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1. Introduction

The Jacobi theta functionθ3(z | τ) is defined as

θ3(z | τ) =
∞∑

m=−∞
qm2

e2miz, q = eπiτ , with Im τ > 0. (1.1)

On p. 54 of his Lost Notebook [12], S. Ramanujan recorded the following statement (
lated here in terms ofθ3(z | τ)):

Theorem 1.1. For any positive integern � 2,
n−1∑
k=0

qk2
e2kizθn

3 (z + kπτ | nτ) = θ3(z | τ)Fn(τ ). (1.2)

Whenn � 3,

Fn(τ) = 1+ 2nqn−1 + · · · . (1.3)

The first proof of Theorem 1.1 was given by Rangachari [13]. The statement wa
proved by Son [15] using an entirely different method.

In [13], Rangachari also discussed Ramanujan’s explicit expressions ofFn for n =
2,3,4,5 and 7. Whenn is a prime, Rangachari established Ramanujan’sFn by first show-
ing that ifp is a prime, then

Fp(τ) = ΘA∗
p−1

(pτ), (1.4)

whereA∗
p−1 is the dual of the root lattice,

Ap−1 =
{

x ∈ Zp

∣∣∣∣
p∑

i=1

xi = 0

}
,

and

ΘL(τ) =
∑
x∈L

qx·x.

The primality condition in Rangachari’s result (1.4) was subsequently remove
Chua [4].

After the work of Rangachari and Son, Ono [11], Ahlgren [1] and Chua [4,5] dev
several papers to the evaluations ofFn(τ) for other integersn not found in Ramanujan’
work. These authors quoted Ramanujan’s assertion but did not realize that Ranga
proof of (1.3) is incorrect.

In this paper, we will give a proof of (1.2) and possibly the first proof of (1.3). We
also establish results similar to Theorem 1.1 withθ3(z | τ) replaced by

θ1(z | τ) = −iq1/4
∞∑

m=−∞
(−1)mqm(m+1)e(2m+1)iz,

θ2(z | τ) = q1/4
∞∑

qm(m+1)e(2m+1)iz,
m=−∞
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ir con-

s the
or

θ4(z | τ) =
∞∑

m=−∞
(−1)mqm2

e2miz.

At the end of the paper, we define analogues of Dixon’s functions and discuss the
nection with recent results of Conrad [6].

2. Proof of Theorem 1.1

In this section, we will establish (1.2), followed by (1.3).

Proof of Theorem 1.1. From (1.1), we find that

θ3(z + π | τ) = θ3(z | τ) and θ3(z + πτ | τ) = q−1e−2izθ3(z | τ). (2.1)

Let f (z) be the left-hand side of (1.2). Then

f (z + πτ) =
n−1∑
k=0

qk2
e2ki(z+πτ)θn

3

(
z + (k + 1)πτ | nτ

)

= q−1e−2iz

n−1∑
k=0

q(k+1)2
e2(k+1)izθn

3

(
z + (k + 1)πτ | nτ

)
. (2.2)

Replacingk + 1 to k, we find that

n−1∑
k=0

q(k+1)2
e2(k+1)izθn

3

(
z + (k + 1)πτ | nτ

) =
n∑

k=1

qk2
e2kizθn

3 (z + kπτ | nτ). (2.3)

Using the second identity in (2.1), we find that

qn2
e2inzθn

3 (z + nπτ | nτ) = θn
3 (z | nτ). (2.4)

Combining (2.2)–(2.4), we deduce that

f (z + πτ) = q−1e−2izf (z). (2.5)

Using the first identity, we find that

f (z + π) = f (z). (2.6)

From (2.1), (2.5) and (2.6), we deduce thatf (z)/θ3(z | τ) is an elliptic function with pe-
riodsπ andπτ . It is well known thatθ3(z | τ) has only a simple zero atz = (π + πτ)/2
in the period parallelogram. Hencef (z)/θ3(z | τ) is a constant, sayFn(τ), since it is an
elliptic function with only one simple pole in a period parallelogram. This conclude
proof of (1.2). Rangachari proved (1.2) by first proving it for oddn and then for evenn.
This is not necessary as shown in the above proof. However, whenθ3(z | τ) is replaced by
θ1(z | τ), we have to consider the corresponding identities according to the parity ofn. For
more details, see the proof of Theorem 4.1.
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.7) to

the
We now prove (1.3) to complete the proof of Theorem 1.1. We will first show that

Fn(τ) =
n−1∑
k=0

∑
m1,m2,...,mn∈Z

m1+m2+···+mn=k

qn(m2
1+m2

2+···+m2
n)−k2

. (2.7)

We replacee2πiz by x in the series representation forθ3(z | τ) and rewrite (1.2) as

n−1∑
k=0

(
qk2

xk

{ ∞∑
m=−∞

qnm2−2kmx−m

}n)
= Fn(τ)

∞∑
m=−∞

qm2
xm. (2.8)

Substituting the expansion{ ∞∑
m=−∞

qnm2−2kmx−m

}n

=
∞∑

m1,m2,...,mn=−∞
qn(m2

1+m2
2+···+m2

n)−2k(m1+m2+···+mn)x−m1−m2−···−mn

into (2.8) and then equating the constants, we arrive at (2.7). Now we use (2
prove (1.3).

By the Cauchy–Schwarz inequality we have

n
(
m2

1 + m2
2 + · · · + m2

n

)
� (m1 + m2 + · · · + mn)

2 = k2.

ThusFn(τ) is a power series inq. To prove (1.3), we need to study the number of
solutions of the following diophantine equations:{

n(m2
1 + m2

2 + · · · + m2
n) − k2 = t,

m1 + m2 + · · · + mn = k.
(2.9)

Let N(t) denote the number of the solutions of the above equations. Then we have

Fn(τ) = N(0) + N(1)q + · · · + N(n − 1)qn−1 + · · · .

It is obvious that for any integerm, m2 � m. Thus we have

m2
1 + m2

2 + · · · + m2
n � m1 + m2 + · · · + mn.

Combining this with (2.9), we find

t � k(n − k), where 0� k � n − 1. (2.10)

Whent = 0, this inequality holds only whenk = 0. Then (2.9) becomes{
m2

1 + m2
2 + · · · + m2

n = 0,

m1 + m2 + · · · + mn = 0.

The only solution of this equation ism1 = m2 = · · · = mn = 0; and thus we haveN(0) = 1.
When 1� k � n − 1, we find from (2.10) that

t � k(n − k) � n − 1. (2.11)
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n

uiv-
Hence,N(t) = 0 for 1� t � n − 2. The equality in (2.11) holds if and only ifk = 1 or
k = n − 1.

Whenk = 1, (2.9) becomes{
m2

1 + m2
2 + · · · + m2

n = 1,

m1 + m2 + · · · + mn = 1.

The solutions of the above equation is(1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1); and the
number of the solutions isn.

Whenk = n − 1, (2.9) becomes{
m2

1 + m2
2 + · · · + m2

n = n − 1,

m1 + m2 + · · · + mn = n − 1.
(2.12)

The solutions of the above equation is(0,1, . . . ,1), (1,0, . . . ,1), . . . , (1,1, . . . ,0), since

m1(m1 − 1) + · · · + mn(mn − 1) = 0,

andm2
i � mi implies thatmi(mi − 1) = 0. This implies thatmi = 0 or 1. Therefore, the

number of the solutions in this case isn and combining with the casek = 1 we conclude
thatN(n − 1) = 2n. This completes the proof of (1.3).�
Remark. A different expression forFn(τ) which follows from [7, p. 115] can be found i
Chua [4, Corollary 2.2].

3. A related identity

In this section we will prove the following identity which may be regarded as an eq
alent form of the circular summation formula (1.2).

Theorem 3.1. We have
n−1∑
k=0

θn
3

(
z + kπ

n

∣∣∣ τ

)
= Gn(τ)θ3(nz | nτ), (3.1)

where

Gn(τ) = √
n(−iτ )

1−n
2 Fn

(
− 1

nτ

)
. (3.2)

Proof. We recall the Jacobi imaginary transformation formula [16, p. 475]

θ3

(
z

τ

∣∣∣ −1

τ

)
= √−iτ eiz2/πτ θ3(z | τ). (3.3)

Replacingτ by −1/nτ and thenz by z/τ in (1.2), we have

Fn

(
− 1

nτ

)
θ3

(
z

τ

∣∣∣ − 1

nτ

)
=

n−1∑
e− πik2

nτ
+ 2ikz

τ θn
3

(
z

τ
− kπ

nτ

∣∣∣ −1

τ

)
. (3.4)
k=0
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n

Using (3.3) in (3.4), we find that

Fn

(
− 1

nτ

)√−inτ e
inz2
πτ θ3(nz | nτ) = (−iτ )

n
2 e

inz2
πτ

n−1∑
k=0

θn
3

(
z − kπ

n

∣∣∣ τ

)
.

Comparing the above two equations yields

n−1∑
k=0

θn
3

(
z − kπ

n

∣∣∣ τ

)
= √

n(−iτ )
1−n

2 Fn

(
− 1

nτ

)
θ3(nz | nτ).

Replacingz by −z and noting thatθ3(z | τ) is an even function ofz, we arrive at (3.1). We
complete the proof of Theorem 3.1.�

We now compute a representation forGn(τ). Replacee2πiz by x in the series expansio
of θ3(z | τ) and rewrite Theorem 3.1 as

n−1∑
k=0

{ ∞∑
m=−∞

qm2
ωkm

n xm

}n

= Gn(τ)

∞∑
m=−∞

qnm2
xnm, (3.5)

whereωn = exp2πi
n

. Since{ ∞∑
m=−∞

qm2
ωkm

n

}n

=
∞∑

m1,m2,...,mn=−∞
qm2

1+m2
2+···+m2

nωk(m1+m2+···+mn)
n xm1+m2+···+mn,

we deduce from (3.5) that

Gn(τ) = n

∞∑
m1+m2+···+mn=0
m1,m2,...,mn=−∞

qm2
1+m2

2+···+m2
n . (3.6)

Remark. Chua [5] observed that whenn = p, wherep > 3 is an odd prime, the function

Fp(τ)η(τ )

ηp(pτ)

is a modular function invariant underΓ0(p). He then computedFp(τ) for p = 5,7 and 13.
We note here that it follows from the transformation formula (3.2), the function

Gp(τ)η(τ)

ηp(pτ)

is also a modular function invariant underΓ0(p). For example, whenp = 5, we have the
identity

5
∞∑

qm2
1+m2

2+m2
3+m2

4+(m1+m2+m3+m4)
2

m1,m2,m3,m4=−∞
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n that
ther
= 5q2
( ∏

k�1

(1− q10k)5

(1− q2k)

)(
1

q2

∏
k�1

(1− q2k)6

(1− q10k)6
+ 25

)
.

For a generalp, where the genus ofΓ0(p) is not zero, we can still computeGp using
results from [3]. For example, forp = 11,

F11(τ ) = q10
( ∏

k�1

(1− q22k)11

(1− q2k)

)(
P1P2 − 7P 2

1 + 9P2 − 37P1 + 3
)

and

G11(τ ) = q10
( ∏

k�1

(1− q22k)11

(1− q2k)

)(
11P1P2 + 1133P 2

1 + 15829P2

+ 18953P1 + 119823
)
,

where

P1 = F2,1,0,2,2 and P2 = F3,2,0,2,4,

Fα1,α2,α3,α4,α5 =
5∑

j=1

5∏
k=1

W
αk

11,2j k
,

and

Wi,j = q2(6j2/l−j)

∞∏
n=1

(1− q2(l(n−1)+4j))(1− q2(ln−4j))

(1− q2(l(n−1)+2j))(1− q2(ln−2j))
, 1� j � l − 1

2
.

Our representation forF11 is different from that of Ono [11].

4. Two related identities

It is clear that Theorem 3.1 is obtained from Theorem 1.1 via the transformatio
sendsτ to −1/(nτ). In this section, we use different transformations to derive fur
analogues of Theorem 1.1:

Theorem 4.1.

n−1∑
k=0

(−1)kqk2
e2kizθn

1 (z + kπτ | nτ) =
{

Fn(τ)θ4(z | τ), n is even,

Fn(τ )θ1(z | τ), n is odd.
(4.1)

Theorem 4.2. We have

n−1∑
k=0

θn
1

(
z + kπ

n

∣∣∣ τ

)
=

{
i−nGn(τ)θ2(nz | nτ), n is even,

i1−nGn(τ)θ1(nz | nτ), n is odd.
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it its

on,
We will only prove Theorem 4.1. The proof of Theorem 4.2 is similar and we om
proof.

Proof. Replacingz by z + π+nπτ
2 in Theorem 1.1, we have

n−1∑
k=0

(−1)kqk2+nke2kizθn
3

(
z + kπτ + π + nπτ

2

∣∣∣ nτ

)

= θ3

(
z + π + nπτ

2

∣∣∣ τ

)
Fn(τ). (4.2)

From the definitions ofθ1(z | τ) andθ3(z | τ) we can readily find that

θ3

(
z + π + πτ

2

∣∣∣ τ

)
= iq−1/4e−izθ1(z | τ).

Replacingτ by nτ and thenz by z + kπτ , we have

θ3

(
z + kπτ + π + nπτ

2

∣∣∣ nτ

)
= iq−n/4−ke−izθ1(z + kπτ | nτ).

It follows that

θn
3

(
z + kπτ + π + nπτ

2

∣∣∣ nτ

)
= inq−n2/4−kne−nizθn

1 (z + kπτ | nτ).

Combining this with (4.2), we have

inq−n2/4e−niz
n−1∑
k=0

(−1)kqk2
e2kizθn

1 (z + kπτ | nτ) = θ3

(
z + π + nπτ

2

∣∣∣ τ

)
Fn(τ).

Using the identityθ3(z + π
2 | τ) = θ4(z | τ) in the right-hand side of the above equati

we have

inq−n2/4e−niz

n−1∑
k=0

(−1)kqk2
e2kizθn

1 (z + kπτ | nτ) = θ4

(
z + nπτ

2

∣∣∣ τ

)
Fn(τ). (4.3)

From the definition ofθ4(z | τ) we find that

θ4(z + πτ | τ) = −q−1e−2izθ4(z | τ).

Iterating the above equation, we find that

θ4(z + lπτ | τ) = (−1)lq−l2e−2lizθ4(z | τ).

Whenn is even, we setl = n/2 and obtain

θ4

(
z + nπτ

2
]
∣∣∣ τ

)
= inq−n2/4e−nizθ4(z | τ). (4.4)

Whenn is odd, we have
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heo-
θ4

(
z + nπτ

2

∣∣∣ τ

)
= θ4

(
z + πτ

2
+ (n − 1)πτ

2

∣∣∣ τ

)

= in−1q−(n−1)2/4−(n−1)/2e−(n−1)izθ4

(
z + πτ

2

∣∣∣ τ

)
. (4.5)

Using the identity

θ4

(
z + πτ

2

∣∣∣ τ

)
= iq−1/4e−izθ1(z | τ)

in (4.5), we find that

θ4

(
z + nπτ

2

∣∣∣ τ

)
= inq−n2/4enizθ1(z | τ). (4.6)

Combining (4.3), (4.4) and (4.6), we obtain (4.1). This completes the proof of T
rem 4.1. �

In the next two sections, we will specialize our theorems by settingn = 2 andn = 3.

5. Some identities when n = 2

Theorem 5.1. We have

θ2
2(z | 2τ) + θ2

3(z | 2τ) = θ3(0 | τ)θ3(z | τ), (5.1)

θ2
1(z | 2τ) + θ2

4(z | 2τ) = θ3(0 | τ)θ4(z | τ) and (5.2)

θ4
3(z | τ) − θ4

2(z | τ) = θ3
4(0 | τ)θ4(2z | τ). (5.3)

Proof. Whenn = 2, Theorem 1.1 reduces to

θ2
3(z | 2τ) + qe2izθ2

3(z + πτ | 2τ) = F2(τ )θ3(z | τ). (5.4)

Using the identityθ3(z + πτ
2 | τ) = q−1/4e−izθ2(z | τ), we find

θ3(z + πτ | 2τ) = q−1/2e−izθ2(z | 2τ). (5.5)

Combining (5.4) and (5.5), we have

θ2
2(z | 2τ) + θ2

3(z | 2τ) = F2(τ )θ3(z | τ). (5.6)

Similarly whenn = 2, from Theorem 4.1 we can find

θ2
1(z | 2τ) + θ2

4(z | 2τ) = F2(τ )θ4(z | τ). (5.7)

Settingz = 0 in the above equation, we find that

F2(τ ) = θ2
4(0 | 2τ)

θ4(0 | τ)
.

From the infinite product representations forθ3(z | τ) andθ4(z | τ), namely,

θ3(z | τ) =
∞∏(

1− q2n
)(

1+ e2izq2n−1)(1+ e−2izq2n−1),

n=1
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and

θ4(z | τ) =
∞∏

n=1

(
1− q2n

)(
1− e2izq2n−1)(1− e−2izq2n−1)

we find that

θ3(z | τ)θ4(z | τ) = θ4(0 | 2τ)θ4(2z | 2τ). (5.8)

Settingz = 0, we find that

F2(τ ) = θ2
4(0 | 2τ)

θ4(0 | τ)
= θ3(0 | τ).

Substituting this into (5.6) and (5.7), we obtain (5.1) and (5.2), respectively.
Replacingq by −q in (5.1), we have

θ2
3(z | 2τ) − θ2

2(z | 2τ) = θ4(0 | τ)θ4(z | τ).

Multiplying this with (5.1) and then using (5.8), we find that

θ4
3(z | 2τ) − θ4

2(z | 2τ) = θ4(0 | 2τ)θ4(2z | 2τ).

Replacingq2 by q, we arrive at (5.3). We complete the proof of Theorem 5.1.�
Remark. If we setz = 0 in (5.3), we recover Jacobi’s famous identity

θ4
1(0 | τ) − θ4

2(0 | τ) = θ4
4(0 | τ).

Identity (5.3) can also be found in [16, p. 488, Example 4].

6. Some identities when n = 3

In this section we will prove Theorem 6.1 followed by Theorem 6.2.

Theorem 6.1. We have

θ3
3(z | 3τ) + qe2izθ3

3(z + πτ | 3τ) + qe−2izθ3
3(z − πτ | 3τ) = a(τ)θ3(z | τ),

θ3
1(z | 3τ) − qe2izθ3

1(z + πτ | 3τ) − qe−2izθ3
1(z − πτ | 3τ) = a(τ)θ1(z | τ), (6.1)

wherea(τ) is the Ramanujan function defined as

a(τ) = 1+ 6
∞∑

m=0

(
q2(3m+1)

1− q2(3m+1)
− q2(3m+2)

1− q2(3m+2)

)
. (6.2)

Proof. Takingn = 3 in Theorem 1.1, we have

θ3
3(z | 3τ) + qe2izθ3

3(z + πτ | 3τ) + q4e4izθ3
3(z + 2πτ | 3τ) = F3(τ )θ3(z | τ). (6.3)

Replacingτ by 3τ in the second identity in (2.1), we have

θ3(z + 3πτ | 3τ) = q−3e−2izθ3(z | 3τ).
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Replacingz by z − πτ , we find that

θ3(z + 2πτ | 3τ) = q−1e−2izθ3(z − πτ | 3τ). (6.4)

Substituting (6.4) into (6.3), we arrive at

θ3
3(z | 3τ) + qe2izθ3

3(z + πτ | 3τ) + qe−2izθ3
3(z − πτ | 3τ) = F3(τ )θ3(z | τ). (6.5)

In the same way whenn = 3, Theorem 4.1 reduces to

θ3
1(z | 3τ) − qe2izθ3

1(z + πτ | 3τ) − qe−2izθ3
1(z − πτ | 3τ) = F3(τ )θ1(z | τ). (6.6)

We recall the infinite product representation forθ1(z | τ), namely,

θ1(z | τ) = 2q1/4(sinz)

∞∏
n=1

(
1− q2n

)(
1− e2izq2n

)(
1− e−2izq2n

)

= iq1/4e−iz

∞∏
n=1

(
1− q2n

)(
1− e2izq2n−2)(1− e−2izq2n

)
, (6.7)

from which we can infer

θ ′
1(0 | τ) = 2q1/4

∞∏
n=1

(
1− q2n

)3 and θ1(πτ | 3τ) = iq−1/4
∞∏

n=1

(
1− q2n

)
. (6.8)

Using the technique of logarithmic differentiation on (6.7), we obtain

θ ′
1

θ1
(z | τ) = −i − 2i

∞∑
n=0

q2ne2iz

1− q2ne2iz
+ 2i

∞∑
n=1

q2ne−2iz

1− q2ne−2iz
.

Comparing this with (6.2), we infer that

a(τ) = −2+ 3i
θ ′

1

θ1
(πτ | 3τ). (6.9)

Next we turn to determineF3(τ ). We differentiate both sides of (6.6) and then setz = 0 to
get

2qiθ3
1(πτ | 3τ)

{
−2+ 3i

θ ′
1

θ1
(πτ | 3τ)

}
= F3(τ )θ ′

1(0 | τ).

Using (6.8) and (6.9) in the above equation, we conclude thatF3(τ ) = a(τ). Substituting
this into (6.5) and (6.6), we complete the proof of Theorem 6.1.�
Theorem 6.2. We have

θ3
3(z | τ) + θ3

3

(
z + π

3

∣∣∣ τ

)
+ θ3

3

(
z − π

3

∣∣∣ τ

)
= 3a(τ)θ3(3z | 3τ),

θ3
1

(
z + π

3

∣∣∣ τ

)
+ θ3

1

(
z − π

3

∣∣∣ τ

)
− θ3

1(z | τ) = 3a(τ)θ1(3z | 3τ). (6.10)
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eta
Proof. Takingn = 3 in Theorem 3.1, we have

θ3
3(z | τ) + θ3

3

(
z + π

3

∣∣∣ τ

)
+ θ3

3

(
z + 2π

3

∣∣∣ τ

)
= G3(τ )θ3(3z | 3τ). (6.11)

Using the identityθ3(z + π | τ) = θ3(z | τ), we find thatθ3(z + 2π
3 | τ) = θ3(z − π

3 | τ).
Thus we have

θ3
3(z | τ) + θ3

3

(
z + π

3

∣∣∣ τ

)
+ θ3

3

(
z − π

3

∣∣∣ τ

)
= G3(τ )θ3(3z | 3τ). (6.12)

Similarly, from Theorem 4.2 we deduce that

θ3
1

(
z + π

3

∣∣∣ τ

)
+ θ3

1

(
z − π

3

∣∣∣ τ

)
− θ3

1(z | τ) = G3(τ )θ1(3z | 3τ). (6.13)

Using the infinite product representation forθ1(z | τ), we can find that

θ1

(
π

3

∣∣∣ τ

)
= √

3q1/4
∞∏

n=1

(
1− q6n

)
. (6.14)

It is well known that the trigonometric series expansion for the logarithmic derivativ
θ1(z | τ) is

θ ′
1

θ1
(z | τ) = cotz + 4

∞∑
n=1

q2n

1− q2n
sin 2nz. (6.15)

Thus, we have

θ ′
1

θ1

(
π

3

∣∣∣ τ

)
= 1√

3
a(τ). (6.16)

Differentiating both sides of (6.13) with respect toz and then settingz = 0, we find

2θ3
1

(
π

3

∣∣∣ τ

)
× θ ′

1

θ1

(
π

3

∣∣∣ τ

)
= G3(τ )θ ′

1(0 | 3τ). (6.17)

Using (6.14) and (6.16) in the above equation, we findG3(τ ) = a(τ). Substituting this
into (6.13) and (6.14), we complete the proof of Theorem 6.2.�
Remark. Identities (6.1) and (6.10) have been recently proved by Liu [9].

7. Analogues of the Dixon functions

It is well known [16, p. 492] from the theory of Jacobian elliptic functions and th
functions that

sn(u | τ) = θ3(0 | τ)

θ2(0 | τ)

θ1(u/θ2
3(0) | τ)

θ4(u/θ2
3(0) | τ)

.

We can therefore think of

sn
(
u
(
θ2

3(0)
) | 2τ

) = Ceiu θ1(u | 2τ)
θ1(u − πτ | 2τ)
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for some constantC. Inspired by this, one could define the analogue of sn(u) as

S(u) = q−1/3e2iu/3 θ1(u | 3τ)

θ1(u − πτ | 3τ)
.

We also define

C(u) = −e4iu/3θ1(u + πτ | 3τ)

θ1(u − πτ | 3τ)
.

From (6.1), we conclude that

S3(u) + C3(u) − 1= −a(τ)

∞∏
n=1

(1− q2n)

(1− q6n)3
S(u)C(u),

where we have used the relation [9, (5.1)]

θ1

(
u

∣∣∣ τ

3

)
=

∞∏
n=1

(1− qn/3)

(1− qn)3
θ1(u | τ)θ1

(
u + πτ

3

∣∣∣ τ

)
θ1

(
u − πτ

3

∣∣∣ τ

)
.

Hence, we deduce that

S3(u) + C3(u) − 1= −3
a(τ)

c(τ )
S(u)C(u),

where we have used the product representation ofc(τ ) [2, p. 109, (5.5)],c(τ ) being one of
the Borwein’s function

c(τ ) =
∞∑

m,n=−∞
q2((m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2) = 3q2/3

∞∏
n=1

(1− q6n)3

(1− q2n)
.

Remarks.

(1) The functionsS(u) andC(u) satisfy a relation similar to that of Dixon’s function
sm(u) and cm(u) (see [8] for their definitions), and hence they can be viewed as
logues of Dixon’s functions. This connects Ramanujan’s circular summation for
to the theory of elliptic functions developed by Dixon.

(2) Dixon’s functions were studied recently by Conrad [6] and Ohyama [10]. Corresp
ing results satisfied by sm(u) and cm(u) for S(u) andC(u) can probably be derive
using the same methods illustrated in those papers.

(3) The functionC(u) also appears in L.C. Shen’s paper [14, p. 130] in his study of
manujan’s elliptic functions to the cubic base.
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