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Abstract. In this article, we derive a sequence of numbers which con-
verge to 1/π. We will also derive a new series for 1/π. These new results
are motivated by the study of Ramanujan’s cubic continued fraction.

1. Introduction

Let q = e2πiτ and

G(q) =
q1/3

1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 · · · .

In 1996, inspired by page 366 of Ramanujan’s Lost Notebook [9], H.H. Chan
[4] derived several new results satisfied by G(q). For example, he showed
that

G3(q) = G(q3)
1−G(q3) + G2(q3)

1 + 2G(q3) + 4G2(q3)
.(1.1)

From (1.1), Chan constructed an algorithm for computing eπ. This iteration
prompted F.G. Garvan to ask if there were any iteration to π which can be
derived from the study of G(q). In this paper, we will show that such an
iteration exists. We will also derive the following series for 1/π:

(1.2)
2
√

3(3 + 2
√

2)
9π

=
∞∑

k=0

Ck

(
k + 1− 2

3

√
2
)(

−1 +
3
4

√
2
)k

where

(1.3) Ck =
k∑

m=0


m∑

j=0

(
m
j

)3 k−m∑
i=0

(
k −m

i

)3
 .

The proof of (1.2) involves the identity

G3(e−2π/
√

6) = −1 +
3
4

√
2.

1
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2. A triplication formula for G(q) and a new iteration to 1/π

In [1], C. Adiga, T. Kim, M.S.M. Naika and H.S. Madhusudhan gave a
new proof of (1.1) by first proving the identity

(2.1) 1− 3
G(q3)

1 + G(q3)
=
(

1− 9
G3(q)

1 + G3(q)

)1/3

.

This identity allows one to write G(q3) in terms of G(q), namely,

(2.2) G(q3) =
1−H(q)
2 + H(q)

,

with

H(q) =
(

1− 8G3(q)
1 + G3(q)

)1/3

.

The above triplication formula for G(q) is analogous to the Borweins-Ramanujan
triplication formula for the cubic singular modulus defined by

(2.3)
1

α(q)
= 1 +

1
27

(
η(τ)
η(3τ)

)12

,

where q = e2πiτ and

η(τ) = q1/24
∞∏

k=1

(1− qk).

In the case for α(q), the triplication formula is given by

(2.4) α(q3) =

(
1− 3

√
1− α(q)

1 + 2 3
√

1− α(q)

)3

.

Two rapidly convergent sequences for π can be constructed from (2.4). These
iterations are given as follow:

The Borweins Iteration [8]. Let t0 = 1
3 , s0 =

√
3−1
2 ,

sn =
1− (1− s3

n−1)
1/3

1 + 2(1− s3
n−1)1/3

and tn = (1 + 2sn)2tn−1 − 3n−1((1 + 2sn)2 − 1).

Then t−1
n converges cubically to π.

Chan’s iteration [6]. Let k0 = 0, s0 = 1
21/3 ,

sn =
1− (1− s3

n−1)
1/3

1 + 2(1− s3
n−1)1/3

and kn = (1+2sn)2kn−1 +8 ·3n−2
√

3sn
1− s3

n

1 + 2sn
.

Then k−1
n converges cubically to π.

Since the above iterations are constructed from (2.4), it is therefore nat-
ural to construct new cubic iteration to π from (2.2). In the following two
sections, we will establish the following result:
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Theorem 2.1. Let k0 = 0 and s0 = 3

√
3
√

2
4 − 1. Set

sn =
(1 + s3

n−1)
1/3 − (1− 8s3

n−1)
1/3

2(1 + s3
n−1)1/3 + (1− 8s3

n−1)1/3
.

If

kn =
(1 + 2sn + 4s2

n)(1 + sn)2

(1− sn + s2
n)

kn−1

+
2 · 3n−1

√
6

sn(1− 2sn)(8s4
n − 10s3

n + 6s2
n + 11sn + 5)

1 + s3
n

,

then k−1
n converges cubically to π.

3. New identities satisfied by G(q)

We first relate G(q) with the Borweins’ cubic singular modulus α(q) (see
(2.3)) and deduce results associated with G(q) using Ramanujan-Borweins’
theory of elliptic functions to the cubic base.

Lemma 3.1. Let

ϕ(q) =
∞∑

n=−∞
qn2

,

a(q) =
∞∑

m,n=−∞
qm2+mn+n2

,

X = G3(q)

and

z =
ϕ3(−q3)
ϕ(−q)

.

Then

a(q) = z(1 + 4X)(3.1)

and

α(q) = 27
X

(1 + 4X)3
.(3.2)

Proof. From [2, p. 460, Entry 3(ii)], we find that

a(q2) =
ϕ4(−q) + 3ϕ4(−q3)

ϕ(−q)ϕ(−q3)

= z

(
1
4

ϕ4(−q)
ϕ4(−q3)

+
3
4

)
.

(3.3)
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Since [2, p. 347]

(3.4)
ϕ4(−q)
ϕ4(−q3)

= 1− 8X,

we deduce that

(3.5) a(q2) = z (1− 2X) .

On the other hand, we know that [3, p. 4189]

a(q) = 3
ϕ3(−q3)
ϕ(−q)

− 2a(q2).

Hence, by (3.5), we find that

a(q) = z (1 + 4X) ,

which yields (3.1).
To prove (3.2), we recall the identity [2, p. 345, Entry 1 (iv)]

1 +
1
27

(
η(τ)
η(3τ)

)12

=
(1 + 4X)3

27X
.

Using (2.3), we immediately deduce (3.2).
�

Corollary 3.2. The functions z and X satisfy the following differential
equations:

(3.6) q
dX

dq
= z2(X − 7X2 − 8X3)

Proof. We recall the differential equation satisfied by a := a(q) and α :=
α(q) [5, (4.7)]:

(3.7) q
dα

dq
= a2α(1− α).

Differentiating (3.2) with respect to q and using (3.7) and (3.1), we imme-
diately deduce (3.6). �

4. Proof of Theorem 2.1

We begin our proof with the following transformation formula:

(4.1) (1 + X(e−2π/
√

6t))(1 + X(e−2π
√

t/6)) =
9
8
.

This identity can be proved by rearranging the identity [1]

(4.2)

(
1 +

1

X(e−2π/
√

6t)

)(
1− 8X(e−2π

√
t/6)
)

= 9.
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Differentiating (4.1) with respect to t and using (3.6), we find that

tZ(e−2π
√

t/6)X(e−2π
√

t/6)(1− 8X(e−2π
√

t/6))(4.3)

= Z(e−2π/
√

6t)X(e−2π/
√

6t)(1− 8X(e−2π/
√

6t)),

where
Z(q) = z2.

From (4.2), we have

(4.4) X(e−2π/
√

6t) =
1
9

(
1 + X(e−2π/

√
6t)
)(

1− 8X(e−2π
√

t/6)
)

and

(4.5) X(e−2π
√

t/6) =
1
9

(
1 + X(e−2π

√
t/6)
)(

1− 8X(e−2π/
√

6t)
)

.

Substituting (4.4) and (4.5) into (4.3), we find that

(4.6) tZ(e−2π
√

t/6)(1 + X(e−2π
√

t/6)) = Z(e−2π/
√

6t)(1 + X(e−2π/
√

6t)).

The above transformation formula motivates us to set

A(q) = Z(q)(1 + X(q)).

Consequently, we can express (4.6) as

(4.7) tA(e−2π
√

t/6) = A(e−2π/
√

6t).

Define

(4.8) κ(t) =
1

πA(e−2π
√

t/6)
− 2

√
t

6
Ã

A2
(e−2π

√
t/6),

where

f̃ := q
df

dq
.

Differentiating both sides of (4.7) with respect to t, we find that

(4.9)

√
1
6t

Ã

A
(e−2π

√
t/6) +

√
t

6
Ã

A
(e−2π/

√
6t) =

1
π

.

Rewriting (4.9) in terms of κ(t) yields

(4.10) κ(t) + tκ

(
1
t

)
= 0.

When t = 1, (4.10) implies that

(4.11) κ(1) = 0.

Next, let

(4.12) MN (q) =
A(q)

A(qN )
.
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Setting q = e2π
√

t/6 and differentiating (4.12) with respect to t, we find
using (4.8) that

(4.13) κ(N2t) = 2

√
t

6
M̃N

MN
(e−2π

√
t/6)

1

A(e−2π
√

N2t/6)
−MN (e−2π

√
t/6)κ(t).

Note that κ(N2t) tends to 1
π at the rate of order N as N tends to ∞.

In order to obtain a cubic iteration to 1/π from (4.13), let N = 3. If
y = G(q3) then from [4, (2.9)], we have

(4.14)
ϕ(−q9)
ϕ(−q)

=
1

1− 2y
.

Using (3.4) and (4.14), we deduce that

Z(q)
Z(q3)

=
ϕ6(−q3)
ϕ2(−q)

ϕ2(−q3)
ϕ6(−q9)

=
ϕ8(−q3)
ϕ8(−q9)

ϕ2(−q9)
ϕ2(−q)

=
(

1− 8y3

1− 2y

)2

= (1 + 2y + 4y2)2.

Hence,

(4.15) M3 = (1 + 2y + 4y2)2
(1 + X)
(1 + y3)

=
(1 + 2y + 4y2)(1 + y)2

1− y + y2
,

by (1.1).
Using (3.6) with q replaced by q3, we have

ỹ = A(q3)y(1− 8y3).

This allows us to differentiate both sides of (4.15) and conclude that

(4.16)
1

M3(q)A(q3)
M̃3(q) =

(1− 2y)y(8y4 − 10y3 + 6y2 + 11y + 5)
(y + 1)(1− y + y2)

.

We are now ready to construct our sequence kn. Let sn = G(e−2π
√

32n/6)
and kn = κ(3n). Writing (4.13) in terms of sn and kn, we find that

kn =
(1 + 2sn + 4s2

n)(1 + sn)2

(1− sn + s2
n)

kn−1(4.17)

+
2 · 3n−1

√
6

sn(1− 2sn)(8s4
n − 10s3

n + 6s2
n + 11sn + 5)

1 + s3
n

,

From (4.11), we know that the initial value of kn is

k0 = 0.
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By letting t = 1 in (4.1), we find that the initial value of s0 is

(4.18) s0 = G(e−2π/
√

6) =

(
3
√

2
4

− 1

)1/3

.

We can then evaluate sn from sn−1 using (2.2). Substituting sn into (4.17),
we construct the sequence {kn} which converges cubically to 1/π and this
completes the proof of Theorem 2.1.

5. A series for 1
π

Set t = 1 in (4.9). We find that

(5.1)
Ã

A
(e−2π/

√
6) =

√
6

2π
.

Using the relation (3.1) and (3.2) in the differential equation

α(1− α)
d2a

dα2
+ (1− 2α)

da

dα
− 2

9
a = 0,

we deduce that

(5.2) X(8X − 1)(1 + X)
d2z

dX2
+ (24X2 + 14X − 1)

dz

dX
+ 2(1 + 4X)z = 0.

If

z =
∞∑

k=0

ckX
k,

then from (5.2), we know that ak satisfies the recurrence

k2ck − (7k2 − 7k + 2)ck−1 − 8(k − 1)2ck−2 = 0.

The solution of the above recurrence with c0 = 1, c1 = 2 is given by [10,
Table 2] 1

ck =
k∑

j=0

(
k
j

)3

.

Hence,

z =
∞∑

k=0

k∑
j=0

(
k
j

)3

Xk.

Therefore,

Z = z2 =
∞∑

k=0

CkX
k,

where Ck is given by (1.3), or

(5.3) A =
∞∑

k=0

CkX
k(1 + X).

1According to H.A. Verrill, the solution to the recurrence is due to D. Zagier.
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From (5.3), we deduce that

Ã

A
=

1
A

dA

dX
X̃(5.4)

= (1− 8X)
∞∑

k=0

CkX
k(k(1 + X) + X),

by (3.6).
Set q = e−2π/

√
6 in (5.4). From (4.18), we know that

X(e−2π/
√

6) = x1 = −1 +
3
√

2
4

.

Hence, we have

(1− 8x1)
∞∑

k=0

Ckx
k
1(k(1 + x1) + x1) =

√
6

2π
.

Simplifying the above yields (1.2).

6. Conclusions

1. We have seen here that (4.1) plays an important role for our determination
of A(q). In general, if we have a modular function (i.e. a Hauptmodul)
associated to congruence subgroup Γ of SL2(Z) with genus zero, we need
to determine a “nice” modular form of weight 2 on Γ in order to derive
new series for 1/π. It is therefore possible to derive new series for 1/π
associated with the Rogers-Ramanujan continued fraction.

2. We can also obtain another cubic iteration to 1/π if we use the alternative
formula [1] (

1 +
1

G3(−e−πt)

)(
1 +

1
G3(−e−π/t)

)
= 9.

We leave this as an exercise for the readers.
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