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Abstract

We prove a simple and explicit formula, which expresses the 26th power of Dedekind’s η-function as a
double series. The proof relies on properties of Ramanujan’s Eisenstein series P , Q and R, and parameters
from the theory of elliptic functions.

The formula reveals a number of properties of the product
∏∞

j=1(1 − qj )26, for example its lacunarity,
the action of the Hecke operator, and sufficient conditions for a coefficient to be zero.
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1. Introduction

Dedekind’s η-function is defined by

η(z) = q1/24
∞∏

j=1

(
1 − qj

)
, where q = e2πiz, Im(z) > 0.
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For certain values of d , the expansion of ηd(z) in powers of q has a particularly simple form. For
example, the cases d = 1 and d = 3 are due to L. Euler and C.G.J. Jacobi, respectively:

η(24z) =
∞∑

j=−∞
(−1)j q(6j+1)2

,

η3(8z) =
∞∑

j=−∞
(4j + 1)q(4j+1)2

.

For d = 8 we have

η8(12z) = 1

2

∞∑
i=−∞

(2i)2q3(2i)2
∞∑

j=−∞
(6j − 2)q(6j−2)2

+ 1

2

∞∑
i=−∞

(2i + 1)2q3(2i+1)2
∞∑

j=−∞
(6j + 1)q(6j+1)2

,

and there are analogous formulas for d = 10 and 14 in terms of double sums. The case d = 8 was
first considered by F. Klein and R. Fricke [7, p. 373]. The formula for d = 10 was discovered by
L. Winquist [17], who used it to give an elementary proof of S. Ramanujan’s congruence

p(11m + 6) ≡ 0 (mod 11),

where p(n) is the number of partitions of n. F.J. Dyson [5, p. 637] reports that the case d = 14
was discovered by A.O.L. Atkin, and furthermore that Atkin had a formula for d = 26. Apart
from a special case cited by Dyson [5, p. 651], no details of Atkin’s work on d = 26 have been
published.

Dyson found that there are elegant multiple series expansions for d = 3,8,10,14,15,21,24,

26,28,35,36, . . . . At about the same time, I.G. Macdonald [10] discovered there is an elegant
multiple series expansion for any value of d which is the dimension of a finite dimensional simple
Lie algebra. Macdonald’s results include all of the numbers on Dyson’s list, except d = 26. In
[8] and [9], V.E. Leininger and S.C. Milne utilized [11] and multiple basic hypergeometric series
techniques to derive new non-trivial explicit multiple series expansions for additional infinite
families of values of d not in [10], but not for d = 26. They also simplified Macdonald’s results
corresponding to affine root systems of type A�.

The purpose of this article is to prove a formula for η26(z) in terms of a double series. A special
case of our formula is as follows. Suppose 12n+13 is prime. Let a + ib and c+ id be the unique
Gaussian integers which satisfy the conditions:

a2 + b2 = 24n + 26, a, b ≡ 1 (mod 6), a < b,

c2 + 3d2 = 36n + 39, d ≡ 1 (mod 6), c > 0.

Then the coefficient of qn in
∏∞

j=1(1 − qj )26 is

1

263411213

(
(−1)(a+b−2)/6

26
Re

(
(a + ib)12) + (−1)(c+d−1)/6

36
Re

((
c + id

√
3
)12))

.
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This is different from the formula of Atkin quoted by Dyson. As an example, when n = 2 we
have a+ ib = −5+7i and c+ id = 6−5i, so the coefficient of q2 in

∏∞
j=1(1−qj )26 is therefore

1

263411213

(
1

64
Re

(
(−5 + 7i)12) + 1

729
Re

((
6 − 5i

√
3
)12))

= 1

263411213
(1025046359 + 1413128809)

= 299.

Our proof is based on the observation that η2(z) may be expressed as a product of two theta
functions in two different ways:

η2(z) =
( ∞∑

j=−∞
(−1)j q(6j+1)2/24

)2

=
( ∞∑

j=−∞
(−1)j q(6j+1)2/12

)( ∞∑
j=−∞

(−1)j qj2

)
.

Atkin’s proof [1] uses properties of η10(z)E2
4(z) and η14(z)E6(z), where E4 and E6 are Eisen-

stein series of weights 4 and 6, respectively. Atkin’s notes [1] indicate that he discovered his
formula for η26(z) in 1965, and in 1966 he found another formula, different from the one quoted
by Dyson [5, p. 651]. For a published proof of a formula for η26(z), see the paper by J.-P. Serre
[16].

2. Statement of results

Let m and n be real numbers and define

f (m,n) =
6∑

j=0

(
12

2j

)
(−1)jmjn6−j

= m6 − 66m5n + 495m4n2 − 924m3n3 + 495m2n4 − 66mn5 + n6.

Observe that

f
(
m2, n2) = Re

(
(m + in)12).

Let

P = 1 − 24
∞∑

j=1

jqj

1 − qj
, Q = 1 + 240

∞∑
j=1

j3qj

1 − qj
,

R = 1 − 504
∞∑

j=1

j5qj

1 − qj
.

We will prove the following identities:
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Lemma 1.

η2(z)
(
3999Q3 − 4000R2)

=
∞∑

i=−∞

∞∑
j=−∞

(−1)i+j f

(
(6i + 1)2

2
,
(6j + 1)2

2

)
q[(6i+1)2+(6j+1)2]/24.

Lemma 2.

η2(z)
(
5439Q3 − 5438R2)

=
∞∑

i=−∞

∞∑
j=−∞

(−1)i+j f
(
12i2, (6j + 1)2)qi2+(6j+1)2/12.

If we add these results and use the fact that ([13], [15, pp. 140–144])

Q3 − R2 = 1728η24(z),

we obtain our main result:

Theorem 3.

16308864η26(z)

=
∞∑

i=−∞

∞∑
j=−∞

(−1)i+j f

(
(6i + 1)2

2
,
(6j + 1)2

2

)
q[(6i+1)2+(6j+1)2]/24

+
∞∑

i=−∞

∞∑
j=−∞

(−1)i+j f
(
12i2, (6j + 1)2)qi2+(6j+1)2/12.

By comparing coefficients on both sides we readily obtain:

Corollary 4. Let

ηr(z) = qr/24
∞∑

n=0

pr(n)qn,

where the coefficients pr(n) are defined by

∞∏
m=1

(
1 − qm

)r =
∞∑

n=0

pr(n)qn.

Then
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16308864p26(n) =
∑

α2+β2=24n+26
α,β≡1 (mod 6)

(−1)(α+β−2)/6f

(
α2

2
,
β2

2

)

+
∑

γ 2+3δ2=36n+39
γ≡0 (mod 6), δ≡1 (mod 6)

(−1)(γ+δ−1)/6f

(
γ 2

3
, δ2

)
.

3. Proof of Lemma 1

Let

V2� =
∑∞

j=−∞(−1)j (6j + 1)2�q(6j+1)2/24∑∞
j=−∞(−1)j q(6j+1)2/24

.

Using the relation

V2�+2 = PV2� + 24q
dV2�

dq

and the Ramanujan differential equations for P , Q and R, Ramanujan [14, p. 369] showed that

V0 = 1,

V2 = P,

V4 = 3P 2 − 2Q,

V6 = 15P 3 − 30PQ + 16R,

V8 = 105P 4 − 420P 2Q + 448PR − 132Q2,

V10 = 945P 5 − 6300P 3Q + 10080P 2R − 5940PQ2 + 1216QR,

V12 = 10395P 6 − 103950P 4Q + 221760P 3R

− 196020P 2Q2 + 80256PQR − 2712Q3 − 9728R2. (1)

Observe that

V0V12 − 66V2V10 + 495V4V8 − 924V 2
6 + 495V8V4 − 66V10V2 + V12V0

= 64
(
3999Q3 − 4000R2).

If we multiply this by η2(z)/64 we complete the proof of Lemma 1. �



H.H. Chan et al. / Advances in Mathematics 207 (2006) 532–543 537
4. Proof of Lemma 2

The key to proving Lemma 2 is to write

η2(z) = q1/12
∞∏

j=1

(
1 − qj

)2

= q1/12
∞∏

j=1

(
1 − q2j

) ∞∏
j=1

(1 − qj )2

(1 − q2j )

=
( ∞∑

j=−∞
(−1)j q(6j+1)2/12

)( ∞∑
j=−∞

(−1)j qj2

)
. (2)

Let

ϕ(q) =
∞∑

j=−∞
qj2

, ψ(q) =
∞∑

j=0

qj (j+1)/2,

and define

z = ϕ(q)2, x = 16q
ψ(q2)4

ϕ(q)4
.

Let

V 2� =
∑∞

j=−∞(−1)j (6j + 1)2�q(6j+1)2/12∑∞
j=−∞(−1)j q(6j+1)2/12

= V2�

(
q2),

W2� =
∑∞

j=−∞(−1)j (12j2)�qj2

∑∞
j=−∞(−1)j qj2 .

We will express V 2� and W2� in terms of P , z and x.
From [3, pp. 126–127] we have

P
(
q2) = 1

2

(
P + z2(1 + x)

)
, Q

(
q2) = z4(1 − x + x2),

R
(
q2) = z6(1 + x)

(
1 − x

2

)
(1 − 2x).

Using these in (1) we obtain:

V 0 = 1,

2V 2 = P + z2(1 + x),

4V 4 = 3P 2 + 6Pz2(1 + x) − z4(5 − 14x + 5x2),
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8V 6 = 15P 3 + 45P 2z2(1 + x) − 15z4P
(
5 − 14x + 5x2)

+ z6(1 + x)
(
23x2 − 170x + 23

)
,

16V 8 = 105P 4 + 420P 3z2(1 + x) − 210P 2z4(5 − 14x + 5x2)
+ 28Pz6(1 + x)

(
23 − 170x + 23x2)

− z8(103 − 1172x + 16458x2 − 1172x3 + 103x4),
32V 10 = 945P 5 + 4725P 4z2(1 + x) − 3150P 3z4(5 − 14x + 5x2)

+ 630P 2z6(1 + x)
(
23 − 170x + 23x2)

− 45Pz8(103 − 1172x + 16458x2 − 1172x3 + 103x4)
+ z10(1 + x)

(
257 − 7852x − 346266x2 − 7852x3 + 257x4),

64V 12 = 10395P 6 + 62370P 5z2(1 + x) − 51975P 4z4(5 − 14x + 5x2)
+ 13860P 3z6(1 + x)

(
23 − 170x + 23x2)

− 1485P 2z8(103 − 1172x + 16458x2 − 1172x3 + 103x4)
+ 66Pz10(1 + x)

(
23 − 170x + 23x2)(257 − 7852x − 346266x2 − 7852x3 + 257x4)

+ z12(4387 + 12282x − 10840467x2 − 17010388x3 − 10840467x4

+ 12282x5 + 4387x6).
Now we will express W2� in terms of P , z and x. First, observe that W0 = 1. Next, from [3,
pp. 120–129] we have:

ϕ(−q) = z1/2(1 − x)1/4,

q
dx

dq
= z2x(1 − x),

12q
dz

dq
= Pz + z3(5x − 1),

Q = z4(1 + 14x + x2),
R = z6(1 + x)

(
1 − 34x + x2).

Using these we obtain

W2 = 12q
d

dq
log

√
ϕ(−q)

= 3q
d

dq
log z(1 − x)1/2

= 3

z
q

dz

dq
− 3

2(1 − x)
q

dx

dq

= 1(
P − z2 − z2x

)
.

2
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If we apply q d
dq

to the equation defining W2� and simplify, we obtain the differential recurrence
relation

W2�+2 = W2W2� + 12q
d

dq
W2�.

Additional values of W2� can be computed using the differential recurrence relation together with
Ramanujan’s differential equations for P , Q and R [13, Eq. (30), p. 142]. We obtain:

4

3
W4 = P 2 − 2Pz2(1 + x) + z4(1 − 22x + x2),

8

3
W6 = 5P 3 − 15P 2z2(1 + x) + 15Pz4(1 − 22x + x2) − z6(1 + x)

(
5 + 226x + 5x2),

16

3
W8 = 35P 4 − 140P 3z2(1 + x) + 210P 2z4(1 − 22x + x2)

− 28Pz6(1 + x)
(
5 + 226x + 5x2)

+ z8(35 − 2596x − 6990x2 − 2596x3 + 35x4),
32

27
W10 = 35P 5 − 175P 4z2(1 + x) + 350P 3z4(1 − 22x + x2)

− 70P 2z6(1 + x)
(
5 + 226x + 5x2)

+ 5Pz8(35 − 2596x − 6990x2 − 2596x3 + 35x4)
− z10(1 + x)

(
35 − 196x + 18546x2 − 196x3 + 35x4),

64

27
W12 = 385P 6 − 2310P 5z2(1 + x) + 5775P 4z4(1 − 22x + x2)

− 1540P 3z6(1 + x)
(
5 + 226x + 5x2)

+ 165P 2z8(35 − 2596x − 6990x2 − 2596x3 + 35x4)
− 66Pz10(1 + x)

(
35 − 196x3 + 18546x2 − 196x3 + 35x4)

+ z12(385 + 18078x − 50385x2 − 841180x3 − 50385x4 + 18078x5 + 385x6).
Observe that

V 0W12 − 66V 2W10 + 495V 4W8 − 924V 6W6 + 495V 8W4 − 66V 10W2 + V 12W0

= z12(1 + 587346x − 2348625x2 + 3526652x3 − 2348625x4 + 587346x5 + x6)
= 5439z12(1 + 14x + x2)3 − 5438z12(1 + x)2(1 − 34x + x2)2

= 5439Q3 − 5438R2.

If we multiply this by η2(z) and use (2) we complete the proof of Lemma 2.
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5. Consequences

5.1. Lacunarity

A series qν
∑∞

n=0 anq
n is called lacunary if almost all of the coefficients an are zero, i.e.,

limN→∞{M(N)/N} = 0, where M(N) is the number of n � N with an �= 0. Serre [16] showed
that the only even values of d for which ηd(z) is lacunary are d = 2,4,6,8,10,14 or 26. It is
still unknown if there are any odd values of d , besides d = 1 and 3, for which ηd(z) is lacunary.

The series representation given in Theorem 3, together with a theorem of Landau [2, p. 244,
Theorem 10.5], imply that η26(z) is lacunary.

5.2. The Hecke operator

If p ≡ 11 (mod 12), then Corollary 4 together with the elementary method used in [4] imply

p26

(
pn + 13

12

(
p2 − 1

)) = p12p26

(
n

p

)
.

This provides an elementary derivation of the case r = 26 of the following theorem of New-
man [12]:

Theorem 5. Suppose that r is one of the numbers 2, 4, 6, 8, 10, 14, 26. Let p be a prime > 3 such
that r(p+1) ≡ 0 (mod 24). Let Δ = (p2 −1)/24, and define pr(x) = 0 if x is not a non-negative
integer. Then

pr(pn + rΔ) = (−p)r/2−1pr

(
n

p

)
.

Furthermore there are no other values of r for which the theorem is true.

Elementary proofs for the cases r = 2, 4, 6, 8, 10 and 14 of Newman’s theorem were given
in [4].

5.3. Values of n for which p26(n) = 0

The explicit formula in Corollary 4 may be used to prove two conditions given by Serre [16,
p. 213] which imply p26(n) = 0.

Proposition 6. Suppose that the factorization of 12n + 13 into distinct primes contains at least
one prime congruent to −1 modulo 4 raised to an odd power, and also at least one prime con-
gruent to −1 modulo 3 raised to an odd power. Then p26(n) = 0.

Proof. Let 12n+13 = ∏
p pλp be the factorization of 12n+13 into primes. Let r2(m) and s(m)

denote the number of solutions in integers of x2 + y2 = m and x2 + 3y2 = m, respectively. Two
classical results [6] are, for any positive integer m,
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r2(m) = 4
(
d1,4(m) − d3,4(m)

)
, (3)

s(m) = 2
(
d1,3(m) − d2,3(m)

) + 4
(
d4,12(m) − d8,12(m)

)
, (4)

where dj,k(m) denotes the number of divisors of m which are congruent to j modulo k. It follows
that

r2(24n + 26) = 4
∏

p≡1 (mod 4)

(λp + 1)
∏

p≡−1 (mod 4)

1 + (−1)λp

2
, (5)

s(36n + 39) = 2
∏

p≡1 (mod 3)

(λp + 1)
∏

p≡−1 (mod 3)

1 + (−1)λp

2
. (6)

Consequently, r2(24n + 26) = s(36n + 39) = 0. Therefore the sums in Corollary 4 are empty
and it follows that p26(n) = 0. �
Proposition 7. Suppose 12n+13 is a square and all the prime factors of 12n+13 are congruent
to −1 modulo 12. Then p26(n) = 0.

Proof. Write 12n+13 = x2 = ∏
p pλp , where the product is over primes p ≡ −1 (mod 12), and

all the exponents λp are even. Without loss of generality we can assume x ≡ 1 (mod 12). Then
(5) implies r2(26n + 24) = 4, and in fact the representations are 24n + 26 = (±x)2 + (±x)2.
Similarly, (6) implies s(36n + 39) = 2, and the representations are 36n + 39 = (0)2 + 3(±x)2.

Corollary 4 implies

16308864p26(n) = f

(
x2

2
,
x2

2

)
+ f

(
0, x2) = x12 − x12 = 0. �

5.4. The case when 12n + 13 is prime

For this section, let us consider the case when 12n + 13 is prime, in which case we write
p = 12n + 13. Corollary 4 implies

16308864p26(n) =
∑

α2+β2=2p
α,β≡1 (mod 6)

(−1)(α+β−2)/6f

(
α2

2
,
β2

2

)

+
∑

γ 2+3δ2=3p
γ≡0 (mod 6), δ≡1 (mod 6)

(−1)(γ+δ−1)/6f

(
γ 2

3
, δ2

)
.

Equation (3) implies that α2 + β2 = 2p has exactly eight solutions in integers, say (α,β) =
(±a,±b), (±b,±a), where a, b ≡ 1 (mod 6) and a < b. Two of these eight solutions satisfy the
conditions α,β ≡ 1 (mod 6), namely (α,β) = (a, b) and (α,β) = (b, a). Therefore

∑
α2+β2=2p

(−1)(α+β−2)/6f

(
α2

2
,
β2

2

)
= 2(−1)(a+b−2)/6f

(
a2

2
,
b2

2

)
.

α,β≡1 (mod 6)



542 H.H. Chan et al. / Advances in Mathematics 207 (2006) 532–543
Similarly, Eq. (4) implies that γ 2 + 3δ2 = 3p has exactly four solutions in integers, say (γ, δ) =
(±c,±d), where c > 0 and d ≡ 1 (mod 6). Two of these four solutions satisfy γ ≡ 0 (mod 6),
δ ≡ 1 (mod 6), namely (γ, δ) = (c, d) and (γ, δ) = (−c, d). Therefore

∑
γ 2+3δ2=3p

γ≡0 (mod 6), δ≡1 (mod 6)

(−1)(γ+δ−1)/6f

(
γ 2

3
, δ2

)
= 2(−1)(c+d−1)/6f

(
c2

3
, d2

)
.

Therefore we have proved a result which is equivalent to the formula mentioned in the introduc-
tion:

Theorem 8. Let p = 12n + 13 be prime. Let (a, b) be the unique solution in integers of

a2 + b2 = 2p, a, b ≡ 1 (mod 6), a < b,

and let (c, d) be the unique solution in integers of

c2 + 3d2 = 3p, d ≡ 1 (mod 6), c > 0.

Then

8154432p26(n) = (−1)(a+b−2)/6f

(
a2

2
,
b2

2

)
+ (−1)(c+d−1)/6f

(
c2

3
, d2

)
. (7)

5.5. Remark

We note that

f
(
m2, n2) =

6∏
j=1

(
m2 − a2

j n
2)

where

a1 = √
2 + 1, a2 = √

2 − 1,

a3 = √
6 + √

3 + √
2 + 2, a4 = √

6 − √
3 + √

2 − 2,

a5 = √
6 − √

3 − √
2 + 2, a6 = √

6 + √
3 − √

2 − 2,

and

a1a2 = a3a4 = a5a6 = 1.

As a result, (7) may be written as a sum of two expressions, each of which factors into linear
factors involving a and b, and c and d , respectively.
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