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ABSTRACT. In this article, we derive a sequence of numbers which con-
verge to 1/m. We will also derive a new series for 1/m. These new results
are motivated by the study of Ramanujan’s cubic continued fraction.

1. INTRODUCTION
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In 1996, inspired by page 366 of Ramanujan’s Lost Notebook [9], H.H. Chan
[4] derived several new results satisfied by G(q). For example, he showed
that

Glg) =2

1-G(¢*) + G*(¢*)
14 2G(¢3) +4G*(¢3)

(1.1) G*q) = G(q°)

From (1.1), Chan constructed an algorithm for computing e™. This iteration
prompted F.G. Garvan to ask if there were any iteration to m which can be
derived from the study of G(q). In this paper, we will show that such an
iteration exists. We will also derive the following series for 1/
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The proof of (1.2) involves the identity

Gg(e*%/‘/@) =—-1+ Zﬁ
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2. A TRIPLICATION FORMULA FOR (G(gq) AND A NEW ITERATION TO 1/7

In [1], C. Adiga, T. Kim, M.S.M. Naika and H.S. Madhusudhan gave a
new proof of (1.1) by first proving the identity

3 3 1/3
(2.1) 1_3M — <1_9G(‘])) .
1+ G(¢?) 1+ G3(q)
This identity allows one to write G(¢®) in terms of G(q), namely,
1—H(q)
2.2 G(¢®) = ——%
with
H(q) = <1 - 8G3(q>>1/3
"=\1+@e )

The above triplication formula for G(g) is analogous to the Borweins-Ramanujan
triplication formula for the cubic singular modulus defined by

11 (a(n)\"
(23) ol T (77(3T)> ’
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where ¢ = e and

n(r) =g/ [J(1 - db).
k=1

In the case for a(q), the triplication formula is given by

3

Two rapidly convergent sequences for 7 can be constructed from (2.4). These
iterations are given as follow:

V3-1
2 9

The Borweins Iteration [8]. Let t) = 1, so =

_ 1O )
1+2(1—s3 )13

5 and  ty = (14 28,)%ty 1 — 3" (14 28,)% — 1),

Then ¢! converges cubically to 7.

Chan’s iteration [6]. Let kg =0, sp = 21%,

1-(1- 5731—1)1/3 2 n—2 1—s)
Sy = 1320 32_1)1/3 and k, = (14+2s,)kp—1+8-3 \f33n1 sy

Then k! converges cubically to 7.

Since the above iterations are constructed from (2.4), it is therefore nat-
ural to construct new cubic iteration to 7 from (2.2). In the following two
sections, we will establish the following result:
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Theorem 2.1. Let kg =0 and sg = \3/ % — 1. Set

(1+ 5%—1)1/3 - (1- 85%—1)1/3
201483 N3+ (1—8s3_)1/3

n =

If
(1+ 25, +452)(1 + s,,)?
kn = 2 kn—1
(1 —sp+s2)
N 2-3" 1 5,(1 — 25,)(8s% — 1082 + 652 + 115, + 5)
V6 1+s) ’

then k1 converges cubically to .

3. NEW IDENTITIES SATISFIED BY G(q)

We first relate G(q) with the Borweins’ cubic singular modulus «a(q) (see
(2.3)) and deduce results associated with G(g) using Ramanujan-Borweins’
theory of elliptic functions to the cubic base.

Lemma 3.1. Let

plg) =Y ",
a(q) — Z qm2+mn+n2’
X = G73(61)
and
L _ P
©(—q)
Then
(3.1) a(q) = z(1 +4X)
and
(3.2) alq) = 27(1—&—251)()3'

Proof. From [2, p. 460, Entry 3(ii)], we find that
2y _ #1(=0) + 3¢ (=¢%)
a’(q ) - 3
p(—a)p(=¢°)

(553

(3.3)
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Since [2, p. 347]

4
¢ (—q)
3.4 —— =1-8X,
(384 o' (—¢*)
we deduce that
(3.5) a(q?) = 2 (1 —2X).
On the other hand, we know that [3, p. 4189
3(_ 3
¢°(—=q°) 2
a(q) = 3———= — 2a(q?).
(2) - (@)

Hence, by (3.5), we find that
alg) = = (1 +4X),

which yields (3.1).
To prove (3.2), we recall the identity [2, p. 345, Entry 1 (iv)]

1 () \"? _ (1+4X)3
I+57 (77(37')) 21X

27

Using (2.3), we immediately deduce (3.2).
U

Corollary 3.2. The functions z and X satisfy the following differential
equations:
dX
(3.6) ¢ = 2(X —7X?% - 8X3)
q

Proof. We recall the differential equation satisfied by a := a(q) and « :=
a(q) [5, (4.7)]:

d
(3.7) qd—z =d’a(l - a).
Differentiating (3.2) with respect to ¢ and using (3.7) and (3.1), we imme-
diately deduce (3.6). O

4. PROOF OF THEOREM 2.1

We begin our proof with the following transformation formula:

(4.1) (1+ X (e 2/Voh) (1 + X(e72mVH0)) =

x| ©

This identity can be proved by rearranging the identity [1]

1 —2my\/1
(4.2) (1 + X(e‘%/‘/@)> (1 _8X(e? /6)) _9.
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Differentiating (4.1) with respect to t and using (3.6), we find that
(4.3) tz(efZﬂ\/t/iﬁ)X(ef%r t/6>(1 o 8X(€727T t/6))
= Z(e72m/VO) X (e 2T/ VO (1 — 8X (e727/VOTY),

where
Z(q) = 2*.

From (4.2), we have

(44) X2V = o (14 X (72O (18X (7210

O =

and

(4.5) X@T%Vmﬁzé(1+X@4“t“»<1—3xgﬂﬂﬂﬁ)
Substituting (4.4) and (4.5) into (4.3), we find that

(4.6) tZ(e 2V (14 X (e 2VUO)) = Z(e /YO (1 4 X (e72/VOY),

The above transformation formula motivates us to set

Alq) = Z(q)(1 + X(q)).

Consequently, we can express (4.6) as

(4.7) tA(e 2mVI/6) = A(e2m/ Vo),
Define
1 t A
4.8 K(t :—2\/> e 2" t/G,
(18) 0= - W@
where o
[= q?q'
Differentiating both sides of (4.7) with respect to ¢, we find that
1A tA 1
4. LA _om\/t/6 \/> —2m/V6ty _ -
(4.9) 6tA(e )+ 6A(e ) T
Rewriting (4.9) in terms of x(t) yields
1
(4.10) K(t) + tk <t> =0.
When ¢ = 1, (4.10) implies that
(4.11) k(1) = 0.
Next, let
A
(4.12) My() = 29)
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Setting ¢ = ¢*"V¥/¢ and differentiating (4.12) with respect to t, we find
using (4.8) that

t M e 2m —2m
(4.13) K(N*t —2\/> N (o2 t/)A( 27r\/]\[27t/6)—Mz\/(e2 YO k().

Note that x(N?t) tends to < at the rate of order N as N tends to cc.
In order to obtain a cubic iteration to 1/7 from (4.13), let N = 3. If
y = G(q¢?) then from [4, (2.9)], we have

p(=¢’) _ 1
e(-q) 1-2y
Using (3.4) and (4.14), we deduce that
Z2(q) _ (=) ¢*(=¢°)
Z(q®)  »*(—q) ¢°(—¢")
_ (=) ¢’ (="
©®(—4”) ¢*(—q)

1—8y3\?

(4.14)

1—2y
Hence,
1+X) (142 +49%)(1 +y)?
4.15 My = (14 2y + 4?2, =
by (1.1).

Using (3.6) with ¢ replaced by ¢, we have

7= Al)y(1 - 8y%).
This allows us to differentiate both sides of (4.15) and conclude that

(e (1 - 2y)y(8y* — 10y® + 6y° + 11y +5)

(4.16) EDETETD)

We are now ready to construct our sequence k,. Let s, = G(e=27V3*"/6)
and k, = x(3"). Writing (4.13) in terms of s,, and k,, we find that

(1+ 25, +452)(1 + s,,)?

4.17) k, = Fep—
(4.17)  En (1—s,+s2) nl
2-3" 1 5,(1 — 25,)(8s% — 1083 + 652 + 115, + 5)
V6 1+s3 ’

From (4.11), we know that the initial value of k, is

ko = 0.
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By letting ¢ =1 in (4.1), we find that the initial value of sq is
1/3
2
(4.18) s0 = G(e>V0) = (3{ - 1) |

We can then evaluate s, from s,,_; using (2.2). Substituting s,, into (4.17),
we construct the sequence {k,} which converges cubically to 1/7 and this
completes the proof of Theorem 2.1.

5. A SERIES FOR
Set t =1 in (4.9). We find that

A (67%/\/5) V6

1 = - Y-
(5-1) A 2

Using the relation (3.1) and (3.2) in the differential equation

d*a da 2

we deduce that
(5.2) X(8X —1)(1+ X)ﬁ +(24X? + 14X — 1)ﬁ +2(1+4X)z=0

' dx? dX e
If -

z = Z cka,
k=0

then from (5.2), we know that aj, satisfies the recurrence
ke, — (Th* — Tk 4+ 2)cp_1 — 8(k — 1)%cp_o = 0.

The solution of the above recurrence with ¢p = 1,¢1 = 2 is given by [10,
Table 2] !

Hence,
oo k L 3
z = ) Xk
>3 ()
k=0 5=0
Therefore,
o0
Z=2"=) X"
k=0
where C}, is given by (1.3), or
o
(5.3) A= CXF(1+X).
k=0

lAccording to H.A. Verrill, the solution to the recurrence is due to D. Zagier.
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From (5.3), we deduce that

= (1-8X) i CrpXF(k(14 X) + X),
k=0
by (3.6).

Set ¢ = e~27/V6 in (5.4). From (4.18), we know that

2
X(6_27T/\/6) =x1 = —1 + 3?{
Hence, we have

oo \/6
(1 —8x1) kgo Ckxlf(k:(l +x1) +11) = o

Simplifying the above yields (1.2).

6. CONCLUSIONS

1. We have seen here that (4.1) plays an important role for our determination
of A(q). In general, if we have a modular function (i.e. a Hauptmodul)
associated to congruence subgroup I' of SLy(Z) with genus zero, we need
to determine a “nice” modular form of weight 2 on I' in order to derive
new series for 1/7. It is therefore possible to derive new series for 1/7
associated with the Rogers-Ramanujan continued fraction.

2. We can also obtain another cubic iteration to 1/ if we use the alternative
formula [1]

(”M) (”M)Zg'

We leave this as an exercise for the readers.
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