n)15

(1− qn)18
: (1.11)

Identities (1.10) and (1.11) appear to be new.

2. Ramanujan’s congruences

Congruence properties of pr(n) (see (1.9)) were studied by Ramanujan, who deduced (1.2) and
(1.3) from

p4(5n+ 4) ≡ 0 (mod 5) and p6(7n+ 5) ≡ 0 (mod 7);

respectively. In [9], Winquist showed (1.4) by proving that

p10(11n+ 6) ≡ 0 (mod 11):

Since then, many congruences have been discovered for pr(n) (see for example [2,5]). In this section,
we show that in order to obtain congruences for pr(n) of the type

pr(ln− N ) ≡ 0 (mod l); n¿ 1;

it su'ces to check if l divides �N (lj), 16 j6N , where

�N (z) := qN
∞∏
n=1

(1− qn)24N =
∞∑
n=0

�N (n)qn; q= e2�iz:

Note that �1(n) is the famous Ramanujan’s �-function.
Proof of (1.2): It is known that �(z) is an eigenform in S12(SL2(Z)), where Sk(SL2(Z)) denotes

the space of weight k cusp forms invariant under SL2(Z): Hence,
�(z)|Tp = �(p)�(z);

where Tp is the Hecke operator de4ned by
∞∑
n=0

anqn
∣∣∣∣∣
Tp

=
∞∑
n=0

(a(pn) + pk−1a(n=p))qn
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with k being the weight of the modular form
∑∞

n=0 anq
n invariant under SL2(Z): Note that since the

coe'cient of q5 in �(z) is �(5) = 4830, we conclude that

�(z)|T5 = �(5)�(z) ≡ 0 (mod 5): (2.1)

We now write

�(z) = q
∞∏
n=1

(1− qn)5s
∞∏
n=1

(1− qn)r ≡
∞∏
n=1

(1− q5n)s
∞∑
n=0

pr(n− 1)qn (mod 5); (2.2)

where r and s are integers. Since
∞∑
n=0

anqn
∣∣∣∣∣
U (p)

≡
∞∑
n=0

anqn
∣∣∣∣∣
Tp

(mod 5);

we 4nd by (1.1), (2.2) and (2.1) that
∞∏
n=1

(1− q5n)s
∞∑
n=0

pr(n− 1)qn
∣∣∣∣∣
U (5)

≡
∞∏
n=1

(1− qn)s
∞∑
n=0

pr(5n− 1)qn

≡�(z)|T5 ≡ 0 (mod 5): (2.3)

This implies that pr(5n− 1) ≡ 0 (mod 5) for all r satisfying the equation

24 = 5s+ r

or

p24−5s(5n− 1) ≡ 0 (mod 5); s∈Z;
which immediately yields Ramanujan’s congruences for p(5n+ 4) and p4(5n+ 4).
Our computation shows that one only needs to know �(5) in �(z) in order to deduce the above

congruences. In general, we always obtain a collection of congruences of the form

p24−ls(ln− 1) ≡ 0 (mod l)

for each l satisfying

�(l) ≡ 0 (mod l): (2.4)

Questions involving primes satisfying (2.4) can be found in [8, 5.2(b)].
Proof of (1.3): To prove Ramanujan’s congruences for p(7n+ 5), we express �2(z)|T7 in terms

of �2(z) and �(z)Q3(q), where

Q(q) = 1 + 240
∞∑
n=1

n3qn

1− qn
:

This turns out to be

�2(z)|T7 =−985 824�(z)Q3(q)− 525 803 656�2(z): (2.5)

Note that the coe'cients of �(z)Q3(q) and �2(z) in the above identities are both divisible by 7.
Hence we conclude that

p48−7s(7n− 2) ≡ 0 (mod 7); s∈Z:
In particular, we obtain (1.3), as well as the congruence for p6(7n+ 5).
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It is clear from the above calculations that to obtain congruences such as

p24N−ls(ln− N ) ≡ 0 (mod l);

it su'ces to compute the image of �N (z) under Tl. If

�N (z)|Tl = a1B1 + a2B2 + · · ·+ aNBN ;
where N= dimension of Sk(SL2(Z)), then each ai is a Z-linear combination of �N (lj) for N values
of j, 16 j6N . For example, in order to verify that

�N (lj) ≡ 0 (mod l)

holds, it su'ces to verify it for 16 j6N . Therefore, to prove (1.4), it su'ces to check that
11 divides �5(11j); 16 j6 5.

3. Partition identities

In this section, we give proofs of (1.5)–(1.7) and their generalizations.
We begin this section with the proof of (1.5). It is known that �(25z)=�(z) is a modular function

on �0(25) [6], where

�(z) = q1=24
∞∏
n=1

(1− qn):

Since

�(25z)
�(z)

=
∞∏
n=1

(1− q25n)
∞∑
n=0

p(n− 1)qn;

we conclude by (1.1) that
∞∏
n=1

(1− q5n)
∞∑
n=0

p(5n− 1)qn = �(25z)
�(z)

∣∣∣∣
U (5)

:

Following the method illustrated in [4, Theorem 4], we 4nd that �(25z)
�(z) |U (5) is an entire modular

function on �0(5). It is known that these functions are polynomials in h5(z) := �6(5z)=�6(z) [3].
Hence, we conclude immediately that

∞∏
n=1

(1− q5n)
∞∑
n=0

p(5n− 1)qn = 5 �
6(5�)
�6(z)

(3.1)

which is (1.5).
The proof of (1.6) and (1.7) is similar since �(l2z)=�(z) is an entire modular function on �0(l2)

and entire modular functions on �0(7) and �0(13) are polynomials in �4(7z)=�4(z) and �2(13z)=�2(z)
[3], respectively.
The method of proof illustrated above yields the following:
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Theorem 3.1 (Lehner [4, Theorem 4]): Let l¿ 3 be an odd prime. Then
∞∏
n=1

(1− qln)
∞∑
n=0

p(ln+ (1− l2)=24)qn

is an entire modular function on �0(l).

It is also known that U (l) sends an entire modular function f(z) on �0(l) to an entire modular
function on �0(l) if f satis4es the transformation formula [4, (2.2)]

f(−1=lz) = cf(z) or f(−1=lz) = c=f(z): (3.2)

This is clearly satis4ed by the functions �6(5z)=�6(z), �4(7z)=�4(z) and �2(13z)=�2(z), for l = 5; 7
and 13, respectively.
In the case of l= 5, we apply U (5) to the left-hand side of (3.1) to conclude that [10, (1.13)]

∞∏
n=1

(1− qn)
∞∑
n=0

p(25n− 1)qn

=63 · 52
(
�(5z)
�(z)

)6
+ 52 · 55

(
�(5z)
�(z)

)12

+ 63 · 57
(
�(5z)
�(z)

)18
+ 6 · 510

(
�(5z)
�(z)

)24
+ 512

(
�(5z)
�(z)

)30
: (3.3)

To obtain identities associated with higher power of 5, we 4rst multiply
∞∏
n=1

(1− qn)
∞∑
n=0

p(52n− 1)qn

by �(25z)=�(z) and note that each function on the right-hand side satis4es (3.2). Therefore, by
applying U (5), we conclude that

∞∏
n=1

(1− q5n)
∞∑
n=0

p(53n− 26)qn

is an entire modular function on �0(5) and is expressible in terms of h5(z). It is clear that when
we pass from an identity involving k, where k is an odd integer, to the corresponding identity for
k + 1, we only need to apply U (5) to

∞∏
n=1

(1− q5n)
∞∑
n=0

p(5kn+ 5; k)qn;

where 5; k := 5; k;1, with l;k; r de4ned as in (1.8). To obtain an identity corresponding to k+1 from
an identity involving k, where k is even, we have to 4rst multiply the identity involving

∞∏
n=1

(1− qn)
∞∑
n=0

p(5kn+ 5; k)qn
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by �(25z)=�(z) before applying U (5). In this way, we obtain an expression for
∞∏
n=1

(1− q"5n)
∞∑
n=0

p(5kn+ 5; k)qn

in terms of h5(z) for all k ∈N, with

"l =

{
l if k is odd;

1 if k is even:
(3.4)

This method can be found in [4, Theorem 7], where the case l= 11 is discussed.
The advantage of using (1.1) to obtain partition identities is that one does not need to know the

modular behavior of the expressions such as
∑∞

n=0 p(5
kn+ 5; k)qn. The method can be modi4ed to

obtain identities for
∑∞

n=0 p−r(5kn+ 5; k; r)qn; where pr(n) and l;k; r are de4ned in (1.9) and (1.8),
respectively. All we have to do is to use

(�(25�)=�(�))r

and follow the arguments illustrated as above to conclude that
∏∞

n=1(1 − q"5n)r
∑∞

n=0 p−r(5kn +
5; k; r)qn is a polynomial in h5(z), where "5 is de4ned in (3.4). For (k; r) = (5;−2) and (5;−3), we
obtain (1.10) and (1.11), respectively.
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