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1. Introduction

The Rogers–Ramanujan continued fraction is defined by

R(q) =
q1/5

1 +
q

1+
q2

1 +
q3

1 + · · ·,

∗This work was done during the first author’s visit to East China Normal University. The trip was

funded by the International Academic Exchange Fund from East China Normal University.
†The second author was supported in part by Shanghai Priority Academic Discipline and the
National Science Foundation of China.

33



July 8, 2005 11:43 WSPC-203-IJNT/Int. J. Number Theory-J064 00001

34 H. H. Chan, Z.-G. Liu & S. T. Ng

with real |q| < 1 and q1/5 being the real fifth root of q. The continued fraction R(q)
can be expressed as [11, p. 42]

R(q) = q1/5 f(−q,−q4)
f(−q2,−q3)

(1.1)

where

f(a, b) :=
∞∑

k=−∞
ak(k+1)/2bk(k−1)/2,

with |a| < 1 and |b| < 1.
One of the most important identities associated with R(q) in the form (1.1) is

[11, p. 45]

1
R(q)

− R(q) − 1 = q−1/5 f(−q1/5)
f(−q5)

(1.2)

with

f(−q) =
∞∏

k=1

(1 − qk).

An application of (1.2) is the explicit evaluation of R(q) at q = e−2π
√

n, where n is a
positive rational number. For example, when n = 1, the right-hand side of (1.2) has
value

√
5 by the famous transformation formula satisfied by f(−q) [2, p. 43, Entry

27(iii)]. Solving for R(e−2π) using (1.2), we derive Ramanujan’s famous continued
fraction

R(e−2π) =

√
5 +

√
5

2
− 1 +

√
5

2
.

One of the first few proofs of (1.1) appeared in [11, p. 45]. It was established
using a variant of the quintuple product identity

f(B3q, q5/B3) − B2f(q/B3, B3q5) = f(−q2)
f(−B2,−q2/B2)

f(Bq, q/B)
. (1.3)

For a short history of (1.3), we refer the reader to [2, p. 83].
There are other applications of (1.3). For example, by multiplying two identi-

ties arising from the quintuple product identity, Kang [6] established the Winquist
identity [13]

∞∑
m=−∞

∞∑
n=−∞

q3m2+3n2+3m+n

×(a−3mb−3n − a−3mb3n+1 − a−3n+1b−3m−1 + a3n+2b−3m−1)

= (q2; q2)2∞(a, a−1q2, b, b−1q2, ab, a−1b−1q2, ab−1, a−1bq2; q2)∞, (1.4)
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where

(a1, a2, . . . , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞,

with

(a; q)∞ =
∏
k≥1

(1 − aqk−1).

Another recent application of (1.3) appears in the proofs of new identities that arise
from the study of cranks [3]. An example of these identities is [3, Theorem 4.2]

∞∑
k=−∞

(−1)kqk(k+1)/2 qk − 1
1 + q3k + q6k

= q(q; q)∞
f(−q3,−q24)f(−q12,−q15)

(q27; q27)∞
.

In Sec. 2, we give proofs of (1.3) and one of its generalizations due to Liu using
the theory of elliptic functions. In Sec. 3, we use the same method to establish
Hirschhorn’s product identity

(q2, q2, x, q2/x; q2)∞(q2x2, q2/x2, x2, q4/x2; q4)∞

=
∞∑

m=−∞
(−1)mq5m2+m

( ∞∑
k=−∞

(−1)kq5k2+3kx5k+3 +
∞∑

k=−∞
(−1)kq5k2−3kx5k

)

−
∞∑

m=−∞
(−1)mq5m2+3m

×
( ∞∑

k=−∞
(−1)kq5k2+kx5k+2 +

∞∑
k=−∞

(−1)kq5k2−kx5k+1

)
. (1.5)

Identity (1.5) is previously known as the Farkas–Kra septuple identity, named after
H. M. Farkas and I. Kra, who discovered it in 1999 [4]. However, in [8], Liu indicated
that the identity was discovered much earlier by Hirschhorn [5, (3.1)]. As such, we
shall refer to (1.5) as the Hirschhorn identity.

In Sec. 4, we prove one of Liu’s identities and establish the Winquist iden-
tity (1.4).

2. A Proof of the Quintuple Identity

Let q = eπiτ and Im(τ) > 0. Define

θ1(u|τ) = −iq1/4
∞∑

k=−∞
(−1)kqk(k+1)e(2k+1)iu
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and

θ4(u|τ) =
∞∑

k=−∞
(−1)kqk2

e2kiu.

Using the arguments in [2, p. 82] and the Jacobi triple product formula
[12, pp. 469–472]

θ1(u|τ) = 2q1/4 sin u(q2; q2)∞(q2e2iu; q2)∞(q2e−2iu; q2)∞, (2.1)

we can rewrite (1.3) as (see the last paragraph of [2, p. 82])

(q2; q2)∞
θ1(2u|τ)
θ1(u|τ)

= eiuθ4

(
3u +

πτ

2
|3τ
)

+ e−iuθ4

(
3u − πτ

2
|3τ
)

. (2.2)

The quintuple formula in the form (2.2) appeared in Liu’s paper [7, Theorem 4]. An
alternative but equivalent form of (2.2) can be found in [1, (1.6)], where the iden-
tity was proved using a well-known identity satisfied by the Weierstrass σ-function
[1, (3.1)].

We now proceed to give a proof of (2.2) different from those given in [7] and
[1, (1.6)]. Using the transformation formulas

θ1(u + π|τ) = −θ1(u|τ), θ1(u + πτ |τ) = −q−1e−2iuθ1(u|τ),

θ4(u + π|τ) = θ4(u|τ) and θ4(u + πτ |τ) = −q−1e−2iuθ4(u|τ),

we find that the functions

G(u) :=
θ1(2u|τ)
θ1(u|τ)

, g(u) := eiuθ4

(
3u +

πτ

2
|3τ
)

, g(−u) := e−iuθ4

(
3u − πτ

2
|3τ
)

satisfy the relations

f(u + π) = −f(u) and f(u + πτ) = −q−3e−6iuf(u). (2.3)

Therefore, the functions

f1(u) := g(u)/G(u) and f2(u) := g(−u)/G(u)

are both elliptic functions with periods π and πτ . The function θ1(2u|τ) has zeros
at 0, π/2, πτ/2, and (π + πτ)/2 but f1(u) and f2(u) are analytic at u = 0 since
u = 0 is also a zero of θ1(u|τ). Hence, the functions f1(u) and f2(u) have simple
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poles at π/2, πτ/2, (π+πτ)/2, which are the remaining zeros of θ1(2u|τ) in a period
parallelogram. In general, linear combinations of these two functions would not give
us an expression independent of u. However, since the function g(u) satisfies (2.3),
we find that

g
(π

2

)
+ g

(
−π

2

)
= 0 and g

(πτ

2

)
+ g

(
−πτ

2

)
= 0. (2.4)

Hence f1(u) + f2(u) is an elliptic function with at most one pole and we conclude
that the function must be independent of u. Hence,

A(q)
θ1(2u|τ)
θ1(u|τ)

= eiuθ4

(
3u +

πτ

2
|3τ
)

+ e−iuθ4

(
3u − πτ

2
|3τ
)

, (2.5)

for some A(q) independent of u.
To determine A(q), we substitute u = 0 into (2.5) and deduce that

A(q) = θ4

(πτ

2
|3τ
)

= (q2; q2)∞,

where the last equality follows from

θ4(u|τ) = (q2; q2)∞(qe2iu; q2)∞(qe−2iu; q2)∞. (2.6)

Identity (2.6) is a variant of (2.1) [12, p. 469].
We may replace g(u) in our proof by any entire function h(u) satisfying (2.3).

The function h(u) would have zeros at u = π/2 and πτ/2 (see (2.4)) and by exactly
the same argument as above, we deduce that

h(u) + h(−u) = h(0)
θ1(2u|τ)
θ1(u|τ)

. (2.7)

The above generalization of (2.2) is due to Liu [10, Theorem 2] and first proved
using the residue theorem.

There are several ways of proving (1.3). One of the most popular methods is to
use the properties of the product on the left-hand side of (1.3) to determine the
power series of the right-hand side of (1.3). However, such a method does not allow
us to deduce the generalization (2.7). There are many applications of (2.7). For
more details, see [8].

3. The Hirschhorn Product Identity

To prove (1.5), we first set x = e2iu. We can then rewrite (1.5) as

−q−1/2θ1(u|τ)θ1(2u|τ)

=
∞∑

m=−∞
(−1)mq5m2+m

(
e−3iuθ4

(
5u − 3πτ

2
|5τ

)
+ e3iuθ4

(
5u +

3πτ

2
|5τ

))

−
∞∑

m=−∞
(−1)mq5m2+3m

(
eiuθ4

(
5u +

πτ

2
|5τ

)
+ e−iuθ4

(
5u − πτ

2
|5τ

))
.

(3.1)
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To prove (3.1), we observe that the functions

H(u) = θ1(u|τ)θ1(2u|τ),

h1(u) = e−3iuθ4

(
5u − 3πτ

2
|5τ

)
, h1(−u) = e3iuθ4

(
5u +

3πτ

2
|5τ

)
,

h2(u) = eiuθ4

(
5u +

πτ

2
|5τ
)

and h2(−u) = e−iuθ4

(
5u − πτ

2
|5τ
)

satisfy

f(u + π) = −f(u) and f(u + πτ) = −q−5e−10iuf(u). (3.2)

Hence the functions h3(u)/H(u) and h4(u)/H(u), where

h3(u) := h1(u) + h1(−u) and h4(u) := h2(u) + h2(−u),

are even elliptic functions with periods π and πτ having a double pole at u = 0 and
simple poles at π/2, πτ/2 and (π + πτ)/2.

Now, since h1(u) and h2(u) satisfy (3.2), we deduce that h3(u) and h4(u) vanish
at u = π/2 and πτ/2.

Next, we hope to find two expressions α and β such that αh3(u) + βh4(u) have
a zero of order at least two at u = 0. Since h3(u) and h4(u) are even, it suffices to
remove the constant term in αh3(u)+βh4(u). An obvious choice is to set α = h4(0)
and β = −h3(0). Hence, h5(u) = h4(0)h3(u) − h3(0)h4(u) has a double zero at
u = 0 and vanishes at u = π/2 and πτ/2. As a result, the function h5(u)/H(u) is
an elliptic function that can have at most one pole and hence, must be independent
of u. Therefore, we must have

B(q)θ1(u|τ)θ1(2u|τ)

=
∞∑

m=−∞
(−1)mq5m2+m

(
e−3iuθ4

(
5u − 3πτ

2
|5τ

)
+ e3iuθ4

(
5u +

3πτ

2
|5τ

))

−
∞∑

m=−∞
(−1)mq5m2+3m

(
eiuθ4

(
5u +

πτ

2
|5τ

)
+ e−iuθ4

(
5u − πτ

2
|5τ

))
,

(3.3)

for some function B(q).
To determine the constant B(q), we first observe that

e−3iuθ4

(
5u − 3πτ

2
|5τ

)
+ e3iuθ4

(
5u + 3

πτ

2
|5τ

)

= 2
∞∑

k=−∞
(−1)kq5k2+3k cos(10k + 3)u, (3.4)

and

eiuθ4

(
5u +

πτ

2
|5τ

)
+ e−iuθ4

(
5u − πτ

2
|5τ

)

= 2
∞∑

k=−∞
(−1)kq5k2+k cos(10k + 1)u. (3.5)
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Substituting u = π/5 into (3.4) and (3.5) and using (2.6), we find that the right-
hand side of (3.3) is

2
(

cos
(

3π

5

)
− cos

(
π

5

)) ∑
m,k∈Z

(−1)m+kq5m2+m+5k2+3k

= −4 sin
(

2π

5

)
sin
(

π

5

)
θ4

(
πτ

2
|5τ

)
θ4

(
3πτ

2
|5τ

)

= −4 sin
(

2π

5

)
sin
(

π

5

)
(q10, q6, q4, q10, q2, q8; q10)∞

= −4 sin
(

2π

5

)
sin
(

π

5

)
(q2; q2)∞(q10; q10)∞. (3.6)

On the other hand, by (2.1) and the identity

(1 − x)(1 − e2πi/5x)(1 − e−2πi/5x)(1 − e4πi/5x)(1 − e−4πi/5x) = (1 − x5),

we find that

θ1(π/5|τ)θ1(2π/5|τ)

= 4q1/2 sin
(

2π

5

)
sin
(π

5

)
(q2, q2, q2e2πi/5, q2e−2πi/5, q2e4πi/5, q2e−4πi/5; q2)∞

= 4q1/2 sin
(

2π

5

)
sin
(

π

5

)
(q2; q2)∞(q10; q10)∞. (3.7)

Combining (3.3), (3.6) and (3.7), we conclude that

B(q) = −q−1/2

and this completes the proof of (3.1).
The Hirschhorn identity in the form (3.1) is slightly different from that given in

[8, (1.4)], where the right-hand side is expressed in terms of θ1 instead of θ4.
We may also replace h1(u) and h2(u) by any two entire even functions g1(u)

and g2(u) satisfying (3.2) and deduce that

C(q)θ1(u|τ)θ1(2u|τ) = g2(0)(g1(u) + g1(−u)) − g1(0)(g2(u) + g2(−u)),

for some C(q) independent of u. The above generalization, which is due to Liu
[8, Theorem 1] and first proved using the residue theorem, can be proved in exactly
the same way as in the proof of (3.1).

In the proof of (3.1), we need several identities to determine B(q). In general,
the determination of C(q) in closed form is usually very challenging. We end this
section by stating an identity which is a consequence of (3.1). By comparing the
coefficients of u2 on both sides of (3.1) using (3.4) and (3.5), we deduce Hirschhorn’s
identity [5] for (q2; q2)6∞:

8(q2; q2)6∞ =
∑

m,n∈Z

(−1)m+n
(
q5m2+m+5n2+3n(10n + 3)2

− q5m2+3m+5n2+n(10n + 1)2
)
. (3.8)
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It is not surprising that this identity gives rise to one of Ramanujan’s famous par-
tition congruence (the key is to solve for pairs (m, n) for which (5m2 + 3m + 5n2 +
n)/2 + 2 ≡ 0 (mod 7))

p(7n + 5) ≡ 0 (mod 7).

4. A New Proof of the Winquist identity

In this section, we first show that the Winquist identity (1.4) follows from [9, The-
orems 4 and 7]a

(x, q2/x, y, q2/y, y/x, q2x/y, xy, q2/xy, q2, q2, q2, q2; q2)∞

= (q2; q2)2∞
∞∑

n=−∞
(−1)nq3n(n−1)y3n

∞∑
m=−∞

qm(m−1)/3xm

− yx−1(q2; q2)2∞
∞∑

n=−∞
(−1)nqn(n−1)/3yn

∞∑
m=−∞

(−1)mq3m(m−1)x3m. (4.1)

We first observe that
∞∑

m=−∞
(−1)mqm(m−1)/3um

=
∞∑

k=−∞

(
(−1)3kqk(3k+1)(u−3k + u3k+1) + (−1)3k+2q(3k+2)(3k+1)/3u3k+2

)
.

Hence, if we write the first and second term in the right-hand side of (4.1) as T1

and T2 respectively, we find that

T1 = (q2; q2)2∞

( ∑
n,k∈Z

(−1)n+kq3n2+3n+3k2+k(y−3nx−3k − y−3nx3k+1)

+ (−1)n+kq3n2+3n+3k2+3k+2/3y−3nx3k+2

)

and

T2 = (q2; q2)2∞

( ∑
n,k∈Z

(−1)n+kq3n2+3n+3k2+k(y−3k+1x−3n−1 − y3k+2x−3n−1)

+ (−1)n+kq3n2+3n+3k2+3k+2/3y3k+3x−3n−1

)

with x = b and y = a we find that T1 − T2 is precisely the left-hand side of (1.4).

aThis observation is also made independently by Hirschhorn.
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The advantage of writing Winquist’s identity (1.4) in the form (4.1) is that the
latter is a direct consequence (see the proof of [9, Theorem 7]) of (2.1) and the
following identity [9, Theorem 4]):

q1/6(q2; q2)2∞(θ1(u|τ/3)θ1(3v|3τ) − θ1(v|τ/3)θ1(3u|3τ))

= θ1(u|τ)θ1(v|τ)θ1(u − v|τ)θ(u + v|τ). (4.2)

Identity (4.2) is proved in [9] using the residue theorem. We now establish (4.2) in
the same way as the identities proved in the previous sections.

The functions (viewed as a function of u)

θ1(u|τ/3), θ1(3u|3τ), θ1(u|τ)θ1(u − v|τ)θ1(u + v|τ)

satisfy the functional equations

f(u + π) = −f(u) and f(u + πτ) = −q−3e−6iuf(u).

Hence,

F1(u) =
θ1(u|τ)θ1(u + v|τ)θ1(u − v|τ)

θ1(u|τ/3)
and F2(u) =

θ1(3u|3τ)
θ1(u|τ/3)

are elliptic functions with only two simple poles at u = πτ/3 and −πτ/3. Note that
F1/F2 is not independent of u since the zeros of F1 and F2 are different. Therefore,
we conclude that there must exist C1(v) = C1(v, q), C2(v) = C2(v, q) such that
the elliptic function C1(v)F1(u)+C2(v)F2(u) has only one pole. It follows that this
elliptic function must be independent of u and hence,

C1(v)θ1(u|τ/3) + C2(v)θ1(3u|3τ) = C3(v)θ1(u|τ)θ1(u + v|τ)θ1(u − v|τ), (4.3)

for some function C3(v) = C3(v, q). Let u = v in (4.3). Then we find that

C1(v)θ(v|τ/3) + C2(v)θ(3v|3τ) = 0.

Hence

C1(v) = −C2(v)
θ1(3v|3τ)
θ1(v|τ/3)

.

We can therefore rewrite (4.3) as

−C2(v)θ(3v|3τ)θ1(u|τ/3) + C2(v)θ1(v|τ/3)θ1(3u|3τ)

= C3(v)θ1(v|τ/3)θ1(u|τ)θ1(u + v|τ)θ1(u − v|τ). (4.4)

Since (4.4) holds for any u and v, we can interchange u and v and deduce that

−C2(u)θ(3u|3τ)θ1(v|τ/3) + C2(u)θ1(u|τ/3)θ1(3v|3τ)

= C3(u)θ1(u|τ/3)θ1(v|τ)θ1(u + v|τ)θ1(v − u|τ). (4.5)

Dividing (4.4) by (4.5) and simplifying, we find that

C2(v)θ1(v|τ)
C3(v)

=
C2(u)θ1(u|τ)

C3(u)
.
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Hence, the expression C2(x)θ1(x)/C3(x) must be independent of x and we must have

C2(v) =
C3(v)
θ1(v|τ)

C(q)

for some function C(q). We conclude that

C(q)(− θ1(u|τ/3)θ1(3v|3τ) + θ1(v|τ/3)θ1(3u|3τ))

= θ1(u|τ)θ1(v|τ)θ1(u − v|τ)θ(u + v|τ). (4.6)

By comparing the coefficients of v on both sides of (4.6), we find that

C(q) (−3θ′1(0|3τ)θ1(u|τ/3) + θ′1(0|τ/3)θ1(3u|3τ)) = θ′1(0|τ)θ3
1(u|τ). (4.7)

Let u = π/3 in (4.7). Using the identities (see [12, pp. 469–472] for the proofs of
these identities)

θ′1(0|τ) = 2q1/4(q2; q2)3∞,

θ1(π|3τ) = 0

and

θ1(π/3|τ) =
√

3q1/4(q6; q6)∞,

we conclude that

C(q) = −q1/6(q2; q2)2∞

and this completes the proof of (4.2).
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