PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 135, Number 7, July 2007, Pages 1987–1992 S 0002-9939(07)08723-0 Article electronically published on March 2, 2007

TRIPLE PRODUCT IDENTITY, QUINTUPLE PRODUCT IDENTITY AND RAMANUJAN'S DIFFERENTIAL EQUATIONS FOR THE CLASSICAL EISENSTEIN SERIES

HENG HUAT CHAN

(Communicated by Wen-Ching Winnie Li)

Abstract. In this article, we use the triple product identity and the quintuple product identity to derive Ramanujan's famous differential equations for the Eisenstein series.

1. INTRODUCTION

In his famous paper [\[10\]](#page-4-0), S. Ramanujan gave elementary proofs to two trigonometric identities

(1.1)
$$
\left(\frac{1}{4}\cot\frac{u}{2} + \sum_{k=1}^{\infty} \frac{q^k}{1-q^k}\sin ku\right)^2
$$

$$
= \left(\frac{1}{4}\cot\frac{u}{2}\right)^2 + \sum_{k=1}^{\infty} \frac{q^k}{(1-q^k)^2}\cos ku + \frac{1}{2}\left(\sum_{k=1}^{\infty} \frac{kq^k}{1-q^k}(1-\cos ku)\right)
$$

and

(1.2)
$$
\left(\frac{1}{8}\cot^2\frac{u}{2} + \frac{1}{12} + \sum_{k=1}^{\infty} \frac{kq^k}{1-q^k} (1 - \cos ku)\right)^2
$$

$$
= \left(\frac{1}{8}\cot^2\frac{u}{2} + \frac{1}{12}\right)^2 + \frac{1}{12}\sum_{k=1}^{\infty} \frac{k^3q^k}{1-q^k} (5 + \cos ku),
$$

where $q = e^{2\pi i \tau}$, Im $\tau > 0$. He then deduced from [\(1.1\)](#page-0-0) and [\(1.2\)](#page-0-1) many identities satisfied by the classical Eisenstein series

(1.3)
$$
E_{2k} = 1 - \frac{4k}{B_{2k}} \sum_{n \ge 1} \frac{n^{2k-1}q^n}{1-q^n},
$$

where B_{2k} is the Bernoulli number defined by

(1.4)
$$
\frac{x}{e^x - 1} = \sum_{k \ge 0} B_k \frac{x^k}{k!}.
$$

c 2007 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors June 27, 2005 and, in revised form, December 27, 2005 and March 23, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14K25.

In particular, he showed that if $P = E_2(q)$, $Q = E_4(q)$ and $R = E_6(q)$, then

(1.5)
$$
q\frac{dP}{dq} = \frac{P^2 - Q}{12},
$$

$$
q\frac{dQ}{dq} = \frac{PQ - R}{3}
$$

and

$$
(1.7) \t\t q\frac{dR}{dq} = \frac{PR - Q^2}{2}.
$$

Using (1.5) , (1.6) and (1.7) , Ramanujan derived the famous identity

(1.8)
$$
\eta^{24}(\tau) := q \prod_{k=1}^{\infty} (1 - q^k)^{24} = \frac{1}{1728} (Q^3 - R^2).
$$

Identity (1.8) together with the fact that Q and R are respectively the normalization of the Eisenstein series

$$
G_4(\tau) := \sum_{\substack{(m,n)\in \mathbf{Z}\times\mathbf{Z}\\(m,n)\neq (0,0)}}\frac{1}{(m\tau+n)^4}
$$

and

$$
G_6(\tau) := \sum_{\substack{(m,n) \in \mathbf{Z} \times \mathbf{Z} \\ (m,n) \neq (0,0)}} \frac{1}{(m\tau + n)^6}
$$

implies the transformation formula

(1.9)
$$
\eta(-1/\tau) = (-i\tau)^{1/2}\eta(\tau).
$$

The purpose of this article is to derive new proofs of (1.5) – (1.7) using only the Jacobi triple product identity and the quintuple product identity.

For other proofs of (1.5) – (1.7) with combinatorial flavor, see [\[12\]](#page-4-1), [\[13\]](#page-4-2) and [\[7\]](#page-4-3).

For proofs of (1.5) – (1.7) using the theory of modular forms, see for example [\[8,](#page-4-4) p. 161, Theorem 5.3]. These proofs, however, require the knowledge of [\(1.9\)](#page-1-4), as well as the dimension of the space of modular forms of weight 4, 6, and 8 on $SL_2(\mathbf{Z})$.

2. The Jacobi triple product identity

The Jacobi theta function is defined by

(2.1)
$$
\vartheta_1(u|\tau) = 2 \sum_{k=0}^{\infty} (-1)^k q^{(2k+1)^2/8} \sin(2k+1)u.
$$

By Jacobi's triple product identity [\[1,](#page-4-5) p. 497, Theorem 10.4.1], we know that

$$
\vartheta_1(u|\tau) = 2q^{1/8} \sin u \prod_{k=1}^{\infty} (1 - q^k) (1 - q^k e^{2iu}) (1 - q^k e^{-2iu}).
$$

By logarithmically differentiating the above with respect to u , we find that

(2.2)
$$
\frac{\vartheta_1'(u|\tau)}{\vartheta_1(u|\tau)} = \cot u + 4 \sum_{k \ge 1} \frac{q^k}{1 - q^k} \sin 2ku.
$$

One can rewrite the above as (see [\[9,](#page-4-6) Lemma 2])

$$
\frac{\vartheta_1'(u|\tau)}{\vartheta_1(u|\tau)} = \frac{1}{u} + \sum_{k \ge 1} (-1)^k \frac{2^{2k} B_{2k}}{(2k)!} E_{2k} u^{2k-1},
$$

where E_{2k} and B_{2k} are given by [\(1.3\)](#page-0-2) and [\(1.4\)](#page-0-3), respectively. Now, let

$$
S_{2n+1} = 2\sum_{k=0}^{\infty} (-1)^k (2k+1)^{2n+1} q^{(2k+1)^2/8}.
$$

Then by expanding (2.1) in powers of u , we obtain

(2.3)
$$
\vartheta_1(u|\tau) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} S_{2n+1} u^{2n+1}.
$$

Using (2.3) and (2.2) , we find that

$$
\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} S_{2n+1} u^{2n} = \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} S_{2n+1} u^{2n+1} \right) \times \left(\frac{1}{u} + \sum_{k \ge 1} (-1)^k \frac{2^{2k} B_{2k}}{(2k)!} E_{2k} u^{2k-1} \right).
$$

This implies that

$$
S_{2n+1} = \frac{1}{2n} \sum_{j=1}^{n} 2^{2j} {2n+1 \choose 2j} B_{2j} E_{2j} S_{2(n-j)+1}.
$$

The first four identities derived from this recurrence are:

$$
(2.4) \t\t S_3 = PS_1,
$$

(2.5)
$$
S_5 = \frac{5P^2 - 2Q}{3}S_1,
$$

(2.6)
$$
S_7 = \frac{35P^3 - 42PQ + 16R}{9}S_1
$$

and

(2.7)
$$
S_9 = \left(\frac{35}{3}P^4 - 28P^2Q + \frac{64}{3}PR + \frac{28}{5}Q^2 - \frac{48}{5}E_8\right)S_1,
$$

where we have replaced E_2, E_4 and E_6 by P, Q , and R , respectively. Note that

$$
8q\frac{dS_n}{dq} = S_{n+2}.
$$

Hence, by applying the operator $q\frac{d}{dq}$ to [\(2.4\)](#page-2-1), we find that

$$
S_5 = 8q \frac{dP}{dq} S_1 + PS_3,
$$

which implies that

(2.8)
$$
S_5 = \left(8q\frac{dP}{dq} + P^2\right)S_1.
$$

Comparing (2.8) with (2.5) , we deduce (1.5) .

Similarly, by using (1.5) , (2.5) , (2.6) and (2.7) , we deduce (1.6) and the identity

(2.9)
$$
-112Q^2 - 320PR + 640q\frac{dR}{dq} + 432E_8 = 0.
$$

To prove [\(1.7\)](#page-1-2), we need another relation similar to [\(2.9\)](#page-3-0), and this will be given in the next section.

3. The quintuple product identity

The quintuple product identity states that

(3.1)
$$
q^{1/24} \prod_{k=1}^{\infty} (1 - q^k) \frac{\vartheta_1(2u|\tau)}{\vartheta_1(u|\tau)} = 2 \sum_{n=-\infty}^{\infty} (-1)^n q^{(6n+1)^2/24} \cos((6n+1)u).
$$

One of the simplest proofs of an equivalent form of [\(3.1\)](#page-3-1) is due to L. Carlitz and M.V. Subbarao [\[5\]](#page-4-7). Their proof involves only the Jacobi triple product identity. For more details of the history and the different forms of (3.1) , see [\[2,](#page-4-8) p. 83] or [\[6\]](#page-4-9). By expanding the right-hand side of (3.1) in powers of u , we deduce that

(3.2)
$$
q^{1/24} \prod_{k=1}^{\infty} (1 - q^k) \frac{\vartheta_1(2u|\tau)}{\vartheta_1(u|\tau)} = \sum_{k=0}^{\infty} (-1)^k \frac{T_{2k}}{(2k)!} u^{2k},
$$

where

$$
T_{2k} = 2\sum_{n=-\infty}^{\infty} (-1)^n (6n+1)^{2k} q^{(6n+1)^2/24}.
$$

By logarithmically differentiating both sides of [\(3.2\)](#page-3-2), we find that (3.3)

$$
\left(2\frac{\vartheta_1'}{\vartheta_1}(2u|\tau) - \frac{\vartheta_1'}{\vartheta_1}(u|\tau)\right)\left(\sum_{k=0}^{\infty}(-1)^k\frac{T_{2k}}{(2k)!}u^{2k}\right) = \sum_{k=0}^{\infty}(-1)^{k+1}\frac{T_{2k+2}}{(2k+1)!}u^{2k+1}.
$$

Using (2.2) and comparing the coefficients of powers of u in (3.3) , we find that for $n \geq 0$,

(3.4)
$$
T_{2n+2} = \frac{1}{2n+2} \sum_{j=0}^{n} {2n+2 \choose 2j+2} 2^{2j+2} (2^{2j+2} - 1) B_{2j+2} E_{2j+2} T_{2(n-j)}.
$$

We construct from [\(3.4\)](#page-3-4) the following identities for T_{2k} , $1 \leq k \leq 4$:

(3.5)
$$
T_2 = PT_0,
$$

$$
T_4 = (3P^2 - 2Q)T_0,
$$

$$
T_6 = (15P^3 - 30PQ + 16R)T_0
$$

and

(3.6)
$$
T_8 = (105P^4 - 420P^2Q + 448PR + 140Q^2 - 272E_8) T_0.
$$

In the construction of the above identities, we have followed Z.G. Liu $[9]$ ^{[1](#page-3-5)} Using [\(1.5\)](#page-1-0), [\(1.6\)](#page-1-1), [\(3.5\)](#page-3-6), [\(3.6\)](#page-3-7) and the relation

$$
24q\frac{dT_n}{dq} = T_{n+2},
$$

¹There is a misprint in the formula for T_8 . The coefficient of RP should be replaced by 336.

we find that

(3.7)
$$
-192PR - 80Q^2 + 384q\frac{dR}{dq} + 272E_8 = 0.
$$

Solving the simultaneous equations (2.9) and (3.7) , we deduce (1.7) and the identity

$$
E_8=Q^2.
$$

4. CONCLUSION

The functions S_{2k+1} and T_{2k} were studied by Ramanujan on page 369 of his Lost Notebook [\[11\]](#page-4-11). Ramanujan showed that S_{2k+1}/S_1 and T_{2k}/T_0 can be expressed in terms of P , Q and R . Further discussions of Ramanujan's proofs can be found in [\[14,](#page-5-0) pp. 31–32]. A discussion of S_{2k+1} can also be found in [\[3\]](#page-4-12), while that of T_{2k} can be found in $[4]$ and $[9]$. All the proofs discussed above use $(1.5)-(1.7)$ $(1.5)-(1.7)$ $(1.5)-(1.7)$. We have shown here that in fact the first few identities satisfied by S_{2k+1}/S_1 ($k = 1, 2, 3, 4$) and T_{2k}/T_0 ($k = 1, 2, 3, 4$) are enough for us to deduce Ramanujan's results for these functions.

ACKNOWLEDGMENTS

The author sincerely thanks S. Cooper and the Institute for Information and Mathematical Sciences, Massey University (Albany Campus) for their generous support during his stay there. He is very grateful to S. Cooper for his encouragement and enthusiasm in this work.

REFERENCES

- [1] G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge, 1999. M[R1688958 \(2000g:33001\)](http://www.ams.org/mathscinet-getitem?mr=1688958)
- [2] B.C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991. M[R1117903 \(92j:01069\)](http://www.ams.org/mathscinet-getitem?mr=1117903)
- [3] B. C. Berndt, S. H. Chan, Z.-G. Liu and H. Yesilyurt, A new identity for $(q, q)_{\infty}^{10}$ with an application to Ramanujan's partition congruence modulo 11, Quart. J. Math., **55** (2004), 13–30. M[R2043004 \(2004k:11166\)](http://www.ams.org/mathscinet-getitem?mr=2043004)
- [4] B. C. Berndt and A. J. Yee, A page on Eisenstein series in Ramanujan's lost notebook, Glasgow Math. J., **45** (2003), 123–129. M[R1972702 \(2004a:11032\)](http://www.ams.org/mathscinet-getitem?mr=1972702)
- [5] L. Carlitz and M.V. Subbarao, A simple proof of the quintuple product identity, Proc. Amer. Math. Soc. **32** (1972), 42-44. M[R0289316 \(44:6507\)](http://www.ams.org/mathscinet-getitem?mr=0289316)
- [6] S. Cooper, The quintuple product identity, Int. J. Number Theory **2** (2006), 115–161. M[R2217798](http://www.ams.org/mathscinet-getitem?mr=2217798)
- [7] J.G. Huard, Z.M. Ou, B.K. Spearman and K.S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, in Number Theory for the Millennium, vol. 2, M.A. Bennett, B.C. Berndt, N. Boston, H.G. Diamond, A.J. Hildebrand and W. Philipp, eds., A K Peters, Natick, MA, 2002, pp. 229-274. M[R1956253 \(2003j:11008\)](http://www.ams.org/mathscinet-getitem?mr=1956253)
- [8] S. Lang, Introduction to modular forms, Springer-Verlag, New York, 1995. M[R1363488](http://www.ams.org/mathscinet-getitem?mr=1363488) [\(96g:11037\)](http://www.ams.org/mathscinet-getitem?mr=1363488)
- [9] Z.G. Liu, A three term theta function identity and its applications, Adv. Math. **195** (2005), 1-23. M[R2145792 \(2006c:11050\)](http://www.ams.org/mathscinet-getitem?mr=2145792)
- [10] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. **22** (1916), 159-184.
- [11] S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988. M[R0947735 \(89j:01078\)](http://www.ams.org/mathscinet-getitem?mr=0947735)
- [12] R.A. Rankin, Elementary proofs of relations between Eisenstein series, Proc. Roy. Soc. Edinburgh **76A** (1976) 107-117. M[R0441870 \(56:261\)](http://www.ams.org/mathscinet-getitem?mr=0441870)
- [13] N.-D. Skoruppa, A quick combinatorial proof of Eisenstein series identities, J. Number Theory **43** (1993), 68-73. M[R1200809 \(94f:11029\)](http://www.ams.org/mathscinet-getitem?mr=1200809)

1992 HENG HUAT CHAN

[14] K. Venkatachaliengar, Development of elliptic functions according to Ramanujan, Technical Report, 2. Madurai Kamaraj University, Department of Mathematics, Madurai, 1988.

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543

 $\it E\mbox{-}mail\;address\mbox{:}\; {\tt matchh@nus.edu.sg}$