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1. Introduction

The Jacobi theta functiofy(z | 7) is defined as
o
O3(z 1) = Z q’"zez’"iz, g=¢€"", with Imz > 0. (1.2)
m=—0o0
On p. 54 of his Lost Notebook [12], S. Ramanujan recorded the following statement (trans-
lated here in terms df3(z | 7)):

Theorem 1.1. For any positive integet > 2,

n—1
3¢ e®705 2kt | nt) = 03z | D F(0). (1.2)
k=0
Whenn > 3,
Fo(t)=1+2ng""14.... (1.3)

The first proof of Theorem 1.1 was given by Rangachari [13]. The statement was later
proved by Son [15] using an entirely different method.

In [13], Rangachari also discussed Ramanujan’s explicit expressios &br n =
2,3,4,5 and 7. Whem is a prime, Rangachari established Ramanujap’by first show-
ing that if p is a prime, then

Fp(r) = @A;d(pf), (1.4)
whereA;fl is the dual of the root lattice,

Ap 1= {X ez?
i=1

and
OLT) =Y ¢

xeL
The primality condition in Rangachari's result (1.4) was subsequently removed by
Chua [4].

After the work of Rangachari and Son, Ono [11], Ahlgren [1] and Chua [4,5] devoted
several papers to the evaluations/f(z) for other integers: not found in Ramanujan’s
work. These authors quoted Ramanujan’s assertion but did not realize that Rangachari’s
proof of (1.3) is incorrect.

In this paper, we will give a proof of (1.2) and possibly the first proof of (1.3). We will
also establish results similar to Theorem 1.1 Wity | 7) replaced by

oo
91(Z | T) — _lq1/4 Z (_1)mqm(m+l)e(2m+1)iz’

m=—0oQ

00
O2(z|t)= q1/4 Z qm(m+1)e(2m+l)tz’

m=—0oQ
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or

azlD= > (=1 P,

m=—0o0

At the end of the paper, we define analogues of Dixon’s functions and discuss their con-
nection with recent results of Conrad [6].
2. Proof of Theorem 1.1

In this section, we will establish (1.2), followed by (1.3).

Proof of Theorem 1.1. From (1.1), we find that

O3(z+7 1) =03(z|7) and O3z +77|7T)=q ‘e ¥b3(z| 1) (2.1)
Let f(z) be the left-hand side of (1.2). Then
n—1 ) '
flz+nmnr)= qu PHEFTYR (2 4 (k + Dt | nt)
k=0
' n—1 ) '
=q le#2 )y " gV 2 DR (2 4 (k+ Dt | nT). (2.2)
k=0
Replacingk + 1 to k, we find that
n—1 ) ' n ) '
Zq(kH) 20Dzl (7 4 (k + Dymt | nt) = qu 298 (2 + knt | nt).  (2.3)
k=0 k=1

Using the second identity in (2.1), we find that

q" 208 (2 + nrT | nT) = 0L (2 | nT). (2.4)
Combining (2.2)—(2.4), we deduce that

fe+rr)=q"te 2 f(2). (2.5)
Using the first identity, we find that

fGe+m) = fQ2). (2.6)

From (2.1), (2.5) and (2.6), we deduce thfdk)/03(z | t) is an elliptic function with pe-
riodsz andxz. It is well known thatdsz(z | t) has only a simple zero at= (w + 7 t)/2

in the period parallelogram. Heng&(z)/03(z | ) is a constant, say, (t), since it is an
elliptic function with only one simple pole in a period parallelogram. This concludes the
proof of (1.2). Rangachari proved (1.2) by first proving it for oddnd then for even.

This is not necessary as shown in the above proof. However, 9gtent) is replaced by
01(z | T), we have to consider the corresponding identities according to the parity-of
more details, see the proof of Theorem 4.1.
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We now prove (1.3) to complete the proof of Theorem 1.1. We will first show that

n—1
Fn (T) — Z Z qn(m%er%Jr-'%mﬁ)sz' (27)

k=0 mq,mo,...,myeZ
my+mop+--+m,=k

We replace?™* by x in the series representation #&(z | t) and rewrite (1.2) as

n—1 ) n 00
Z<qk2xk{ Z qnmz_kax—m} )ZFn(T) Z qm2xm. (28)

k=0 m=—0o0 m=—00

Substituting the expansion

00 n
{ Z qnm272kmxfm }
m=—00
00
— Z qn(m%+m§+~~‘+m$)—2k(m1+m2+~~+m”)x—ml—mz—w—m,,
mi,ma,...,n,=—00

into (2.8) and then equating the constants, we arrive at (2.7). Now we use (2.7) to
prove (1.3).
By the Cauchy—Schwarz inequality we have

n(m%+m§+-~-+m,21)>(m1+m2+“'+mn)2=k2-

Thus F, () is a power series ig. To prove (1.3), we need to study the number of the
solutions of the following diophantine equations:

Let N (¢) denote the number of the solutions of the above equations. Then we have
Fu(t)=NO) +NDg+---+Nn—Dg"  +---.
It is obvious that for any intege#, m? > m. Thus we have
m%—}—m%—}—-n—i—m%>m1+m2+~-~+mn.
Combining this with (2.9), we find
t>k(n—k), whereO<Lk<n—1 (2.10)
Whent = 0, this inequality holds only wheh= 0. Then (2.9) becomes
mi—i—m%—i—---—i—mgzo,
mi1+mo+---+m, =0.

The only solution of this equationig, = my = - -- = m,, = 0; and thus we hav&' (0) = 1.
When 1< k <n — 1, we find from (2.10) that

t>k(n—k)y>n—1 (2.112)
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Hence,N(¢) =0 for 1< ¢ < n — 2. The equality in (2.11) holds if and only ¥=1 or
k=n-1.
Whenk =1, (2.9) becomes
m%—}—m%—i—-n—i—m%:l,
mi+mo+---+m, =1

The solutions of the above equationis0,...,0),(0,1,...,0),...,(0,0,...,1); and the
number of the solutions is.
Whenk =n — 1, (2.9) becomes

(2.12)
mi+mp+---+my=n—1

{m%+m%+~~-+m,2l=n—l,
The solutions of the above equation@s 1, ..., 1), (1,0,...,1),...,(1,1,...,0), since
mimy—1)+---+m,(m, —1) =0,

andm > m; implies thatm; (m; — 1) = 0. This implies thain; = 0 or 1. Therefore, the
number of the solutions in this caserisand combining with the case= 1 we conclude

that N (n — 1) = 2n. This completes the proof of (1.3).0

Remark. A different expression foF), () which follows from [7, p. 115] can be found in
Chua [4, Corollary 2.2].

3. Arelated identity

In this section we will prove the following identity which may be regarded as an equiv-
alent form of the circular summation formula (1.2).

Theorem 3.1. We have

n—1
Zeg’ (Z + k_n ‘ ‘L’) =G, (1)03(nz | nt), (3.1)
k=0 n
where
Ga(r) = ﬁ(—irfT”Fn(—%). (3.2)

Proof. We recall the Jacobi imaginary transformation formula [16, p. 475]

( ‘——>_ iz e 05(2 | 7). (3.3)

Replacingr by —1/nt and thery by z/r in (1.2), we have

1 xik? | 2ikz z km 1
F,|—— 0 e T QR - — — | == ). 3.4
(G l) - (i) @
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Using (3.3) in (3.4), we find that

1 = k
F, (——)\/—tnre =t O3(nz | nt) = (—zr)2e e 293 (z 7 r).
nt =0 n
Comparing the above two equations yields

n—1 ; kT[ 1
Zeg(z—7]r) V=o' F, (——)esmzmr)
k=0

Replacingz by —z and noting thabz(z | 7) is an even function of, we arrive at (3.1). We
complete the proof of Theorem 3.10

We now compute a representation (7). Replacee?"iz by x in the series expansion
of 03(z | t) and rewrite Theorem 3.1 as

n—1 00
Z{ Z q wkmxm} =G,(1) Z qm nm (35)

k=0 \m=—00 m=—00

wherew,, = exp . Since

00 n
{ Z qmzwkm }
n

m=—0oQ
0
_ Z qm1+m2+ 4m?2 k(m1+mz+ ) mifmotetmy
mi,ma,..., my=—00

we deduce from (3.5) that

00
2 2 2
Gu(my=n Y gt (3.6)
my+mo+---+m,=0
miy,m,...,my=—00

Remark. Chua [5] observed that when= p, wherep > 3 is an odd prime, the function
Fp(n(r)
n?(pt)

is a modular function invariant undés(p). He then computed, () for p =5, 7 and 13.
We note here that it follows from the transformation formula (3.2), the function

Gp(t)n(r)
nP(pt)
is also a modular function invariant undEg(p). For example, whep =5, we have the
identity

o0
5 § : qu+m§+n1§+m§+(m1+mz+m3+m4)2

ny,ma,ms,ma=—00
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(1 _ qlok)S 1 (1 _ q2k)6
=5q2<1_[ % _21_[ 1o T2°)
is1 =97 J\a% 5 A=q75)

For a generap, where the genus afp(p) is not zero, we can still comput&, using
results from [3]. For example, fgr = 11,

10 (1_ q22k)ll 5
k>1

and

(1_ q22k)11
Gua(r) =q1°(1_[ S .
o1 - q%)

+ 18953, + 119823,

)(11101102 +1133P7 + 15829,

where

P1=Fr1022 and P>=F32024,

5 5
— 0
Foyop.03.04.05 = E : | | Wll,z.ik’

j=1lk=1
and
W 26721 o) (1— q2(l(nfl)+4j))(1_ q2(lnf4j)) 1< ic -1
i.j =49 l_[ (1- q2(l(n—1)+2j))(1 — qz(ln—Zj)) > NS T

n=1

Our representation faFy is different from that of Ono [11].

4, Tworelated identities

It is clear that Theorem 3.1 is obtained from Theorem 1.1 via the transformation that
sendst to —1/(nt). In this section, we use different transformations to derive further
analogues of Theorem 1.1:

Theorem 4.1.
n—1 .
j Fq(7)0 , niseven
Z(—l)quze%z@f (Z + kT | nr) _ { (T) 4(Z | T) n ! (41)
k=0 F,(7)01(z | t), nisodd

Theorem 4.2. We have

ni@”( + ke ‘ T) {inGn(T)QZ(nZ nt), niseven
74+ — =
k=0 ' n ™G, (t)01(nz | nt), nisodd
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We will only prove Theorem 4.1. The proof of Theorem 4.2 is similar and we omit its
proof.

Proof. Replacing: by z + % in Theorem 1.1, we have

nt 2 < T +nnt
Z(—l)qu +"k82k’16§’ (z + kT + —s nr)
k=0
T+nut
:03<z + T ‘ r) Fo(2). (4.2)

From the definitions of1(z | ) andfs(z | ) we can readily find that
T+ . i
93(1 +— ‘ r) =ig e 01z | ).

Replacingr by nt and ther; by z + k7, we have

93<z fkrT 4 Lz'”” ’ m> —ig"4keTizg, (7 4 kT | nT).

It follows that

T +nT
2

Combining this with (4.2), we have

04 <z +kwT+ ‘ nt) = i"q—"z/“—k"e—"fzef(z + kT | nt).

n—1
inq—n2/4e—niz Z(_l)quzeZkiZGf(Z +kJTT | i’l'L') — 03(2 +
k=0

T +nT

5 ) 1:) F, (7).

Using the identityps(z 4+ % | 7) = 64(z | 7) in the right-hand side of the above equation,
we have
n—1
inq7n2/4efniz Z(_l)qu2ezkilef (z4+kmt |nt) =64 <z + MTT ‘ ‘L') Fu(7). (4.3)
k=0

From the definition 0b4(z | ) we find that
Os(z+mT|T)= —qile*2i204(z | 7).

Iterating the above equation, we find that
baz + 1t | 7) = (-D'g e P 0z | ).

Whenn is even, we set=r/2 and obtain

94<z + %1 ‘ r) = ing " e,z | T). (4.4)

Whenn is odd, we have
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p +n71t e +nt+(n—1)nr‘
4| z > T ) =04\z2 5 5 T

:in—lq—(n—1)2/4—(n—1)/2e—(n—1)iz94<Z+ % ‘ T)_ (4.5)
Using the identity
94(1 + ”—ZT ‘ r) —ig Y4 i201(z | 1)
in (4.5), we find that
94(z + % ) r) — ing~"Aenizg (7 | 7). (4.6)

Combining (4.3), (4.4) and (4.6), we obtain (4.1). This completes the proof of Theo-
rem4.1. O

In the next two sections, we will specialize our theorems by settiag? andn = 3.

5. Someidentitieswhen n =2

Theorem 5.1. We have

03(z | 21) +63(z | 21) = 63(0| 1)03(z | 7), (5.1)

02(z | 27) 4+ 02(z| 2r) = 63(0| T)04(z | ) and (5.2)

03(z17) — 03z | T) =03(0| )0a(22 | 7). (5.3)
Proof. Whenn =2, Theorem 1.1 reduces to

03(z | 21) + qe? 05(z + 1T | 20) = Fa(1)03(z | 7). (5.4)
Using the identitys(z + ZF | 1) = ¢~ ~65(z | 7), we find

03(z + 77 | 20) = g~ e %0a(z | 21). (5.5)
Combining (5.4) and (5.5), we have

02(z | 21) + 03(z | 27) = F2(1)63(z | 7). (5.6)
Similarly whenn = 2, from Theorem 4.1 we can find

07(z | 27) +07(z | 21) = Fa(1)6a(z | 7). (5.7)
Settingz = 0 in the above equation, we find that

62(0| 21)
F(r) = g4(0—lr)'

From the infinite product representations #g(z | t) andéa(z | t), namely,

o0

93(Z | T) — 1_[(1_an)(l+eZiqun—l)(l+e—2izq2n—l)’
n=1
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and

Oa(z| 1) = H (1- q2n)(1 _ eZiqun—l)(l _ e‘z"zqz’l—l)

n=1
we find that
03(z | ©)0a(z | T) = 04(0] 27)0a(2z | 27). (5.8)
Settingz = 0, we find that
02(01 27)
Fo(t) = 47
2= 4,000

Substituting this into (5.6) and (5.7), we obtain (5.1) and (5.2), respectively.
Replacingg by —¢ in (5.1), we have

02(z | 2T) — 02(z | 2t) = 04(0| T)0a(z | T).
Multiplying this with (5.1) and then using (5.8), we find that
03(z | 27) — 05(z | 27) = 04(0 | 27)04(2z | 27).
Replacingg? by ¢, we arrive at (5.3). We complete the proof of Theorem 5.1,

=050] 7).

Remark. If we setz =0 in (5.3), we recover Jacobi’s famous identity
6701 1) - 6301 1) =070 | 7).
Identity (5.3) can also be found in [16, p. 488, Example 4].

6. Someidentitieswhenn =3
In this section we will prove Theorem 6.1 followed by Theorem 6.2.

Theorem 6.1. We have
03(z | 31) + qe¥703(z + 77 | 3t) + e %603(z — w7 | 3v) = a(r)b3(z | 1),
03(z|31) — qe¥?03(z + v | 3r) — e 203 (z — mt | Br) =a(v)br(z | 7), (6.1)

wherea(t) is the Ramanujan function defined as

2(3m+1) q2(3m+2) ) ( )
. 6.2

0
_ q
a(t)=1+ GmXZ‘;(l — 42G@n+D) - q2Gn+2)

Proof. Takingn = 3 in Theorem 1.1, we have

03(z | 31) + qe¥703(z + 7t | 3t) 4 ¢*e¥03(z + 27 | 3r) = F3(1)63(z | 7). (6.3)
Replacingr by 3t in the second identity in (2.1), we have

03(z + 377 | 31) = ¢ 3 %%03(z | 37).
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Replacingz by z — w7, we find that

03(z + 277 | 31) =q te ¥%03(z — T | 30). (6.4)
Substituting (6.4) into (6.3), we arrive at

933(z | 37) + quiZOS(z 4+t |37) + qe72i29§(z — 7t |3t)=F3(1)03(z | ). (6.5)
In the same way whem = 3, Theorem 4.1 reduces to

03(z | 31) — qe??03(z + 77 | 3t) — qe %03 (z — w7 | 3v) = Fa(v)b1(z | 7). (6.6)

We recall the infinite product representation fe(z | ), namely,

01(z | ) = 2¢Y4(sinz) l_[(l —q?)(1—€¥3g®") (1 — e %2¢?)
n=1

— iql/4e_iz 1—[(1 _ an)(l _ eZiqun—Z) (1 _ e_ZiZqZ"), (6.7)

n=1

from which we can infer

o0 o
3 .

91(0|r):2ql/4]_[(1—q2") and 61(r7|37)=igq 1/41_[(1—q2"). (6.8)

n=1 n=1

Using the technique of logarithmic differentiation on (6.7), we obtain

g2 e?i N X 2
— 2z 4 — -2z
1—g“ez n:ll qte=4z

9/ —2iz
1 . .

—=@GzZ|t)y=—i—2i

01

n=0

Comparing this with (6.2), we infer that
9/
a(r)=—2+3i9—1(rrr|3r). (6.9)
1

Next we turn to determiné&i(z). We differentiate both sides of (6.6) and thenset0 to
get

9/
2qi913(nr | 31){—24— 31'9—1(711 | 31)} = F3(1)01(0] 7).
1

Using (6.8) and (6.9) in the above equation, we conclude figét) = a(r). Substituting
this into (6.5) and (6.6), we complete the proof of Theorem 6.

Theorem 6.2. We have

63z | 7) +933(z +% | z> +933(z -1 r) = 3a(1)03(32 | 30),

913<Z + % ‘ r) -I—@f(z - % ‘ r) — 913(2 | 7) = 3a(1)01(3z | 37). (6.10)
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Proof. Takingn = 3 in Theorem 3.1, we have
63(z | 7) + 63 (z +3 Z ) +63 (z +Z | ) = G3(1)03(3z | 31). (6.11)

Using the identityz(z + 7 | t) = 63(z | T), we find thatvs(z + %” |7) =63z — % | D).
Thus we have

03z | ) + 63 (z +3 ‘ ) —|—933(z - % ‘ r) = Ga(1)03(3z | 37). (6.12)

Similarly, from Theorem 4.2 we deduce that

o3 (Z +3 Z ) +63 (Z -z ‘ ) —03(z | 1) = Ga()01(3z | 31). (6.13)
Using the infinite product representation taKz | t), we can find that
o
T 1/4 6n
91(§'r>=déq/ li[l(l—q )- (6.14)

It is well known that the trigonometric series expansion for the logarithmic derivative of
O1(z]1)is

—(z | r)—cotz+4z g” 5 Sin2nz. (6.15)
Thus, we have - 1

Z—i(% ‘ r) = %a(r). (6.16)
Differentiating both sides of (6.13) with respectztand then setting = 0, we find

293(% ’ r) x %(% ‘ z> = G3(r)8,(0] 37). (6.17)

Using (6.14) and (6.16) in the above equation, we f{t) = a(r). Substituting this
into (6.13) and (6.14), we complete the proof of Theorem 6.2.

Remark. Identities (6.1) and (6.10) have been recently proved by Liu [9].

7. Analogues of the Dixon functions

It is well known [16, p. 492] from the theory of Jacobian elliptic functions and theta
functions that

63(0| 7) 62(u/02(0) | 7)
6200 7) 04(u/62(0) | T)
We can therefore think of

sn(u(62(0)) | 2t) = Ce™

snu | 1) =

01(u | 21)
O01(u —mt | 21)
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for some constant'. Inspired by this, one could define the analogue ¢fisas

B1(u | 37)

S(u) = g—1/3,2iu/3 '
Y v
We also define

_e4m/391(u 4+t | 3'() .
Or(u —mt | 31)

From (6.1), we conclude that

C(u) =

00 )
S%u) +C3w) — 1= —a(0) [ [ S scw),
n=1

where we have used the relation [9, (5.1)]

T e (1—q”/3) TT TT
91(1/{ g) = 1_[ mel(u | 'L')91<M + ? ’ l')e]_(lzt — ? ‘ T).

n=1
Hence, we deduce that

S3u)+C3u) — 1= —3@3(u)0(u),
c(1)

where we have used the product representatiafiof[2, p. 109, (5.5)]¢(r) being one of
the Borwein’s function

(1 _ an)3

o0 o0
2 2
() = Z q2((m+1/3) +(m+1/3)(n+1/3)+(n+1/3)%) _ 3q2/3 l_[ A=

m,n=—o0 n=1
Remarks.

(1) The functionsS(«) andC(u) satisfy a relation similar to that of Dixon’s functions
sm(u) and cmu) (see [8] for their definitions), and hence they can be viewed as ana-
logues of Dixon’s functions. This connects Ramanujan’s circular summation formula
to the theory of elliptic functions developed by Dixon.

(2) Dixon’s functions were studied recently by Conrad [6] and Ohyama [10]. Correspond-
ing results satisfied by spm) and cniu) for S(u) andC(u) can probably be derived
using the same methods illustrated in those papers.

(3) The functionC(u) also appears in L.C. Shen’s paper [14, p. 130] in his study of Ra-
manujan’s elliptic functions to the cubic base.
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