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RAMANUJAN’S EISENSTEIN SERIES AND POWERS OF DEDEKIND’S
ETA-FUNCTION

HENG HUAT CHAN, SHAUN COOPER and PEE CHOON TOH

Abstract

In this article, we use the theory of elliptic functions to construct theta function identities which are equivalent
to Macdonald’s identities for A2,B2 and G2. Using these identities, we express, for d = 8, 10 or 14, certain theta
functions in the form ηd(τ)F (P, Q, R), where η(τ) is Dedekind’s eta-function, and F (P, Q, R) is a polynomial
in Ramanujan’s Eisenstein series P , Q and R. We also derive identities in the case when d = 26. These lead
to a new expression for η26(τ). This work generalizes the results for d = 1 and d = 3 which were given by
Ramanujan on page 369 of ‘The Lost Notebook’.

1. Introduction

Let Im(τ) > 0 and put q = exp(2πiτ). Dedekind’s eta-function is defined by

η(τ) = q1/24
∞∏

k=1

(1 − qk),

and Ramanujan’s Eisenstein series are

P = P (q) = 1 − 24
∞∑

k=1

kqk

1 − qk
,

Q = Q(q) = 1 + 240
∞∑

k=1

k3qk

1 − qk

and

R = R(q) = 1 − 504
∞∑

k=1

k5qk

1 − qk
.

On page 369 of The Lost Notebook [28], Ramanujan gave the following results.

Theorem 1.1 (Ramanujan). Let

S1(m) =
∑

α≡1 (mod 6)

(−1)(α−1)/6αmqα2/24,

S3(m) =
∑

α≡1 (mod 4)

αmqα2/8.

Then

S1(0) = η(τ),
S1(2) = η(τ)P,

S1(4) = η(τ)(3P 2 − 2Q),
S1(6) = η(τ)(15P 3 − 30PQ + 16R),
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and in general

S1(2m) = η(τ)
∑

i+2j+3k=m

aijkP iQjRk,

where aijk are integers and i, j and k are non-negative integers. Also

S3(1) = η3(τ),
S3(3) = η3(τ)P,

S3(5) = η3(τ)
(5P 2 − 2Q)

3
,

S3(7) = η3(τ)
(35P 3 − 42PQ + 16R)

9
,

and in general

S3(2m + 1) = η3(τ)
∑

i+2j+3k=m

bijkP iQjRk,

where bijk are rational numbers and i, j and k are non-negative integers.

The results for S1(0) and S3(1) are well-known consequences of the Jacobi triple product
identity [1, p. 500]. Ramanujan also listed the values of S1(8), S1(10), S3(9) and S3(11).
He indicated that these results may be proved by induction, using differentiation and the
Ramanujan differential equations [26, equation (30)]

q
dP

dq
=

P 2 − Q

12
, q

dQ

dq
=

PQ − R

3
, q

dR

dq
=

PR − Q2

2
.

Theorem 1.1 has been studied by Venkatachaliengar [36, pp. 31–32] (where both S1 and S3 are
studied), Berndt and Yee [5] (where S1 is studied) and Berndt, Chan, Liu and Yesilyurt [6]
(where S3 is studied). For a different approach to these identities, see Ramanujan [27, Chapter
16, Entry 35(i)] (for S3), Berndt [4, p. 61] (for S3) and Liu [22] (for S1).

The first purpose of this article is to prove analogous results corresponding to the 2nd,
4th, 6th, 8th, 10th, 14th and 26th powers of η(τ), these being the even powers of η(τ) that
are lacunary [33, Theorem 1]. For example, the result for the 14th power is as follows. For
non-negative integers m, n, �, let

S14(m,n, �) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6
(
β(α2 − β2)

)m (
α(α2 − 9β2)

)n

× (α2 + 3β2
)�

q(α2+3β2)/12.

Then

S14(2m + 1, 2n + 1, �) = η14(τ)
∑

i+2j+3k=3m+3n+�

cijkP iQjRk, m, n, � � 0, (1.1)

where cijk are rational numbers and i, j and k are non-negative integers. The first few instances
of (1.1) are

S14(1, 1, 0) = −30η14(τ),
S14(1, 1, 1) = −210η14(τ)P,

S14(1, 1, 2) = −210η14(τ)(8P 2 − Q),
S14(3, 1, 0) = −5η14(τ)(56P 3 − 21PQ + 19R),
S14(1, 3, 0) = −15η14(τ)(504P 3 − 189PQ − 115R).
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An equation equivalent to the one for S14(1, 1, 0) was stated without proof by Winquist [38].
Since

β(α2 − β2)α(α2 − 9β2) = α5β − 10α3β3 + 9αβ5 =
1

6
√

3
Im
(
(α + iβ

√
3)6
)

,

the result for S14(1, 1, 0) may be written as∑
α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)6
)

q(α2+3β2)/12 = −180
√

3η14(τ).

The second purpose of this article is to prove results of the type∑
α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)6n

)
q(α2+3β2)/12 =

√
3η14(τ)

∑
2j+3k=3(n−1)

djkQjRk,

(1.2)
where djk are rational numbers and j and k are non-negative integers. We shall state analogues
of this result for the 2nd, 4th, 6th, 8th, 10th and 26th powers of η(τ) and give a detailed proof
for the 10th power.

This work is organized as follows.
Notation and properties of theta functions are established in Section 2.
Sections 3, 4 and 5 are devoted to the 8th, 10th and 14th powers of η(τ), respectively. Each

section begins with a multivariate theta function identity which is then used to prove the
analogues of (1.1) for the 8th, 10th or 14th power of η(τ).

Section 6 is concerned with the analogues of (1.1) for 2nd, 4th and 6th powers of η(τ). These
follow from Ramanujan’s Theorem 1.1.

In Section 7, we prove results analogous to (1.2) for the 2nd, 4th, 6th, 8th, 10th and 14th
powers of η(τ). Since Ramanujan’s Eisenstein series P does not occur in these results, the
modular transformation for multiple theta series given by Schoeneberg [32] can be used to
prove them.

In Section 8, we give a simple proof of a series expansion for η26(τ), as well as analogues
of (1.1) and (1.2) for the 26th power of η(τ) which are new. The proofs rely on two different
analogues of (1.2) for η2(τ).

Finally, in Section 9, we make some remarks about lacunary series and the Hecke operator,
and a new formula for η24(τ) is presented.

2. Preliminaries

In the classical theory of theta functions [37], the notation q = exp(πiτ) is used, whereas in
the theory of modular forms q = exp(2πiτ). Because we will use both theories, we let t = 2τ
and define

q = exp(πit) = exp(2πiτ).

We will use t when working with theta functions and τ for modular forms and Dedekind’s
eta-function.

The Jacobi theta functions [1, p. 509; 37, Chapter 21], are defined by

θ1(z|t) = 2
∞∑

k=0

(−1)kq(k+1/2)2 sin(2k + 1)z,

θ2(z|t) = 2
∞∑

k=0

q(k+1/2)2 cos(2k + 1)z,

θ3(z|t) = 1 + 2
∞∑

k=1

qk2
cos 2kz



228 HENG HUAT CHAN, SHAUN COOPER AND PEE CHOON TOH

and

θ4(z|t) = 1 + 2
∞∑

k=1

(−1)kqk2
cos 2kz.

Let

G2(z|t) = 2
∑

α≡1 (mod 6)

qα2/12 sin(αz),

G3(z|t) = 2
∑

α≡4 (mod 6)

qα2/12 sin(αz),

H(z|t) = G2(4z|4t) − G3(4z|4t)

= 2
∑

α≡2 (mod 6)

(−1)(α−2)/6qα2/12 sin(2αz)

and

T (z|t) = θ1(2z|t).
These functions satisfy the transformation properties

θ1(z + π|t) = −θ1(z|t), θ1(z + πt|t) = −q−1e−2izθ1(z|t),
θ2(z + π|t) = −θ2(z|t), θ2(z + πt|t) = q−1e−2izθ2(z|t),
θ3(z + π|t) = θ3(z|t), θ3(z + πt|t) = q−1e−2izθ3(z|t),
θ4(z + π|t) = θ4(z|t), θ4(z + πt|t) = −q−1e−2izθ4(z|t),
G2(z + π|t) = −G2(z|t), G2(z + πt|t) = q−3e−6izG2(z|t),
G3(z + π|t) = G3(z|t), G3(z + πt|t) = q−3e−6izG3(z|t),

H

(
z +

π

2

∣∣∣∣t
)

= H(z|t), H

(
z +

πt

2

∣∣∣∣t
)

= −q−3e−12izH(z|t),

T

(
z +

π

2

∣∣∣∣t
)

= −T (z|t), T

(
z +

πt

2

∣∣∣∣t
)

= −q−1e−4izT (z|t).

By the Jacobi triple product identity [1, p. 497],

θ1(z|t) = 2q1/4 sin z

∞∏
k=1

(1 − q2ke2iz)(1 − q2ke−2iz)(1 − q2k).

Therefore, θ1(z|t) has simple zeros at z = πm + πtn, m, n ∈ Z, and no other zeros.
We will also need the results

θ2(z|t)G2(z|t) = η(2τ)θ1(2z|t), (2.1)
θ3(z|t)G3(z|t) = −η(2τ)θ1(2z|t). (2.2)

These are equivalent to the quintuple product identity. For example, see [34, Proposition 2.1],
where these and two other similar equations are given. Equations (2.1) and (2.2), together with
the Jacobi triple product identity, imply that G2(z|t) has simple zeros when z = πm/2 + πtn/2,
where m and n are integers and (m,n) �≡ (1, 0)(mod 2), and no other zeros. Similarly, G3(z|t)
has simple zeros when z = πm/2 + πtn/2, where m and n are integers and (m,n) �≡ (1, 1)
(mod 2), and no other zeros. Equations (2.1) and (2.2) also imply that

θ2(z|t)G2(z|t) + θ3(z|t)G3(z|t) = 0.
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The following lemma is of fundamental importance and will be used several times in the
proofs in the subsequent sections. Let f (�)(z|t) denote the �th derivative of f(z|t) with respect
to z.

Lemma 2.1.

θ
(2�1+1)
1

(
0
∣∣∣∣ t2
)

θ
(2�2+1)
1

(
0
∣∣∣∣ t2
)
· · · θ(2�m+1)

1

(
0
∣∣∣∣ t2
)

= (η(τ))3m
∑

i+2j+3k=�1+�2+···+�m

aijkP iQjRk

for some rational numbers aijk, where i, j and k are non-negative integers.

Proof. Let us first consider the case m = 1. From the definition of θ1, we have

θ
(2�+1)
1 (z|t) = 2(−1)�

∞∑
k=0

(−1)k(2k + 1)2�+1q(k+(1/2))2 cos(2k + 1)z.

Therefore

θ
(2�+1)
1

(
0
∣∣∣∣ t2
)

= 2(−1)�
∞∑

k=0

(−1)k(2k + 1)2�+1q(k+(1/2))2/2

= 2(−1)�
∞∑

k=−∞
(4k + 1)2�+1q(4k+1)2/8

= 2(−1)�S3(2� + 1)

= η3(τ)
∑

i+2j+3k=�

aijkP iQjRk

by Theorem 1.1. The general case m � 1 now follows by multiplying m copies of this result
together.

Finally, we define the standard notation for products:

(x; q)∞ =
∞∏

k=0

(1 − xqk)

and

(x1, x2, . . . , xm; q)∞ = (x1; q)∞(x2; q)∞ · · · (xm; q)∞.

3. The eighth power of η(τ)

The main tool used in this section is the following.

Theorem 3.1.

G2(x|t)θ2(y|t) + G3(x|t)θ3(y|t) =
1

η(τ)
θ1

(
x

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x − y

2

∣∣∣∣ t2
)

.

Proof. Let

M8(x, y|t) = G2(x|t)θ2(y|t) + G3(x|t)θ3(y|t)
and

N8(x, y|t) = θ1

(
x

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x − y

2

∣∣∣∣ t2
)

.
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Then the formulae listed in Section 2 imply that M8 and N8 satisfy the transformation
properties

f(x + 2π, y|t) = f(x, y|t), f(x + πt, y|t) = q−3e−6ixf(x, y|t),
f(x, y + 2π|t) = f(x, y|t), f(x, y + πt|t) = q−1e−2iyf(x, y|t).

Fix y and consider M8 and N8 as functions of x; N8 has simple zeros at x = πm + πtn/2,
±y + 2πm + πtn, m, n ∈ Z, and no other zeros. By the results in Section 2, we see that M8

also has zeros at these points, and possibly at other points too. Therefore, M8(x, y|t)/N8(x, y|t)
is an elliptic function of x with no poles and thus is a constant independent of x.

Now fix x and consider M8 and N8 as functions of y; N8 has simple zeros at
y = ±x + 2πm + πtn and no other zeros. It is easy to check that M8 also has zeros at these
points, and possibly at other points too. Therefore, M8/N8 is an elliptic function of y with no
poles and thus is a constant independent of y.

It follows that
M8(x, y|t)
N8(x, y|t) = C(q)

for some C(q) independent of x and y. To calculate C(q), let x = π/2 and y = π. Since
G3(π/2|t) = 0, we have

M8

(
π

2
, π

∣∣∣∣t
)

= G2

(
π

2

∣∣∣∣t
)

θ2(π|t)

= −2
∞∑

k=−∞
(−1)kq(6k+1)2/12

∞∑
j=−∞

q(j+(1/2))2

= −4η(2τ) q1/4(−q2,−q2, q2; q2)∞
= −4η2(4τ).

On the other hand

N8

(
π

2
, π

∣∣∣∣t
)

= θ1

(
− π

4

∣∣∣∣ t2
)

θ1

(
π

2

∣∣∣∣ t2
)

θ1

(
3π

4

∣∣∣∣ t2
)

= −
(

2q1/8

)3

sin
π

4
sin

π

2
sin

3π

4
(iq,−iq, q; q)2∞(−q,−q, q; q)∞

= −4η(τ)η2(4τ),

after simplifying. Therefore

C(q) =
M8(π/2, π|t)
N8(π/2, π|t) =

1
η(τ)

.

This completes the proof of Theorem 3.1.

Theorem 3.2. Let m and n be non-negative integers and define

S8(m,n) =
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

αmβnq(α2+3β2)/12.

Then S8(1, 0) = 0 and

S8(2m + 1, 2n) = η8(τ)
∑

i+2j+3k=m+n−1

aijkP iQjRk, (3.1)

provided m + n � 1. Here, aijk are rational numbers and i, j and k are non-negative integers.
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Proof. Apply ∂2m+2n+1/(∂x2m+1∂y2n) to the identity in Theorem 3.1 and let x = y = 0.
The left-hand side is

G
(2m+1)
2 (0|t) θ

(2n)
2 (0|τ) + G

(2m+1)
3 (0|t) θ

(2n)
3 (0|τ)

= 2(−1)m+n
∑

α≡1 (mod 6)

α2m+1qα2/12
∑

β≡1 (mod 2)

β2nqβ2/4

+ 2(−1)m+n
∑

α≡4 (mod 6)

α2m+1qα2/12
∑

β≡0 (mod 2)

β2nqβ2/4

= 2(−1)m+n
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

α2m+1β2nq(α2+3β2)/12. (3.2)

Since θ1(z|t) is an odd function, the right-hand side is a linear combination of terms of the
form

1
η(τ)

θ
(2�1+1)
1

(
0
∣∣∣∣ t2
)

θ
(2�2+1)
1

(
0
∣∣∣∣ t2
)

θ
(2�3+1)
1

(
0
∣∣∣∣ t2
)

,

where (2�1 + 1) + (2�2 + 1) + (2�3 + 1) = 2m + 2n + 1. By Lemma 2.1, the right-hand side is
therefore of the form

η8(τ)
∑

i+2j+3k=m+n−1

aijkP iQjRk. (3.3)

If we combine (3.2) and (3.3), then we complete the proof of the theorem for the case m + n � 1.
The result for S8(1, 0) is obtained similarly.

The following identities are consequences of Theorem 3.2:

S8(1, 0) = 0,
S8(3, 0) = −6η8(τ),
S8(5, 0) = −30η8(τ)P,

S8(7, 0) = −63
2

η8(τ)(5P 2 − Q),

S8(7, 2) = 2η8(τ)R,

S8(5, 4) = η8(τ)(5P 3 − 3PQ).

We also have

S8(3, 0) : S8(1, 2) = −3 : 1,

S8(5, 0) : S8(3, 2) : S8(1, 4) = −15 : 1 : 1,

S8(7, 0) : S8(5, 2) : S8(3, 4) : S8(1, 6) = −63 : 1 : 1 : 1,⎛
⎝S8(9, 0)

S8(3, 6)
S8(1, 8)

⎞
⎠ =

⎛
⎝−66 −189

1/3 2/3
2/9 7/9

⎞
⎠(S8(7, 2)

S8(5, 4)

)
.

An identity equivalent to S8(1, 2) = 2η8(τ) was stated without proof by Winquist [38]. The
formula for η8(τ) given by Klein and Fricke [19, p. 373] can be shown to be equivalent to
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S8(3, 0) + 27S8(1, 2) = 48η8(τ). Schoeneberg [31, equation (11)] gave the attractive form

η8(τ) =
1
6

∑
μ∈Z[exp(2πi/3)]

χ(μ)μ3 exp
(

2πiτ |μ|2
3

)
,

where

χ(μ) =

{
1 if μ ≡ 1 (mod

√−3),
−1 if μ ≡ −1 (mod

√−3).

(The sum over the terms satisfying μ ≡ 0(mod
√−3) is zero.) Schoeneberg’s formula can be

deduced from the formulae for S8(3, 0) and S8(1, 2).
Theorem 3.1 is equivalent to Macdonald’s identity for A2 (see [10; 11, Theorem 2.1; 23], or

[35, p. 146]) in the form

(u, qu−1, v, qv−1, uv, qu−1v−1, q, q; q)∞ =
∞∑

m=−∞

∞∑
n=−∞

q3m2−3mn+3n2+m+nhm,n(u, v),

where u = ei(x+y), v = ei(x−y) and

hm,n(u, v) = uv

{
(u−3m−1v−3n−1 − u3m+1v3n+1) + (u3n−3mv3n+1 − u3m−3nv−3n−1)

+ (u3n+1v3n−3m − u−3n−1v3m−3n)
}

.

4. The tenth power of η(τ)

The main tool used in this section is the following.

Theorem 4.1.

G3(x|t)G2(y|t) − G2(x|t)G3(y|t) =
1

η2(τ)
θ1

(
x

∣∣∣∣ t2
)

θ1

(
y

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x − y

2

∣∣∣∣ t2
)

.

Proof. Apply the technique used in the proof of Theorem 3.1. Let

M10(x, y|t) := G3(x|t)G2(y|t) − G2(x|t)G3(y|t)

and

N10(x, y|t) := θ1

(
x

∣∣∣∣ t2
)

θ1

(
y

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x − y

2

∣∣∣∣ t2
)

.

Then M10 and N10 satisfy the transformation formulae

f(x + 2π, y|t) = f(x, y|t), f(x + πt, y|t) = q−3e−6ixf(x, y|t),
f(x, y + 2π|t) = f(x, y|t), f(x, y + πt|t) = q−3e−6iyf(x, y|t).

Let y be fixed. Then N10 has simple zeros at x = πm + πtn/2, ±y + 2πm + πtn, m, n ∈ Z,
and no other zeros. The results in Section 2 imply that M10 also has zeros at the same points
as N10, and possibly at other points too. Thus M10(x, y|t)/N10(x, y|t) is an elliptic function of
x with no poles and, therefore, is a constant which is independent of x.

By the symmetry in x and y, we find that M10(x, y|t)/N10(x, y|t) is also independent of y
and, therefore, depends only on q. Let us denote the constant by D(q). To determine its value,
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let x = π/2 and y = π/6. Since G3(π/2|t) = 0 we have

M10

(
π

2
,
π

6

∣∣∣∣t
)

= −G2

(
π

2

∣∣∣∣t
)

G3

(
π

6

∣∣∣∣t
)

= −4
∞∑

j=−∞
q(6j+1)2/12 sin(3j + 1

2 )π
∞∑

k=−∞
q(6k−2)2/12 sin(k − 1

3 )π

= 2
√

3

⎛
⎝q1/12

∞∑
j=−∞

(−1)jq3j2+j

⎞
⎠(q1/3

∞∑
k=−∞

(−1)kq3k2−2k

)

= 2
√

3 η(2τ)q1/3(q, q5, q6; q6)∞

= 2
√

3
η(τ)η2(6τ)

η(3τ)
.

On the other hand, writing γ = exp(iπ/3), we have

N10

(
π

2
,
π

6

∣∣∣∣t
)

= θ1

(
π

6

∣∣∣∣ t2
)2

θ1

(
π

3

∣∣∣∣ t2
)

θ1

(
π

2

∣∣∣∣ t2
)

=
(
2q1/8

)4

sin2 π

6
sin

π

3
sin

π

2
(γq, γ5q, q; q)2∞(γ2q, γ4q, q; q)∞(γ3q, γ3q, q; q)∞

= 2
√

3
η3(τ)η2(6τ)

η(3τ)
after simplifying the infinite products. So,

D(q) =
M10(π/3, (π/6)|t)
N10(π/3, (π/6)|t) =

1
η2(τ)

.

Theorem 4.2. Let

S10(m,n) =
∑

α≡1 (mod 6)
β≡4 (mod 6)

(αmβn − αnβm)q(α2+β2)/12.

Then

S10(2m + 1, 2n + 1) = η10(τ)
∑

i+2j+3k=m+n−1

aijkP iQjRk, (4.1)

where aijk are rational numbers and i, j and k are non-negative integers.

Proof. Apply ∂2m+2n+2/(∂x2m+1∂y2n+1) to both sides of Theorem 4.1; then let x = y = 0.
We omit the details as they are similar to those in the proof of Theorem 3.2.

The first few examples of Theorem 4.2 are

S10(3, 1) = 6η10(τ),

S10(5, 1) = 30η10(τ)P,

S10(7, 1) =
63
2

η10(τ)(5P 2 − Q),

S10(5, 3) =
3
2
η10(τ)(15P 2 + Q),

S10(9, 1) = 3η10(τ)(315P 3 − 189PQ + 44R),

S10(7, 3) =
3
2
η10(τ)(105P 3 − 21PQ − 4R).

Theorem 4.1 is equivalent to Winquist’s identity [38, Theorem 1.1]: put a = ei(x+y),
b = ei(x−y) in Theorem 4.1 to get [38, Theorem 1.1]. Observe that the left-hand side of
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Theorem 4.1 is a difference of two terms, and each term is a product of two series that can
be summed by the quintuple product identity. This was first noticed by Kang [18]. More
information on Winquist’s identity can be found in [6, 7, 9, 14, 17, 20, 21].

5. The fourteenth power of η(τ)

The main tool used in this section is the following.

Theorem 5.1.

H(x|t)T (y|t) + H

(
x − y

2

∣∣∣∣t
)

T

(
3x + y

2

∣∣∣∣t
)

+ H

(
x + y

2

∣∣∣∣t
)

T

(−3x + y

2

∣∣∣∣t
)

=
1

η4(τ)
θ1

(
x

∣∣∣∣ t2
)

θ1

(
y

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x − y

2

∣∣∣∣ t2
)

θ1

(
3x + y

2

∣∣∣∣ t2
)

θ1

(−3x + y

2

∣∣∣∣ t2
)

.

Proof. Apply the elliptic function method used in the previous two sections. By the results
in Section 2, it may be checked that both sides satisfy the transformation formulae

f(x + 2π, y|t) = f(x, y|t), f(x + πt, y|t) = q−12e−24ixf(x, y|t),
f(x, y + 2π|t) = f(x, y|t), f(x, y + πt|t) = q−4e−8iyf(x, y|t).

It is straightforward to check that for a fixed value of x or y, the left-hand side is zero whenever
the right-hand side is zero. Finally, the constant may be evaluated by letting x = −π/8,
y = 7π/8.

Because the left-hand side of Theorem 5.1 is more complicated than the left-hand sides of
Theorems 3.1 and 4.1, some extra analysis is needed before differentiating. We will need the
following.

Lemma 5.2. Let Dx = ∂/∂x and Dy = ∂/∂y. Let f(z) and g(z) be analytic functions. Let

(
a b
c d

)
∈

⎧⎪⎨
⎪⎩
(

1 0
0 1

)
,

⎛
⎜⎝

1
2

−1
2

3
2

1
2

⎞
⎟⎠ ,

⎛
⎜⎝

1
2

1
2

−3
2

1
2

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

Then

DxDy(D2
x − D2

y)(D2
x − 9D2

y) (f(ax + by)g(cx + dy))

= f (5)(ax + by)g′(cx + dy) − 10f ′′′(ax + by)g′′′(cx + dy)
+9f ′(ax + by)g(5)(cx + dy). (5.1)

More generally, for non-negative integers m, n and �, define an operator Dx,y(m,n, �) and
coefficients ci,j(m,n, �) by

Dx,y(m,n, �) =
(
Dy(D2

x − D2
y)
)m (

Dx(D2
x − 9D2

y)
)n (

D2
x + 3D2

y

)�
=

∑
i+j=3m+3n+2�

ci,j(m,n, �)Di
xDj

y.

Then

Dx,y(2m + 1, 2n + 1, �) (f(ax + by)g(cx + dy))

=
∑

i+j=6(m+n+1)+2�

ci,j(2m + 1, 2n + 1, �)
(
f (i)(ax + by)g(j)(cx + dy)

)
. (5.2)
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Proof. The result is trivial if
(

a b
c d

)
=
(

1 0
0 1

)
. In either of the other cases, calculations

using the chain rule imply that

Dy(D2
x − D2

y) (f(ax + by)g(cx + dy))
= −f ′′(ax + by)g′(cx + dy) + f(ax + by)g′′′(cx + dy), (5.3)

Dx(D2
x − 9D2

y) (f(ax + by)g(cx + dy))
= −f ′′′(ax + by)g(cx + dy) + 9f ′(ax + by)g′′(cx + dy), (5.4)

(D2
x + 3D2

y) (f(ax + by)g(cx + dy))
= f ′′(ax + by)g(cx + dy) + 3f(ax + by)g′′(cx + dy). (5.5)

If we combine (5.3) and (5.4), then we obtain (5.1), which is the case m = n = � = 0 of (5.2).
The general result (5.2) now follows by induction on m, n and �, using (5.3)–(5.5).

Theorem 5.3. Let

S14(m,n, �) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6
(
β(α2 − β2)

)m (
α(α2 − 9β2)

)n (
α2 + 3β2

)�
q(α2+3β2)/12.

Then

S14(2m + 1, 2n + 1, �) = η14(τ)
∑

i+2j+3k=3m+3n+�

aijkP iQjRk, (5.6)

where aijk are rational numbers and i, j and k are non-negative integers.

Proof. Apply the operator Dx,y(2m + 1, 2n + 1, �) to the identity in Theorem 5.1, then
let x = y = 0. For the left-hand side use Lemma 5.2, and for the right-hand side use
Lemma 2.1.

Since
(α2 + 3β2)3 = 27β2(α2 − β2)2 + α2(α2 − 9β2)2,

it follows that

S14(2m + 1, 2n + 1, � + 3) = 27S14(2m + 3, 2n + 1, �) + S14(2m + 1, 2n + 3, �).

Therefore, without loss of generality, we may assume that 0 � � � 2.
The first few examples of Theorem 5.3 were given in Section 1. Theorem 5.1 is equivalent to

Macdonald’s identity for G2 (see [11, equation (1.8)]) written in the form

(u, qu−1, uv, qu−1v−1, u2v, qu−2v−1, u3v, qu−3v−1, v, qv−1, u3v2, qu−3v−2, q, q; q)∞

=
∑
m

∑
n

q12m2−12mn+4n2−m−nHm,n(u, v),

where u = e2ix, v = ei(y−3x) and

Hm,n(u, v) = u5v3

{
(u12m−5v4n−3 + u−12m+5v−4n+3)

− (u12n−12m−4v4n−3 + u12m−12n+4v−4n+3)

+ (u12n−12m−4v8n−12m−1 + u12m−12n+4v12m−8n+1)

− (u12n−24m+1v8n−12m−1 + u24m−12n−1v12m−8n+1)

+ (u12n−24m+1v4n−12m+2 + u24m−12n−1v12m−4n−2)

− (u−12m+5v4n−12m+2 + u12m−5y12m−4n−2)
}

.
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6. Second, fourth and sixth powers of η(τ)

Analogous results for η2(τ), η4(τ) and η6(τ) can be obtained trivially by multiplying
Ramanujan’s results for S1 and S3. Specifically, let

S2(m,n) = S1(m)S1(n),
S4(m,n) = S1(m)S3(n),
S6(m,n) = S3(m)S3(n).

Then

S2(2m, 2n) = η2(τ)
∑

i+2j+3k=m+n

aijkP iQjRk, (6.1)

S4(2m, 2n + 1) = η4(τ)
∑

i+2j+3k=m+n

aijkP iQjRk, (6.2)

S6(2m + 1, 2n + 1) = η6(τ)
∑

i+2j+3k=m+n

aijkP iQjRk. (6.3)

In each case, aijk are rational numbers and i, j and k are non-negative integers.
Another form for η6(τ) was given by Schoeneberg [31, equation (8)]:

η6(τ) =
1
2

∞∑
a=−∞

∞∑
b=−∞

Re(a + 2ib)2q(a2+4b2)/4.

This formula can be shown to be equivalent to the identity for S6(1, 1) by direct series
manipulations.

Results of a different type for η6(τ) may be obtained using a series given by Hirschhorn [16].
Let

S∗
6 (m,n) =

∑
α≡1 (mod 10)
β≡3 (mod 10)

(−1)(α+β−4)/10(αmβn − αnβm)q(α2+β2)/40.

Hirschhorn’s result is
S∗

6 (0, 2) = 8η6(τ).

Using the techniques in this paper, it can be shown that if m + n � 1, then

S∗
6 (2m, 2n) = η6(τ)

∑
i+2j+3k=m+n−1

aijkP iQjRk,

where aijk are rational numbers and i, j and k are non-negative integers.

7. Identities obtained using Schoeneberg’s theta functions

In this section, we prove (1.2) and analogous results for 2nd, 4th, 6th, 8th and 10th powers
of η(τ). Most of the results in this section are new. A few special cases can be found in
Ramanujan’s The Lost Notebook, for example [28, p. 249]. Some of Ramanujan’s identities
have recently been examined by Rangachari [29, 30], using Hecke’s theta functions [15].

The results we shall prove are as follows.

Theorem 7.1. Let

C2(n|τ) =
∑

α≡1 (mod 6)
β≡1 (mod 6)

(−1)(α+β−2)/6(α + iβ)nq(α2+β2)/24.

Then C2(4n|τ)/η2(τ) is a modular form of weight 4n on SL2(Z).
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Theorem 7.2. Let

C∗
2 (n|τ) =

∑
α≡0 (mod 6)
β≡1 (mod 6)

(−1)(α+β−1)/6(α + iβ
√

3)nq(α2+3β2)/36.

Then C∗
2 (6n|τ)/η2(τ) is a modular form of weight 6n on SL2(Z).

Theorem 7.3. Let

C4(n|τ) =
∑

α≡1 (mod 6)
β≡1 (mod 4)

(−1)(α−1)/6 Im
(
(α + iβ

√
3)n
)

q(α2+3β2)/24.

Then C4(2n + 1|τ)/η4(τ) is a modular form of weight 2n on SL2(Z).

Theorem 7.4. Let

C6(n|τ) =
∑

α≡1 (mod 4)
β≡1 (mod 4)

(α + iβ)nq(α2+β2)/8.

Then C6(4n + 2|τ)/η6(τ) is a modular form of weight 4n on SL2(Z).

Theorem 7.5. Let

C8(n|τ) =
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

(α + iβ
√

3)nq(α2+3β2)/12.

Then C8(6n + 3|τ)/η8(τ) is a modular form of weight 6n on SL2(Z).

Theorem 7.6. Let

C10(n|τ) =
∑

α≡1 (mod 6)
β≡4 (mod 6)

Im ((α + iβ)n) q(α2+β2)/12.

Then C10(4n + 4|τ)/η10(τ) is a modular form of weight 4n on SL2(Z).

Theorem 7.7. Let

C14(n|τ) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)n
)

q(α2+3β2)/12.

Then C14(6n + 6|τ)/η14(τ) is a modular form of weight 6n on SL2(Z).

In order to prove Theorems 7.1–7.7, we first recall some properties of a class of theta functions
studied by Schoeneberg [32].

Let f be an even positive integer and A = (aμ,ν) be a symmetric f × f matrix such that
(1) aμ,ν ∈ Z;
(2) aμ,μ is even; and
(3) xtAx > 0 for all x ∈ R

f such that x �= 0.
Let N be the smallest positive integer such that NA−1 also satisfies conditions (1)–(3). Let

PA
k (x) :=

∑
y

cy(ytAx)k,

where the sum is over finitely many y ∈ C
f with the property ytAy = 0, and cy are arbitrary

complex numbers.
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When Ah ≡ 0(mod N) and Im τ > 0, we define

ϑA,h,P A
k

(τ) =
∑
n∈Z

f

n≡h (mod N)

PA
k (n)e((2πiτ)/N)(1/2)((ntAn)/N).

The result which we need is the following [32, Theorem 2, p. 210].

Theorem 7.8. The function ϑA,h,PA
k

satisfies the following transformation formulae

ϑA,h,PA
k

(τ + 1) = e((2πi)/N)(1/2)((htAh)/N)ϑA,h,PA
k

(τ)

and

ϑA,h,PA
k

(
−1

τ

)
=

(−i)(f/2)+2kτ (f/2)+k√|detA|
∑

g (mod N)
Ag≡0 (mod N)

e((2πi)/N)((gtAh)/N)ϑA,g,PA
k

(τ).

We will also need the following.

Lemma 7.9. Let

ϕr,s(n; τ) =
∑

α≡r (mod 12)
β≡s (mod 12)

(α − iβ)ne((2πiτ)/12)(1/2)((6(α2+β2))/12).

Then

ϕr,s(4n; τ + 1) = e6πi(r2+s2)/122
ϕr,s(4n; τ) (7.1)

and

ϕr,s

(
4n;−1

τ

)
=

(−i)τ4n+1

6

∑
(u,v) (mod 12)

(6u,6v)≡(0,0) (mod 12)

eπi(ru+sv)/12ϕu,v(4n; τ). (7.2)

Proof. These follow from Theorem 7.8 on taking

A =
(

6 0
0 6

)
, h =

(
r
s

)
, g =

(
u
v

)
, y =

(
i
1

)
,

N = 12, k = 4n, and f = 2.

We are now ready to prove Theorems 7.1–7.7. We shall give a detailed proof of Theorem 7.6.
The details for the other theorems are similar.

Proof of Theorem 7.6. From the first example following Theorem 4.2 and the definition of
C10(4|τ), it follows that

C10(4|τ) = 24η10(τ). (7.3)
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Next, observe that

C10(4n|τ)

=
1
2i

⎛
⎜⎜⎝ ∑

α≡1 (mod 6)
β≡4 (mod 6)

(α + iβ)4nq(α2+β2)/12 −
∑

α≡1 (mod 6)
β≡4 (mod 6)

(α − iβ)4nq(α2+β2)/12

⎞
⎟⎟⎠

=
1

24n+1i

⎛
⎜⎜⎝ ∑

α≡8 (mod 12)
β≡2 (mod 12)

(α − iβ)4nq3(α2+β2)/122 −
∑

α≡2 (mod 12)
β≡8 (mod 12)

(α − iβ)4nq3(α2+β2)/122

⎞
⎟⎟⎠

=
1

24n+1i
(ϕ8,2(4n; τ) − ϕ2,8(4n; τ)) . (7.4)

Equation (7.1) implies that

ϕ8,2(4n; τ + 1) − ϕ8,2(4n; τ + 1) = e5πi/6 (ϕ8,2(4n; τ) − ϕ2,8(4n; τ)) . (7.5)

Equation (7.2) gives

ϕ8,2

(
4n;−1

τ

)
− ϕ2,8

(
4n;−1

τ

)
= − iτ4n+1

6

6∑
j=1

6∑
k=1

(
eπi(4j+k)/3 − eπi(j+4k)/3

)
ϕ2j,2k(4n; τ).

If we use the relation ϕr,s(4n; τ) = ϕ12−r,12−s(4n; τ) and simplify, then we find that

ϕ8,2

(
4n;−1

τ

)
− ϕ2,8

(
4n;−1

τ

)
= − iτ4n+1

6

(
4(ϕ2,4 − ϕ4,2)(4n; τ) + 2(ϕ8,2 − ϕ2,8)(4n; τ)

+ 2(ϕ12,2 − ϕ2,12)(4n; τ) + 2(ϕ4,6 − ϕ6,4)(4n; τ)

+ 2(ϕ6,12 − ϕ12,6)(4n; τ)
)

.

It is easy to check that

ϕ2,12(4n; τ) = ϕ12,2(4n; τ),
ϕ4,6(4n; τ) = ϕ6,4(4n; τ),

ϕ6,12(4n; τ) = ϕ12,6(4n; τ),
ϕ2,4(4n; τ) = ϕ8,2(4n; τ),
ϕ4,2(4n; τ) = ϕ2,8(4n; τ).

Therefore,

ϕ8,2

(
4n;−1

τ

)
− ϕ2,8

(
4n;−1

τ

)
= −iτ4n+1 (ϕ8,2(4n; τ) − ϕ2,8(4n; τ)) . (7.6)

Equations (7.3)–(7.6) imply that the function

F (τ) :=
C10(4n|τ)

η10(τ)
satisfies the transformation properties

F (τ + 1) = F (τ), F

(
−1

τ

)
= τ4n−4F (τ).

That is, F (τ) is a modular form of weight 4n − 4 on SL2(Z). This completes the proof of
Theorem 7.6.
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8. The twenty-sixth power of η(τ)

The analogue of (1.2) for the 26th power of η(τ) is as follows.

Theorem 8.1. For n � 1, the function

1
η26(τ)

(
C∗

2 (12n|τ)
36n

− (−1)n C2(12n|τ)
26n

)
is a modular form of weight 12n − 12 on SL2(Z).

Proof. Calculations using Theorems 7.1 and 7.2 imply that the first few terms in the
q-expansions are

C2(12n|τ) = (−64)nq1/12
(
1 − ((2 + 3i)12n + (2 − 3i)12n

)
q

+
(
512n − (4 + 3i)12n − (4 − 3i)12n

)
q2 + · · · ) ,

C∗
2 (12n|τ) = (729)nq1/12

(
1 −

(
(1 + 2i

√
3)12n + (1 − 2i

√
3)12n

)
q − 512nq2 + · · ·

)
.

The q2 terms in the two expansions are different because Re(((4 + 3i)/5)12n) �= 1 for any
integer n [25, Corollary 3.12]. Therefore, C2(12n|τ) and C∗

2 (12n|τ) are linearly independent.
It follows that

1
η2(τ)

(
C∗

2 (12n|τ)
36n

− (−1)n C2(12n|τ)
26n

)

is a cusp form of weight 12n on SL2(Z) and so must be of the form η24(τ)F , where F is a
modular form of weight 12n − 12. This completes the proof.

Corollary 8.2.

η26(τ) =
1

16308864

(
C2(12|τ)

64
+

C∗
2 (12|τ)
729

)
.

Proof. Take n = 1 in Theorem 8.1 and observe that

(2 + 3i)12 + (2 − 3i)12 − (1 + 2i
√

3)12 − (1 − 2i
√

3)12 = 16 308 864.

Corollary 8.2 was discovered and proved in [8]. An equivalent form of this identity had been
discovered in 1966 by Atkin [2] (unpublished), and the first published proof was given in 1985
by Serre [33]. The proof we have given here is different from those in the literature.

Here is the analogue of (1.1) for η26(τ).

Corollary 8.3. Let n and � be integers satisfying n � 1, � � 0, and define

S26(n, �) =
(

q
d

dq

)�(
C∗

2 (12n|τ)
36n

− (−1)n C2(12n|τ)
26n

)
.

Then

S26(n, �) = η26(τ)
∑

i+2j+3k=6(n−1)+�

aijkP iQjRk, (8.1)

where aijk are rational numbers and i, j and k are non-negative integers.

Proof. This follows immediately from Theorem 8.1 and the Ramanujan differential
equations.
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9. Concluding remarks

9.1. Lacunarity and the Hecke operator

By a theorem of Landau [3, Theorem 10.5, p. 244], all of the series S2(2m, 2n),
S4(2m, 2n + 1), S6(2m + 1, 2n + 1), S8(2m + 1, 2n), S10(2m + 1, 2n + 1), S14(2m + 1,
2n + 1, �) and S26(n, �) are lacunary. Hence the corresponding expressions on the right-hand
sides of (3.1), (4.1), (5.6), (6.1)–(6.3) and (8.1) are lacunary.

Let us write

S14(2m + 1, 2n + 1, �) = Aq7/12
∞∑

k=0

a(k)qk,

where A is a numerical constant selected to make a(0) = 1. Then the technique used in [12]
implies that if p ≡ 5(mod 6) is prime, then

a

(
pk +

7
12

(p2 − 1)
)

= (−1)(p+1)/6p6(m+n+1)+2�a

(
k

p

)
.

Similar results for S2, S4, S6, S8, S10 and S26 may also be written down. These results generalize
a theorem of Newman [24].

9.2. Ramanujan’s τ function

Ramanujan’s function τ(n) is defined by

q
∞∏

n=1

(1 − qn)24 =
∞∑

n=1

τ(n)qn.

If we multiply the results for S10(3, 1) and S14(1, 1, 0), then we obtain

η24(τ) = − 1
180

∑
α≡1 (mod 6), β≡4 (mod 6)
γ≡2 (mod 6), δ≡1 (mod 4)

(−1)(γ−2)/6αβ(α2 − β2)γδ(γ2 − δ2)(γ2 − 9δ2)

× q(α2+β2+γ2+3δ2)/12.

If we extract the coefficient of qn on both sides, then we obtain

τ(n) = − 1
4320

√
3

∑
(−1)(γ−2)/6 Im

(
(α + iβ)4

)
Im
(
(γ + iδ

√
3)6
)

,

where the summation is over integers satisfying

α2 + β2 + γ2 + 3δ2 = 12n,

α ≡ 1 (mod 6), β ≡ 4 (mod 6), γ ≡ 2 (mod 6), δ ≡ 1 (mod 4).

This is different from the representation given by Dyson [13, p. 636].
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