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Abstract

We prove a simple and explicit formula, which expresses the 26th power of Dedekind’s n-function as a
double series. The proof relies on properties of Ramanujan’s Eisenstein series P, Q and R, and parameters
from the theory of elliptic functions.

The formula reveals a number of properties of the product ]—I;’O: 1= q9)%0, for example its lacunarity,
the action of the Hecke operator, and sufficient conditions for a coefficient to be zero.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Dedekind’s n-function is defined by

o
n(z)=q"* ]_[ (1—¢7), where g =€, Im(z) > 0.
j=1
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For certain values of d, the expansion of 7¢(z) in powers of g has a particularly simple form. For
example, the cases d = 1 and d = 3 are due to L. Euler and C.G.J. Jacobi, respectively:

o
N4y = Y (~1)Ig@tD’,

j=—00
oo ) )
8= Y (4j+1DHgWth
j=—00
For d = 8 we have
1 0 .2 ad : 2
1120 =5 37 Q)¢ Y (6 -2
i=—00 Jj=—00
1 & P 2
1 . 2 3Qi+1) ; (6j+1)
+2'Z Qi + 1)@ 'Z (6 + 1)g®+D”,
[1=—00 J=—00

and there are analogous formulas for d = 10 and 14 in terms of double sums. The case d = 8 was
first considered by F. Klein and R. Fricke [7, p. 373]. The formula for d = 10 was discovered by
L. Winquist [17], who used it to give an elementary proof of S. Ramanujan’s congruence

p(Ilm+6)=0 (mod 11),

where p(n) is the number of partitions of n. F.J. Dyson [5, p. 637] reports that the case d = 14
was discovered by A.O.L. Atkin, and furthermore that Atkin had a formula for d = 26. Apart
from a special case cited by Dyson [5, p. 651], no details of Atkin’s work on d = 26 have been
published.

Dyson found that there are elegant multiple series expansions for d = 3, 8, 10, 14, 15, 21, 24,
26, 28, 35,36, .... At about the same time, I.G. Macdonald [10] discovered there is an elegant
multiple series expansion for any value of d which is the dimension of a finite dimensional simple
Lie algebra. Macdonald’s results include all of the numbers on Dyson’s list, except d = 26. In
[8] and [9], V.E. Leininger and S.C. Milne utilized [11] and multiple basic hypergeometric series
techniques to derive new non-trivial explicit multiple series expansions for additional infinite
families of values of d not in [10], but not for d = 26. They also simplified Macdonald’s results
corresponding to affine root systems of type Ay.

The purpose of this article is to prove a formula for 72°(z) in terms of a double series. A special
case of our formula is as follows. Suppose 12n + 13 is prime. Let a +ib and c +id be the unique
Gaussian integers which satisfy the conditions:

a’>+b*>=24n+26, a,b=1(mod6), a <b,
2 +3d>=36n+39, d=1(mod6), c>0.

Then the coefficient of ¢” in ]_[;’OZ1 (1—¢/)%is

(— 1)(c+d71)/6
36

_1\(a+b=2)/6
: <( D Re((a+ib)'?) +

203411213 26

Re((c+id«/§)12)).
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This is different from the formula of Atkin quoted by Dyson. As an example, when n =2 we
have a+ib = —5+7i and c +id = 6 —5i, so the coefficient of ¢ in ]_[C;o:1 (1—¢q7)? is therefore

(=5+7)'%) + % Re((6 — 5i~/§)12)>

1 1
___—_ (=r
263411213(64 ¢

(1025046359 + 1413128809

26311213 ¢ + )

—299.

Our proof is based on the observation that ?(z) may be expressed as a product of two theta
functions in two different ways:

e 2 ? e 2 e 2
’72(1) — ( Z (_1)/q(6/+1) /24) — ( Z (_l)lq(6/+l) /12)( Z (—1)/q’ )
j=—00 Jj=—00 j=—00

Atkin’s proof [1] uses properties of nlo(z)Ef(z) and 1'*(z) E¢(z), where E4 and Eg are Eisen-
stein series of weights 4 and 6, respectively. Atkin’s notes [1] indicate that he discovered his
formula for n?°(z) in 1965, and in 1966 he found another formula, different from the one quoted
by Dyson [5, p. 651]. For a published proof of a formula for ?°(z), see the paper by J.-P. Serre
[16].

2. Statement of results

Let m and n be real numbers and define

5 /12 e
f(mm)zZ(Zj)(—l)fmfn /

j=0
=m% — 66m>n +495m*n* — 924m3n> + 495m*n* — 66mn> + n°.

Observe that

f(mz, nz) = Re((m + in)lz).

Let
P=1-24Y 2T g-14200) LT
—~ 1 —gqJ ‘ —q/
Jj=1 j=1
o .5
L iq
R=1 50421—q1'

We will prove the following identities:
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Lemma 1.

n?(2)(399903 — 4000R?)

iri 60 +1)= (6j+1) P12 (6741)2
= E § (—1)’+/f< J )q[(él-i-l) +(6j+1)°1/24

27 2

i=—00 j=—00

Lemma 2.

n?(2) (543903 — 5438R?)

o0 o0
=y (=) f(12i2, (6] + 1)2)g"" HOHD/12,

i=—00 j=—00
If we add these results and use the fact that ([13], [15, pp. 140-144])
0 — R* = 17287 (2),

we obtain our main result:

Theorem 3.
16308864 n°°(z)
o] 00 . ) ) )
=Y > Dy O+ D7 67 F D7 i+17+6+171/24
. . 2 ’ 2
1=—00 J=—00
o] o] o ) o
+ Z Z (=1 £(12i%, (6] + 1)?)g" HOFDT/12,
i=—00 j=—00

By comparing coefficients on both sides we readily obtain:

Corollary 4. Let

o0
N (@) =q"*>" prng",
n=0

where the coefficients p,(n) are defined by
oo oo

(1—¢™)" =>prmq".
m=1 n=0

Then

535
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2 2
_ _pyers-n/6 (P
16308864p26(m) = »_  (=1) f( 5 )
o2+ B2=24n+26
«o,f=1 (mod 6)

+ Z (—1)(y+81)/6f(%2,82>.

y2+352=36n+39
y=0 (mod 6), =1 (mod 6)

3. Proof of Lemma 1

Let

. . . 2
Y72 (=Y (6] + 1) g I
Z?iioo(_l)jq(éj+l)2/24

Vo =

Using the relation

dVay
Vogyo = PVoy +24g——
dq

and the Ramanujan differential equations for P, Q and R, Ramanujan [14, p. 369] showed that

V=1,
Vo=P,
Vi=3P%—-20,

Ve=15P3 —30PQ + 16R,
Vg = 105P* — 420P2Q + 448PR — 13207,
Vio = 945P° — 6300P3 Q + 10080P%R — 5940P Q% + 1216 OR,
Vio = 10395P% — 103950 P*Q + 221760 P R
— 196020P> Q% + 80256 P QR — 27120° — 9728 R>. 1)

Observe that

VoVip — 66V, Vig+495V4 Vg — 924‘/62 +495Vg V4 — 66VioVo + V2 Vo

=64(39990% — 4000R?).

If we multiply this by #?(z)/64 we complete the proof of Lemma 1. O
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4. Proof of Lemma 2

The key to proving Lemma 2 is to write

r@=¢"2]10
j=l1
_ ynT (1—g/)?
! g H (1 —g%)
=< 5 (—1>fq<6f+”2“2>< > (—1)qu2). 2)

Jj=—00 j=—00
Let
o0
o(q) = Z ¢’ v =Y g/t
j=—00 j=0
and define
¥(g>)*
z2=9(q)", x=16
p(g)*
Let
_ 23.;700(_1)](6].4- 1)28q(6j+1)2/12 i
Vo = .y
. YR o(=1)igith/12 2(4%),
Y5 (11227
Woe =

32 e (=Dig/

We will express V¢ and Wy in terms of P, z and x.
From [3, pp. 126—127] we have

P(¢%) = %(P +22(1 +x)), 0(q%) =2*(1 —x +x?),
R(¢%)=z°C1 +x)(1 - %)(1 —2x).
Using these in (1) we obtain:

Vo=1,
2Vy =P +72(1 +x),
4V4=3P* +6PZ2(1 +x) — 2*(5 — 14x + 5x%),
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8Ve=15P> +45P?z*(1 +x) — 152 P(5 — 14x + 5x7)
+28(1 4 x)(23x% — 170x +23),
16V = 105P* +420P322(1 4 x) — 210P?2*(5 — 14x + 5x?)

+28Pz8(1 +x)(23 — 170x +23x?)
—z8(103 — 1172x + 16458x% — 1172x> + 103x*),

32V 19 =945P% +4725P*Z2(1 + x) — 3150P3z*(5 — 14x + 5x7)
+630P%z%(1 + x)(23 — 170x + 23x?)
—45Pz%(103 — 1172x + 16458x% — 1172x> + 103x*)
+ 2101 4 x) (257 — 7852x — 346266x% — 7852x> + 257x%),

64V 12 = 10395 P + 62370 P 2% (1 + x) — 51975 P*z*(5 — 14x + 5x2)
+ 13860P32°(1 + x)(23 — 170x + 23x?)
— 1485P2z% (103 — 1172x + 16458x% — 1172x> + 103x*)
+66Pz'0(1 +x)(23 — 170x + 23x%) (257 — 7852x — 346266x> — 7852x> +257x*)
+212(4387 + 12282x — 10840467x* — 17010388x> — 10840467x*
+ 12282x° + 4387x%).

Now we will express Wy, in terms of P, z and x. First, observe that Wy = 1. Next, from [3,
pp- 120-129] we have:

o(—q) =71 = x)l/4,

dx 2 (1 )
— =z"x(1 —x),
Uq =*

dZ 3
12— =Pz+77(5x - 1),
dq
0 =z (14 14x +x?),
R=25(1+x)(1 - 34x + x?).

Using these we obtain

d
Wy = IZqE logv/o(—q)

d
=3g— logz(l —x)'/?
dq

3 dz 3 dx

~ 4 200749
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If we apply ¢ % to the equation defining W», and simplify, we obtain the differential recurrence
relation

d
Wapio = WoWo + IZQEWM.

Additional values of W5, can be computed using the differential recurrence relation together with
Ramanujan’s differential equations for P, Q and R [13, Eq. (30), p. 142]. We obtain:

4
FWa= P? —2PZ* (1 +x) +2*(1 — 22x + x?),

8
FWe= 5P —15P*22(1 +x) + 15Pz*(1 — 22x +x?) — 25(1 + x) (5 + 226x + 5x7),

16
< We=35P" = 140P*2(1 + 1) +210P%2* (1 - 22x + x%)
— 28Pz%(1 +x)(5 + 226x + 5x7)
+28(35 — 2596x — 6990x? — 2596x° + 35x%),
32

57 Wio= 35P° — 175P*22 (1 + x) +350P32* (1 — 22x + x?)

—70P%28(1 4 x)(5 + 226x + 5x?)
+5Pz%(35 — 2596x — 6990x? — 2596x> + 35x%)
—2'%(1 4 x)(35 — 196x + 18546x* — 196x° + 35x*),

64
— Wip =385P° —2310P°Z2(1 +x) + 5775P*z* (1 — 22x +x?)

27
— 1540P32%(1 + x)(5 + 226x + 5x?)
+165P?2% (35 — 2596x — 6990x? — 2596x° + 35x%)
—66Pz'0(1 4 x)(35 — 196x° + 18546x? — 196x° + 35x*)
+2'2(385 4 18078x — 50385x% — 841180x° — 50385x* + 18078x° + 385x°).
Observe that

VoWiz — 66V, Wi + 495V 4 Wy — 924V 6 We + 495V Wy — 66V 10W2 + V12 W
= z'2(1 + 587346x — 2348625x% + 3526652x" — 2348625x* + 587346x5 + x°)
=54392"2(1 + 14x + 1)’ — 54382"2(1 + )2 (1 — 34x + x?)°
=54390° — 5438R”.

If we multiply this by 1?(z) and use (2) we complete the proof of Lemma 2.
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5. Consequences
5.1. Lacunarity

A series gV ZZO:O anq” is called lacunary if almost all of the coefficients a, are zero, i.e.,
limy_0o{M(N)/N} =0, where M(N) is the number of n < N with a,, # 0. Serre [16] showed
that the only even values of d for which nd(z) is lacunary are d = 2,4, 6, 8, 10, 14 or 26. It is
still unknown if there are any odd values of d, besides d = 1 and 3, for which nd (z) is lacunary.

The series representation given in Theorem 3, together with a theorem of Landau [2, p. 244,
Theorem 10.5], imply that 72°(z) is lacunary.

5.2. The Hecke operator

If p =11 (mod 12), then Corollary 4 together with the elementary method used in [4] imply

p26<pn+ 12(17 )) p Pze(p)

This provides an elementary derivation of the case r = 26 of the following theorem of New-
man [12]:

Theorem 5. Suppose that r is one of the numbers 2, 4, 6, 8, 10, 14, 26. Let p be a prime > 3 such

thatr(p+1) =0 (mod 24). Let A = (p2 —1)/24, and define p,(x) = 0 if x is not a non-negative
integer. Then

pr(pn+ra) = (—p)r/“p,(%).

Furthermore there are no other values of r for which the theorem is true.

Elementary proofs for the cases r =2, 4, 6, 8, 10 and 14 of Newman’s theorem were given
in [4].

5.3. Values of n for which pye(n) =0

The explicit formula in Corollary 4 may be used to prove two conditions given by Serre [16,
p. 213] which imply pe(n) =0.

Proposition 6. Suppose that the factorization of 12n + 13 into distinct primes contains at least
one prime congruent to —1 modulo 4 raised to an odd power, and also at least one prime con-
gruent to —1 modulo 3 raised to an odd power. Then pys(n) =

Proof. Let 12n+13 = ]_[ pAP be the factorlzatlon of 12n+13 1nto pnmes Letro(m) and s(m)
denote the number of solutlons in integers of x + y> = m and x> 4 3y? = m, respectively. Two
classical results [6] are, for any positive integer m,
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ra(m) = 4(d1 4(m) — d3 4(m)), (3)
s(m) =2(d1,3(m) — da,3(m)) + 4(da,12(m) — dg,12(m)), 4)

where d ; (m) denotes the number of divisors of m which are congruent to j modulo k. It follows
that

1+ (=1)*
24 26) =4 1 —_—
r2(24n + 26) [T e+b ] — 5)
p=1 (mod 4) p=—1 (mod 4)
L+ (=D*

s@on+39=2 [ G,+D [] 5

p=1 (mod 3) p=—1 (mod 3)

(6)

Consequently, r2(24n + 26) = s(36n + 39) = 0. Therefore the sums in Corollary 4 are empty
and it follows that pre(n) =0. O

Proposition 7. Suppose 12n + 13 is a square and all the prime factors of 12n + 13 are congruent
to —1 modulo 12. Then pas(n) =0.

Proof. Write 12n+13 =x2 = I » pAl’ , where the product is over primes p = —1 (mod 12), and
all the exponents A, are even. Without loss of generality we can assume x = 1 (mod 12). Then
(5) implies r2(26n + 24) = 4, and in fact the representations are 24n + 26 = (£x)* + (£x)2.
Similarly, (6) implies s(36n + 39) = 2, and the representations are 36n + 39 = (0)2 + 3(:|:x)2.
Corollary 4 implies

2)(2

16308864 pag(n) = f(x

xTox” 2y 12 12
2,2)+f(0,x) X X 0. 0

5.4. The case when 12n + 13 is prime

For this section, let us consider the case when 12n + 13 is prime, in which case we write
p = 12n 4 13. Corollary 4 implies

16308864 pag (1) = _1)@+B-2)/6 (a_2 ﬁz)
sm= > (=1 f

272
a2+ p2=2p
a,f=1 (mod 6)
Z (y+8—1)/6 y? 2
+ (—1)r+s- f(—,a).
3
y2+4382=3p

y=0 (mod 6), =1 (mod 6)

Equation (3) implies that o> + % = 2p has exactly eight solutions in integers, say (a, 8) =
(£a, £b), (b, £a), where a, b =1 (mod 6) and a < b. Two of these eight solutions satisfy the
conditions «, 8 = 1 (mod 6), namely («, 8) = (a, b) and («, 8) = (b, a). Therefore

2 2 2 b2
Cpyerp=0/6 ¢ (90 BTN o py@ro-age p(40 D7
2_,_%22() f22 =D f22
o =zp

o,f=1 (mod 6)
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Similarly, Eq. (4) implies that y? 4 382 = 3 p has exactly four solutions in integers, say (y, §) =
(£c, £d), where ¢ > 0 and d = 1 (mod 6). Two of these four solutions satisfy y =0 (mod 6),
6 =1 (mod 6), namely (y, §) = (¢, d) and (y, §) = (—c, d). Therefore

Z (_1)(V+8_l)/6f<%2, 82> — 2(_1)(C+d_1)/6f(c3—2,d2>

y2+36%=3p
y=0 (mod 6), =1 (mod 6)

Therefore we have proved a result which is equivalent to the formula mentioned in the introduc-
tion:

Theorem 8. Let p = 12n + 13 be prime. Let (a, b) be the unique solution in integers of
a2+b2=2p, a,b=1 (mod®6), a <b,
and let (c, d) be the unique solution in integers of

2 +3d*=3p, d=1(mod6), ¢c>0.

Then
a? b2 2
8154432 p(n) = (—1)<“+”—2>/6f<7, 7) + (—1)(C+d—”/6f(§, d2>. @)
5.5. Remark
‘We note that
6
f(mz, nz) = (m2 — ajz-nz)
Jj=1
where
alz\/z_‘_la azzﬁ_17
a3 =+v6+V3+V2+2, ar=+v6—-3++2-2,
as=v6—3—2+2, a6 =v6+~3—-2-2,
and

ayjay = aszas = asag = 1.

As a result, (7) may be written as a sum of two expressions, each of which factors into linear
factors involving a and b, and c and d, respectively.
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