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Abstract

In this article, we construct a general series for % We indicate that Ramanujan’s %-series are
all special cases of this general series and we end the paper with a new class of %—series, Our
work is motivated by series recently discovered by Takeshi Sato.

© 2003 Elsevier Inc. All rights reserved.
MSC: 11F11; 11F27; 11Y60; 33C20; 33C0S; 05A10

Keywords: Ramanujan-type series; Theta functions; Hypergeometric series; Clausen’s identity; Modular
equations; Domb’s numbers; Differential equations

1. Introduction

In [12], Ramanujan recorded a total of 17 series for 1/x, one of which is
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where
(@) =(a)(a+1)(a+k—1).

Ramanujan did not indicate how he arrived at these series but instead hinted that
some of these series belonged to what are now known, after the work of Berndt et al.
[2], as “‘the theories of elliptic functions to alternative bases’.

Ramanujan’s series for 1/m were not extensively studied until around 1987. The
Chudnovskys succeeded in extending Ramanujan’s list of series and derived the
following series which they used to compute over a billion digits of =:

6403203/ i (6k)! (13591409 + 545140134k)

— VK
_1216:0( b (k")* (3k)! 6403203k

= (1.2)

For a recent discussion of the Chudnovskys’ series, see [3].

In [6], the Borweins provided rigorous proofs of Ramanujan’s series for the first
time and derived many new series for 1/7. Both the Borweins and the Chudnovskys
admitted that Clausen’s identity, namely, [0, p. 188]

2
(zFl <a,b;a+b+;;z>) —3F2(2a,2b,a+b;a+b+;,2a+2b;z>,

plays an important role in their derivations of such series.

In this article, we will derive a general series for 1/n without using Clausen’s
identity. We will show that all the existing series for 1/n are special cases of this
general series. We will then specialize our series further to derive new classes of series
for 1/z. In particular, we will show that

AELOCNOW e o

Our work is motivated by the following series discovered recently by Takeshi Sato
[13]:2

IR
T120(4v/5 - 9)

PVIORICE BUICS

The above series shows that Clausen’s formula is probably not needed in the
derivation of Ramanujan’s series since there are no Clausen-type transformation

12k

2 The authors are grateful to S. Kanemitsu for sending the abstract of Sato’s talk which contains several
new series for 1/7.
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formula for series such as

AGIGPRS

k=0 =0 J

2. A general series for 1/n

Suppose the function Z(g) satisfies the relation
Z (e V1Is) = Z(e V), (2.1)

By differentiating (2.1) with respect to r and simplifying, we find that

@ 7271/\/KZ( 7271/\/73) anz( o r/s) (22)
n Z(e ) Z(e 1Ty
where
2(q) =42
Next, set
_ Z(q)
My(q) = Zq")’ (2.3)

Mylg) Z(0) v Z6Y)

My(q)  Z(q) Z(gV)’

which implies that

Myle) _ Z'(@)  vZ'(q")
=q — Ng 2.4
wntg) 1 zte) Mz 24
Substituting ¢ = e=>*/ VNS into (2.4) and using (2.1), we find that
27 \/]‘VT —2n \/7\7 —2n \/ﬂ 1(,—2n\/N/s
e/ M (e / ) o~ 2n/VNs Z! (e IVN ) e—2m/N/sZ (e ) (2.5)

N Z(e=2n/VNs) Z(e‘z’T\/N_/S)'
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Solving (2.5) and (2.2) with r = N, we conclude that

VNs _ 2Ne‘2”\/N_/S Z/(e—27h/N/s) e_zn/\/mM]/V(e—zn/\/m)

- Z(e*Z”\/m) + N (2.6)
At this stage, we suppose that there exist functions X (¢) and U(g) such that
Zlg) =Y 4X ), AceQ )
and
P~ v x(@)2(0) 28)

Relations (2.3) and (2.7) also imply that My may be expressed as a function of two
variables, namely,
My = My(X(q), X (¢")). (2.9)

We may also assume that X (g) and X (¢") satisfy a polynomial relation and hence,
using (2.8), (2.1) and (2.7), we deduce that
67271/li/\] (67271/\/]VE)

N
_ 1,4 dMy(X(q), X ("))
N dg dX(q) eIV
U an VRS v —2m VRS (2 Ey @M (X (9), X (q™))
—U 2n/v/Ns X 2n/v/Ns Z 21/v/Ns N
e e 7 T
— U(672n/\/NE)X(672n/\/N§)Z(6727n/N/A‘)dMN(X(q)? X(qN))
X(q) — o2/ VR
- - dMy(X(q), X (4V))
= U ZH/M X Zn/M\ N
(e ) (e ] dX(q) o)V
XY ARX (e VD), (2.10)
k=0

This simplifies the second term on the right-hand side of (2.6). Next, by (2.7) and
(2.8), we find that

qZ'(q) Z kA X5 (q)q X' (q)
k=0

o0

=) kA X* Q) U(9)X (9)Z(q).

k=0
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Hence,

N
—
R
~—

8

_ - k
Z@) U(q) 2 kArX"(q). (2.11)

Substituting ¢ = e~ >"V/ into (2.11) and combining with (2.10) and (2.6), we deduce
the following result:

Theorem 2.1. Suppose Z(q) satisfies (2.1) and let My(q), X(q), Ax and U(q) be
defined as in (2.3), (2.7) and (2.8). Then

0
(byk )A Xk 2.12
\/;271 ; vk 4+ an)Ar Xy, ( )
where
72n/\/m dM
_ 727!/\/]% X(e ) N/ N
ay = U(e ) 2N dX(q)\X(q)vX(q ))|q:6727£/\/N_57
by = U(672n\/N/S)’
and

Xy = X(ef2n\/N/s).

We end this section by listing s, x, Z, U and A; which correspond to
Ramanujan’s series for 1/z. In Table 1, x is given by the relation

X =4x(1 — x),
(1—q*
k=1
and
. 0’
jlq) = 1728 ———,
@ q/*(—9)
where

0 k3k

Q::1+24OZI_—qk
k=1

In the next section, we will illustrate how we derive the fourth class of series without
using Clausen’s identity. We will then give a new proof of (1.1).
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Table 1

s X Z U Ay
(1 l1728> Vo I—2x 3 ©) @)
(k)’
2\ ! _ N = 2x () @),0)
VA f(=4) 2 Wik
) ey (i) (kD)
1 2

)
3 E1 s (/{ (-9) ) '2> B (S ) ’ I=2x (E)k((]j!))g ()
(i)

) (S a™)’ O

3. Ramanujan’s series for 1 /7 associated with the Jacobian theta functions

Let Z(q) = ¢*(q) where

o@)= 3 ¢*

k=—o0

Note that Z(g) satisfies the transformation formula [1, p. 43, Entry 27(i)]

NZ(e™N) = Z(e V), (3.1)
and hence, s = 4.
It is known that if>
V(e
x=x(q) = , 3.2
(9) W0 (3.2)
with
i k(k+1)/2
Y(g)=) 4 ;
k=0

then z = z(q) = ¢*(¢q) and x satisfy the differential equation [15, p. 54, (3.83)]

d’z dz z

Substituting z = v/Z and X = 4x(1 — x) into (3.3), we deduce that*

3
93(2) = X<9X + %) (2), (3.4)

3Our x given here is equal to the x given in the Table 1.
4The calculations are tedious but straightforward.
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where the operator
Iy =X—.
YT ax

If

Z = f: A XF,
k=0

then (3.4) yields a recurrence relation satisfied by 4, and we deduce immediately that

(k>

In other words, we find that
111
Z=3F=-==1,1;X]).
3 2(27272a 5 Ly )
It is also known that [1, p. 120, Entry 9(i)]
ax
qg— =ZX(1 —2x),
which means that

U(g) =1 - 2x(q).

By (3.6), we find that if ¥ = X(¢") and y = x(¢"), then
dX 1, X1-2
dY N Ny1-2y
Squaring (3.7), we deduce that

YX(1-Y) [(dX\*
2 __ ar2 hi
My =N X2(1 - X) (dY) '

From the above relation, ‘ZM—XN can be computed explicitly once we
modular relation satisfied by X and Y.

We now give an explicit series for 1/z. First, from (3.1) and [1, p. 43,

we find that
ap*(e*) = Bo*(eP),
and

160e (e ) = fo*(—e "),

(3.8)

compute the

Entry 27(i1)],
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if of = n%. By (3.2) and the above relations,

x(e™VF) = "m. (3.9)
Using the famous Jacobi identity [1, p. 40, Entry 25(vii)],
¢*(q) — ¢*(—q) = 160y (4),
we conclude that
x(e_”/‘/ﬁ) =1- x(e_”‘/ﬁ). (3.10)

Now, let N = 3, then from Ramanujan’s modular equation [1, p. 230, Entry 5(ii)]

(x(a)x(g")"* + (1= x(@) (1 = x(¢))* =1,

and (3.10), we find that
,n/\/§ 1
X(e ) = T (3.11)
Solving (3.11) for x, we deduce that

x(e—nﬂ) — _

(3.12)

oI —
b

Next, one can show that X = X(¢) and Y = X(¢*) satisfy the relation’

— 4096 XY + 4608X%Y +4608XY? — 900X Y + 28422X2Y?

—900XY? +4608X3Y? +4608X%Y> —4096X° Y + X* + Y* = 0.

Differentiating the above relation with respect to Y and substituting the result into
(3.8), we obtain an expression of M3 in terms of X and Y. Differentiating the
resulting relation with respect to X and using (3.11) and (3.12), we conclude that

V3 V3

asz = E and b3 = 7

This gives Ramanujan’s series (1.1).

5 This modular equation can be proved using [, p. 231, Entry 5(xii)].
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4. A new class of series for 1/n

From the last section, we find that in order to derive a new class of series different
from that of Ramanujan, one needs to seek new pair of functions X and Z. In this
section, we will construct a new class of series for 1/z and derive (1.3). Series similar
to (1.3) where all the coefficients in the sum are rational are very rare. It turns out
that Ramanujan nearly exhausted all these series in [12]. The Chudnovskys® and the
Borweins’ constructed several such series for 1/7 associated with the first and second
type of series in Table 1, respectively. Recently, Chan et al. added a total of six such
series [8] associated essentially to the third type of series in Table 1.

Let

(f(=q)f (=)
(f(=g)f (—¢))*

7 =

and
(A (=N
X _q(f(—q)f(—fﬁ)) |

From our discussion in Section 3, we need to determine U(g) and A. It follows from
[4, Theorem 10.6]

d_X

= ZX\/(4X + 1)(16X + 1) (4.1)

that

U(g) = V(X + 1)(16X + 1). (4.2)

To determine Ai, we need to establish the differential equation satisfied by
Z and X.
Let

1 1 (=g
=1 ST (4.3)

The differential equation satisfied by

" 2
u=4t(1-1) and f= ( Z qm2+m”+”2>

mpn=— oo

%The Chudnovskys’ series (1.2) yields the fastest convergent series for 1/7 which involves only rational
coefficients.
"See [5, p. 145] for the two series missed by Ramanujan.
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is

$f = u <9u + %) (9u + %) <9u + %) ). (44)

The proof of (4.4) is similar to that of (3.4) but instead of using (3.3), we use the
differential equation [7, p. 200]

d’z dz 2

where z? = f. Incidently (4.4) is the differential equation needed to determine A4y in
the third type of series in Table 1. Our method of deriving a differential equation
satisfied by Z and X is to first establish the identities

f=2z(1+16X) (4.5)
and
108X

Using (4.5) and (4.6), we conclude that

(1+16X)*9xZ + 16X (1 + 16X)Z

= 4.
$f "% ; (4.7)

1+16X

9f = _{(1-768X> —8192X3)9% 7

uf (1 —32X)3{( ) X
+ (80X +256X7 — 16384X°)9xZ + (16X + 512X* — 8192X%)Z}  (4.8)

and

1+16X

9 f = + 16

(1-32x)°
x {(1 — 16X — 1280X? + 4096X" 4 524288 X* 4- 4194304X°)93,Z

+ (192X — 1536 X% — 147456 X7 — 393216 X* + 12582912X°)9%.Z
+ (96X + 8448X% — 12288X°> — 1179648 X* + 12582912X°)9yZ

+ (16X +2560X% + 24576 X° — 524288 X* 4 4194304X°)Z}. (4.9)
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Substituting (4.7)-(4.9) into (4.4) and simplifying, we immediately obtain the
differential equation

(1 420X +64X%)93Z + (192X2 4+ 30X) 9% Z
+ (192X? + 18X)9x Z + (64X* +4X)Z = 0, (4.10)

where 3y = X%. For an alternative proof of (4.10), see [16].
It remains to establish (4.5) and (4.6). From definition (4.3), we find that

1 1 27
24 __pobL =
u +27 +P67
where
16 S (=9)
P=q/ .
f2(=4%)

Identity (4.6) then follows immediately from [4, Lemma 10.3, (10.4)]

27\ (1+16X)°
3 _
(p+ )_ Lox)

To prove (4.5), recall from [7, p. 200] that

qZ—Z:fuvl—u. (4.11)

This is the analogue of (3.6). From (4.6), we find that

du _ 108%. (4.12)
ax (1+16X)

Combining (4.12), (4.11), (4.6) and (4.1), we conclude that
f=Z(1+16X),

which is (4.5).
Now, from (4.10), we conclude that if

7= i A X*,
k=0

then A satisfies the difference equation

I3 Ay + 22k — 1) (5k% — 5k +2) A1 + 64(k — 1)° 4, = 0. (4.13)
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A check with Sloane’s Online sequences [14] shows that

SO e

This sequence appears to be first discovered by Domb [9]. The fact that this sequence
satisfies the recurrence (4.13) can be verified using the method of creative telescoping
implemented in D. Zeilberger’s MAPLE programme EKHAD [11, Chapter 7]. More
precisely, Zeilberger’s programme produces the function

R(k,j) = — (12k> + 62k* 4 104k + 56 — 26k*j — 89kj — 74j

4k + 12k -2+ 1
(k+1—=j)y(k+2—j)

which satisfies the relation
(k+ 21k +2,)) + 22k +2) = 1)(5(k +2)* = 5(k +2) + 2)f (k + 1,j)

+64(k + 1)/ (k,j) = Rkoj + Df (k. j+ 1) = R(k,j)f (k. j), (4.15)

) kN 20k =)\ (2
ren=cor (D) (L))
J k—j J
Summing (4.15) for j from 0 to k + 2 completes the proof that A, satisfies (4.13).

We now turn to the proof of (1.3). First, we let Z = Z(—¢). Then from the
transformation formulas [1, Entry 27(iii), (iv)]

where

e Yo f(—e ) = e P12YBf(—e ) (4.16)
and
Yo f () = e PP B (e P, (4.17)

where aff = n?, we deduce that
Z(e VY = NZ(e VN, (4.18)

This shows that s = 12. We may now apply Theorem 2.1 with the functions Z and
X = —X(—¢q). Note that
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and hence our corresponding

e (AR

From (4.2), we have

U(q) = /(1 — 4X)(1 — 16X).

In addition, if

then the analogue of (3.8) is

S Y21 - 4Y)(1 - 16Y) (dX)
My _N2x2(1 —4X)(1 - 16X) (d_Y> ’ (419)

where Y = X(—¢").
Now let N = 5. We have®

O(X,Y) =X® + Y° 4 30XY? + 30X%Y — 285XY? — 285X°Y + 970X*Y
+970XY* — 990XY?> — 990X°Y — 930X%Y? — 930X°Y? — 25665X>Y*
— 25665X*Y? 4 62080X%Y> 4 62080X°Y? 4 92860X°Y? — 59520X°Y*
— 59520X*Y? — 1167360X°Y> — 1167360X°Y? + 7864320X*Y?
+ 7864320X°Y* — 16777216X°Y° — XY

+ 815X%Y? + 3338240X*Y* = 0. (4.20)
When ¢ = e=™/V15, then from (4.16) and (4.17), we find that
X(e V) = X(e V) = Y(e V),

This shows that X(e~"/V15) is a root of the polynomial &(T,T) where @ is given by
(4.20). This polynomial factors as

—T*(T — 1)(64T — 1)(64T% — 11T + 1)(64T> + 1)(1 + 8T)?,

8 This can be verified using Ramanujan’s modular equation of degree 5 in the theory of signature 3 [2].
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and a quick check shows that

1
X(e ™V = —. 421
(eVB) = (421)
Next, from (4.20), we can compute % and substitute the result into (4.19).
Differentiating the result with respect to X and using (4.21) and (4.18), we
conclude that

M
dMy — 128, (4.22)
dX q:e*“/\/ﬁ
With these values, we conclude that
3
a, = —— and bn:3—\/§.
85 8

Substituting these values into Theorem 2.1 yields (1.3).
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