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THE ROGERS-RAMANUJAN CONTINUED FRACTION
AND A QUINTIC ITERATION FOR 1/π

HENG HUAT CHAN, SHAUN COOPER, AND WEN-CHIN LIAW

(Communicated by Jonathan M. Borwein)

Abstract. Properties of the Rogers-Ramanujan continued fraction are used
to obtain a formula for calculating 1/π with quintic convergence.

1. Introduction

Let q be a complex number satisfying |q| < 1. The Rogers-Ramanujan continued
fraction is

R(q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · .

The purpose of this article is to use properties of the Rogers-Ramanujan continued
fraction to derive the following iteration for 1/π.

Theorem 1.1. Let g = (1 +
√

5)/2. Define sequences by

s0 =
(√

g10 + 1 − g5
)1/5

,

k0 = 0,

rn+1 =
(

1 − g5s5
n

g5 + s5
n

)1/5

,

sn+1 =
1 − grn+1

g + rn+1
,

kn+1 =
(sn+1 + g)4(g2s2

n+1 + g2sn+1 + 1)
g2(s2

n+1 − g2sn+1 + g2)
kn

+
2 × 5n−1/2g2sn+1(1 − gsn+1)(g2s2

n+1 − sn+1 + 1)
(sn+1 + g)(s2

n+1 − g2sn+1 + g2)
f(sn+1),

where
f(s) = 4s4 − (2 + 5g)s3 + (5 − 3g)s2 + (6 + 7g)s + (5 + 3g).

Then kn converges to 1/π, and the rate of convergence is order 5.
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A cubic iteration for 1/π, based on Ramanujan’s cubic continued fraction

G(q) =
q1/3

1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 + · · · ,

has been given by H. H. Chan and K. P. Loo [11]. Our Theorem 1.1 is the analogue
of [11, Theorem 2.1], for which the Rogers-Ramanujan continued fraction takes the
role that Ramanujan’s cubic continued fraction played in [11]. The method, in both
the present work and in [11], is based on ideas developed in [10].

Theorem 1.1 is different from the quintic iterations of J. M. and P. B. Borwein in
[6, p. 175], [7] and [8, p. 202], which were obtained using quintic modular equations.
Other iterations for 1/π based on Dedekind’s η-function and modular functions
were given by J. M. Borwein and F. G. Garvan [9], and iterations based on elliptic
functions were given by Chan [10].

2. Some preliminary results

In this section, we collect some important results concerning the Rogers-Rama-
nujan continued fraction and some allied functions. Two good sources of informa-
tion about the Rogers-Ramanujan continued fraction are the last chapter of the
introductory book by B. C. Berndt [4] and the expository article by W. Duke [13].

The first significant fact about the Rogers-Ramanujan continued fraction is its
expression in terms of an infinite product:

(2.1) R(q) = q1/5
∞∏

j=1

(1 − q5j−4)(1 − q5j−1)
(1 − q5j−3)(1 − q5j−2)

.

An outline of a proof of this result, together with references, can be found in
Berndt’s book [4].

Let

X(q) = R5(q),(2.2)

y(q) = R(q5),(2.3)

and

Z(q) =
∞∏

j=1

(1 − qj)5

(1 − q5j)
.(2.4)

When it is not necessary to emphasize the parameter q, we will simply write R, X,
y and Z for R(q), X(q), y(q) and Z(q), respectively.

We will use the golden ratio, which we denote by

g =
1 +

√
5

2
.

We will require the formulas

(2.5)
1
R

− 1 − R =
1

q1/5

∞∏
j=1

(1 − qj/5)
(1 − q5j)

and

(2.6)
1
X

− 11 − X =
1
q

∞∏
j=1

(1 − qj)6

(1 − q5j)6
.
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Simple proofs of these results, using only the Jacobi triple product identity, have
been given by M. Hirschhorn [15]. More information about the identities (2.5) and
(2.6), and references to other proofs, can be found in the book by G. E. Andrews
and B. C. Berndt [1, pp. 11–12].

The function Z has a simple Lambert series expansion:

(2.7) Z = 1 − 5
∞∑

j=1

(
j

5

)
jqj

1 − qj
,

where
(

j
5

)
is the Legendre symbol. This formula was given by Ramanujan [16,

Chapter 19, Entry 9 (v)]. For proofs, see Berndt’s book [2, pp. 257–261] or the
papers by J. M. Dobbie [12] and Hirschhorn [14]. References to other proofs are
given in [2] and [14].

The functions R and R5 satisfy the modular properties [13, eqs. (3.2) and (7.3)]

R
(
e−2π/α

)
=

1 − gR(e−2πα)
g + R(e−2πα)

,(2.8)

R5
(
e−2π/5α

)
=

1 − g5R5(e−2πα)
g5 + R5(e−2πα)

,(2.9)

where α is any complex number satisfying Re(α) > 0. If we let α =
√

t/5 and
rearrange, then (2.9) may be rewritten as

(2.10)
(
g5 + X

(
e−2π

√
t/5

)) (
g5 + X

(
e−2π/

√
5t

))
= 1 + g10.

This result appears in Ramanujan’s lost notebook [1, p. 91], [17, p. 364]. If we
replace α with 5α in (2.8) and combine the result with (2.9), we obtain a relation
between u = R(q) and v = R(q5) given by

(2.11)
(

1 − gv

g + v

)5

=
1 − g5u5

g5 + u5
.

If we solve for u5, we obtain

(2.12) u5 = v
1 − 2v + 4v2 − 3v3 + v4

1 + 3v + 4v2 + 2v3 + v4
.

On the other hand, if we solve (2.11) for v, we obtain

(2.13) v =
1 − g

(
1−g5u5

g5+u5

)1/5

g +
(

1−g5u5

g5+u5

)1/5
.

Equation (2.12) was given by Ramanujan in his first letter to Hardy [5, p. 29].
Equation (2.13) will be used in our iteration for 1/π.

3. A formula for 1/π

3.1. The functions A(q) and κ(t). Let

q = exp
(
−2π

√
t√

5

)
, p = exp

(
−2π√

5t

)
, t > 0.
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If we logarithmically differentiate (2.2) and use (2.7), we obtain

q
dX

dq
= X

⎛⎝1 − 5
∞∑

j=1

(
j

5

)
jqj

1 − qj

⎞⎠(3.1)

= ZX.

Differentiating (2.10) and using (3.1), we get

(3.2) t
Z(q)X(q)
g5 + X(q)

=
Z(p)X(p)
g5 + X(p)

.

We may rewrite (2.10) as

(3.3) X(q) =
(g5 + X(q))(1 − g5X(p))

g10 + 1
,

and replacing t with 1/t, we obtain

(3.4) X(p) =
(g5 + X(p))(1− g5X(q))

g10 + 1
.

Substituting (3.3) and (3.4) into (3.2), we deduce that

(3.5) t
Z(q)

1 − g5X(q)
=

Z(p)
1 − g5X(p)

.

If we define

(3.6) A(q) =
Z(q)

1 − g5X(q)
,

then (3.5) reduces to

(3.7) tA(q) = A(p).

Differentiating (3.7) with respect to t, we find that

A(q) − π
√

t√
5

Ã(q) =
π√
5t3

Ã(p),

where

f̃(z) = z
df

dz
.

Multiplying both sides by 2/πA(q), we deduce that

(3.8)

(
1
π
− 2

√
t√
5

Ã(q)
A(q)

)
+

(
1
π
− 2√

5t

Ã(p)
A(p)

)
= 0.

If we define

(3.9) κ(t) =
1

πA(q)
− 2

√
t√
5

Ã(q)
A2(q)

,

then (3.8) becomes, after dividing by A(q), simply

(3.10) κ(t) + tκ

(
1
t

)
= 0.
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3.2. The multiplier. Let

(3.11) MN (q) =
A(q)

A(qN )
.

We will be particularly interested in M5(q). Observe that by (3.6),

M5(q) =
A(q)
A(q5)

=
Z(q)

(1 − g5X(q))
(1 − g5X(q5))

Z(q5)

=
Z(q)
Z(q5)

(1 − g5y5)
(1 − g5X)

.

By (2.4), we have

M5(q) =

⎛⎝ ∞∏
j=1

(1 − qj)5

(1 − q5j)

⎞⎠ ⎛⎝ ∞∏
j=1

(1 − q25j)
(1 − q5j)5

⎞⎠ (1 − g5y5)
(1 − g5X)

=

⎛⎝1
q

∞∏
j=1

(1 − qj)6

(1 − q5j)6

⎞⎠ ⎛⎝q
∞∏

j=1

(1 − q25j)
(1 − qj)

⎞⎠ (1 − g5y5)
(1 − g5X)

.

By (2.5) and (2.6), we obtain

M5(q) =
(X−1 − 11 − X)
(y−1 − 1 − y)

(1 − g5y5)
(1 − g5X)

.

Now using (2.12) and the relations u5 = X and v = y, we may express X in terms
of y. The final result is

(3.12) M5(q) =
(y + g)4(g2y2 + g2y + 1)

g2(y2 − g2y + g2)
.

Differentiating (3.12) gives

(3.13)
dM5

dy
=

(y + g)3

(y2 − g2y + g2)2
f(y),

where

(3.14) f(y) = 4y4 − (2 + 5g)y3 + (5 − 3g)y2 + (6 + 7g)y + (5 + 3g).

By the chain rule, together with (2.2), (2.3) and (3.1), we obtain

q
dM5

dq
= Z(q5)y

dM5

dy
.

Therefore, using (3.6), (3.12) and (3.13), we obtain

M̃5(q)
M5(q)A(q5)

=
Z(q5)y

M5(q)A(q5)
dM5

dy
(3.15)

=
y(1 − g5y5)

M5(q)
dM5

dy

=
g2y(1 − gy)(g2y2 − y + 1)

(y + g)(y2 − g2y + g2)
f(y).
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3.3. A functional equation for κ. In this section, we obtain a formula that
expresses κ(tN2) in terms of κ(t). The iteration for 1/π is based on this formula.

Logarithmically differentiating (3.11), we get

M̃N (q)
MN (q)

=
Ã(q)
A(q)

− N
Ã(qN )
A(qN )

.

Divide by A(qN ) and use (3.11) again to get

M̃N (q)
MN (q)A(qN)

=
Ã(q)

A(q)A(qN)
− N

Ã(qN )
A2(qN )

= MN (q)
Ã(q)
A2(q)

− N
Ã(qN )
A2(qN )

.

Now multiply by 2
√

t/5 and use (3.9) to get

2

√
t

5
M̃N (q)

MN (q)A(qN)
= MN (q) 2

√
t

5
Ã(q)
A2(q)

− 2

√
tN2

5
Ã(qN )
A2(qN )

= MN (q)
(

1
πA(q)

− κ(t)
)
−

(
1

πA(qN )
− κ(tN2)

)
= κ(tN2) − MN (q)κ(t).

Therefore,

(3.16) κ(tN2) = MN (q)κ(t) + 2

√
t

5
M̃N (q)

MN (q)A(qN)
.

3.4. An iteration for 1/π. If we let α = 1/
√

5 in (2.9) and solve the resulting
quadratic equation in R5, we obtain

R
(
e−2π/

√
5
)

=
(√

g10 + 1 − g5
)1/5

.

Now let t = 1 in (3.10) to get
κ(1) = 0.

Define two sequences by

kn = κ(52n),

sn = R
(
e−2π

√
52n−1

)
,

where n is a non-negative integer. By the calculations just done, we have

k0 = 0, s0 =
(√

g10 + 1 − g5
)1/5

.

Furthermore, expanding (3.9) in a series gives

κ(t) =
1
π
− (1 + 5

√
5)

(
1
2π

+

√
t

5

)
q + O(

√
tq2), as t → ∞.

Therefore

(3.17) kn − 1
π

∼ −(1 + 5
√

5)
(

1
2π

+
5n

√
5

)
exp

(
− 2π√

5
5n

)
, as n → ∞.
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It follows that kn converges to 1/π and the rate of convergence is order 5. The
identity (2.13) with q = e−2π

√
52n−1 gives

(3.18) sn+1 =
1 − g

(
1−g5s5

n

g5+s5
n

)1/5

g +
(

1−g5s5
n

g5+s5
n

)1/5
.

Let N = 5 and t = 52n in (3.16). We find that

kn+1 = M5

(
e−2π

√
52n−1

)
kn + 2 × 5n−1/2

M̃5

(
e−2π

√
52n−1

)
M5

(
e−2π

√
52n−1

)
A

(
e−2π

√
52n+1

) .

Using (3.12) and (3.15), we have

kn+1 =
(sn+1 + g)4(g2s2

n+1 + g2sn+1 + 1)
g2(s2

n+1 − g2sn+1 + g2)
kn(3.19)

+
2 × 5n−1/2g2sn+1(1 − gsn+1)(g2s2

n+1 − sn+1 + 1)
(sn+1 + g)(s2

n+1 − g2sn+1 + g2)
f(sn+1).

Identities (3.17), (3.18) and (3.19) imply Theorem 1.1.

Remark 3.1. The values of 1/k1, 1/k2, 1/k3, 1/k4 and 1/k5 give π correct to 3, 27,
148, 758 and 3808 decimal places, respectively.
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