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TRIPLE PRODUCT IDENTITY, QUINTUPLE PRODUCT
IDENTITY AND RAMANUJAN’S DIFFERENTIAL EQUATIONS

FOR THE CLASSICAL EISENSTEIN SERIES

HENG HUAT CHAN

(Communicated by Wen-Ching Winnie Li)

Abstract. In this article, we use the triple product identity and the quintuple
product identity to derive Ramanujan’s famous differential equations for the
Eisenstein series.

1. Introduction

In his famous paper [10], S. Ramanujan gave elementary proofs to two trigono-
metric identities(
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where q = e2πiτ , Im τ > 0. He then deduced from (1.1) and (1.2) many identities
satisfied by the classical Eisenstein series
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In particular, he showed that if P = E2(q), Q = E4(q) and R = E6(q), then
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Using (1.5), (1.6) and (1.7), Ramanujan derived the famous identity

(1.8) η24(τ ) := q

∞∏
k=1
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1
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)
.

Identity (1.8) together with the fact that Q and R are respectively the normalization
of the Eisenstein series
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1
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and
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1
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implies the transformation formula

(1.9) η(−1/τ ) = (−iτ)1/2η(τ ).

The purpose of this article is to derive new proofs of (1.5)–(1.7) using only the
Jacobi triple product identity and the quintuple product identity.

For other proofs of (1.5)–(1.7) with combinatorial flavor, see [12], [13] and [7].
For proofs of (1.5)–(1.7) using the theory of modular forms, see for example [8,

p. 161, Theorem 5.3]. These proofs, however, require the knowledge of (1.9), as
well as the dimension of the space of modular forms of weight 4, 6, and 8 on SL2(Z).

2. The Jacobi triple product identity

The Jacobi theta function is defined by
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By logarithmically differentiating the above with respect to u, we find that
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One can rewrite the above as (see [9, Lemma 2])
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where E2k and B2k are given by (1.3) and (1.4), respectively.
Now, let
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Then by expanding (2.1) in powers of u, we obtain

(2.3) ϑ1(u|τ ) =
∞∑

n=0

(−1)n

(2n + 1)!
S2n+1u

2n+1.

Using (2.3) and (2.2), we find that
∞∑

n=0

(−1)n

(2n)!
S2n+1u

2n =

( ∞∑
n=0

(−1)n

(2n + 1)!
S2n+1u

2n+1

)

×

⎛
⎝ 1

u
+

∑
k≥1

(−1)k 22kB2k

(2k)!
E2ku2k−1

⎞
⎠ .

This implies that

S2n+1 =
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The first four identities derived from this recurrence are:

S3 = PS1,(2.4)
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5P 2 − 2Q

3
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35P 3 − 42PQ + 16R

9
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and
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where we have replaced E2, E4 and E6 by P, Q, and R, respectively.
Note that

8q
dSn

dq
= Sn+2.

Hence, by applying the operator q
d

dq
to (2.4), we find that

S5 = 8q
dP

dq
S1 + PS3,

which implies that

(2.8) S5 =
(

8q
dP

dq
+ P 2

)
S1.

Comparing (2.8) with (2.5), we deduce (1.5).
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Similarly, by using (1.5), (2.5), (2.6) and (2.7), we deduce (1.6) and the identity

(2.9) −112Q2 − 320PR + 640q
dR

dq
+ 432E8 = 0.

To prove (1.7), we need another relation similar to (2.9), and this will be given in
the next section.

3. The quintuple product identity

The quintuple product identity states that

(3.1) q1/24
∞∏
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ϑ1(2u|τ )
ϑ1(u|τ )

= 2
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(−1)nq(6n+1)2/24 cos(6n + 1)u.

One of the simplest proofs of an equivalent form of (3.1) is due to L. Carlitz and
M.V. Subbarao [5]. Their proof involves only the Jacobi triple product identity.
For more details of the history and the different forms of (3.1), see [2, p. 83] or [6].

By expanding the right-hand side of (3.1) in powers of u, we deduce that
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By logarithmically differentiating both sides of (3.2), we find that
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Using (2.2) and comparing the coefficients of powers of u in (3.3), we find that for
n ≥ 0,

(3.4) T2n+2 =
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We construct from (3.4) the following identities for T2k, 1 ≤ k ≤ 4:

T2 = PT0,

T4 = (3P 2 − 2Q)T0,

T6 =
(
15P 3 − 30PQ + 16R

)
T0(3.5)

and

T8 =
(
105P 4 − 420P 2Q + 448PR + 140Q2 − 272E8

)
T0.(3.6)

In the construction of the above identities, we have followed Z.G. Liu [9].1

Using (1.5), (1.6), (3.5), (3.6) and the relation

24q
dTn

dq
= Tn+2,

1There is a misprint in the formula for T8. The coefficient of RP should be replaced by 336.
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we find that

(3.7) −192PR − 80Q2 + 384q
dR

dq
+ 272E8 = 0.

Solving the simultaneous equations (2.9) and (3.7), we deduce (1.7) and the identity

E8 = Q2.

4. Conclusion

The functions S2k+1 and T2k were studied by Ramanujan on page 369 of his Lost
Notebook [11]. Ramanujan showed that S2k+1/S1 and T2k/T0 can be expressed in
terms of P , Q and R. Further discussions of Ramanujan’s proofs can be found in
[14, pp. 31–32]. A discussion of S2k+1 can also be found in [3], while that of T2k

can be found in [4] and [9]. All the proofs discussed above use (1.5)-(1.7). We have
shown here that in fact the first few identities satisfied by S2k+1/S1 (k = 1, 2, 3, 4)
and T2k/T0 (k = 1, 2, 3, 4) are enough for us to deduce Ramanujan’s results for
these functions.
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