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Dedicated to Michael Hirschhorn on the occasion of his sixtieth birthday.

The Ramanujan–Mordell Theorem for sums of an even number of squares
is extended to other quadratic forms. A number of explicit examples is
given. As an application, the value of the convolution sum∑

1≤m<n/23

σ(m)σ (n − 23m)

is determined, where σ(m) denotes the sum of the divisors of m.

1. Introduction

Throughout this work let τ be a complex number with positive imaginary part, and
let q = e2π iτ . Dedekind’s eta-function is defined by

(1) η(τ)= q1/24
∞∏
j=1

(1 − q j ).

Let

z = z(τ )=

∞∑
m=−∞

∞∑
n=−∞

qm2
+n2

and 3=3(τ)=
η(2τ)12

z6 .

The following result was stated by S. Ramanujan [1916; 2000, p. 159, eq. (14)]
and first proved by L. Mordell in [1917].

Theorem 1.1 (Ramanujan–Mordell). Suppose k is a positive integer. Then

zk
= Fk(τ )+ zk

∑
1≤ j≤(k−1)/4

c j,k3
j ,
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where c j,k are constants that depend on j and k, and Fk(τ ) is an Eisenstein series
given by:

F1(τ )= 1 + 4
∞∑
j=1

q j

1 + q2 j = 1 + 4
∞∑
j=1

(−1) j+1q2 j−1

1 − q2 j−1 ,

and for k ≥ 1,

F2k(τ )= 1 −
4k(−1)k

(22k − 1)B2k

∞∑
j=1

j2k−1q j

1 − (−1)k+ j q j , and

F2k+1(τ )= 1 +
4(−1)k

E2k

∞∑
j=1

((2 j)2kq j

1 + q2 j −
(−1)k+ j (2 j − 1)2kq2 j−1

1 − q2 j−1

)
.

Here Bk and Ek are the Bernoulli numbers and Euler numbers, respectively, de-
fined by

x
ex − 1

=

∞∑
k=0

Bk

k!
xk and sech x =

∞∑
k=0

Ek

k!
xk .

For the values k = 1, 2, 3 and 4, the condition 1 ≤ j ≤ (k − 1)/4 is empty, and
therefore Theorem 1.1 gives a representation of z, z2, z3 and z4 solely in terms
of an Eisenstein series. These are the familiar Lambert series for sums of 2, 4, 6
and 8 squares, originally due to C. G. J. Jacobi [1969]. The result for k = 5 was
known in part to G. Eisenstein (without proof) [1988, p. 501], and stated in full by
J. Liouville (without proof) in [1866]. The result for k = 6 was known in part to
Liouville (without proof) in [1860; 1864]. The results for 1 ≤ k ≤ 9 were proved by
J. W. L. Glaisher in a series of papers culminating in [1907]. The general statement
of Theorem 1.1 is due to Ramanujan (without proof) [2000, Eqs. (145)–(147)], and
the first proof is due to Mordell in [1917]. Other proofs of Theorem 1.1 have been
given by R. A. Rankin in [1977, pp. 241–244] and S. Cooper in [2001].

The goal of this work is to prove the analogue of the Ramanujan–Mordell The-
orem for which the quadratic form m2

+ n2 in the definition of z is replaced with
m2

+mn+n2, m2
+mn+2n2, m2

+mn+3n2, m2
+mn+6n2, or 2m2

+mn+3n2.
Before stating the result we make some definitions. For k ≥1, define the normalized
Eisenstein series by

(2) E2k(τ )= 1 −
4k
B2k

∞∑
j=1

j2k−1q j

1 − q j ,
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where B2k denotes the Bernoulli numbers. Let p be an odd prime. The generalized
Bernoulli numbers Bk,p are defined by

(3)
x

epx − 1

p−1∑
j=1

(
j
p

)
e j x

=

∞∑
k=0

Bk,p
xk

k!
,

where
(

·

p

)
is the Legendre symbol. Let k be a positive integer which satisfies

k ≡
p − 1

2
(mod 2).

The generalized Eisenstein series E0
k (τ ;χp) and E∞

k (τ ;χp) are defined by

E0
k (τ ;χp)= δk,1 −

2k
Bk,p

∞∑
j=1

j k−1

1 − q pj

p−1∑
`=1

(
`

p

)
q j`, and

E∞

k (τ ;χp)= 1 −
2k

Bk,p

∞∑
j=1

(
j
p

)
j k−1q j

1 − q j ,

where δm,n is the Kronecker delta function, defined by

δm,n =

{
1 if m = n,
0 if m 6= n.

If p is a prime of the form p ≡ 3 (mod 4), let

(4) F1(τ ; p)= E∞

1 (τ ;χp),

and for k ≥ 1, let

F2k(τ ; p)=
E2k(τ )+ (−p)k E2k(pτ)

1 + (−p)k
,(5)

F2k+1(τ ; p)= E∞

2k+1(τ ;χp)+ (−p)k E0
2k+1(τ ;χp).(6)

For p = 3, 7, 11 or 23, let

(7) z p = z p(τ )=

∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+(p+1)n2/4

and

(8) 3p =3p(τ )=

(η(τ)η(pτ)
z p

)24/(p+1)
.
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Furthermore, let

(9) z′

23 = z′

23(τ )=

∞∑
m=−∞

∞∑
n=−∞

q2m2
+mn+3n2

and

(10) 3′

23 =3′

23(τ )=
η(τ)η(23τ)

z′

23
.

The analogue of the Ramanujan–Mordell Theorem, and the main result of this
work, is:

Theorem 1.2. Suppose p = 3, 7, 11 or 23 and let k be a positive integer. Let
Fk(τ ; p), z p and 3p be defined by (4)–(8). Then

zk
p = Fk(τ ; p)+ zk

p

∑
1≤ j≤(p+1)k/24

cp,k, j3
j
p,

where cp,k, j are numerical constants that depend only on p, k and j .
A similar result holds for z′

23 and 3′

23 defined by (9) and (10), namely

z′

23
k
= Fk(τ ; 23)+ z′

23
k

∑
1≤ j≤k

ak, j3
′

23
j ,

where ak, j are numerical constants that depend only on k and j .

A proof of Theorem 1.2 will be given in Section 2. In the remainder of this section
we describe some special cases of Theorem 1.2.

Example 1. For k = 1 and p = 3, 7 or 11, Theorem 1.2 gives

∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+n2

= 1 + 6
∞∑
j=1

(
j
3

)
q j

1 − q j ,

∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+2n2

= 1 + 2
∞∑
j=1

(
j
7

)
q j

1 − q j ,

∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+3n2

= 1 + 2
∞∑
j=1

(
j

11

)
q j

1 − q j .
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These are equivalent to instances of a general theorem of Dirichlet; see [Landau
1958, Theorem 204]. When k = 1 and p = 23, Theorem 1.2 gives

∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+6n2

= 1 +
2
3

∞∑
j=1

(
j

23

)
q j

1 − q j +
4
3q

∞∏
j=1

(1 − q j )(1 − q23 j ),

∞∑
m=−∞

∞∑
n=−∞

q2m2
+mn+3n2

= 1 +
2
3

∞∑
j=1

(
j

23

)
q j

1 − q j −
2
3q

∞∏
j=1

(1 − q j )(1 − q23 j ),

and these were proved by F. van der Blij in [1952]. They may be rearranged to
give

∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+6n2

+ 2
∞∑

m=−∞

∞∑
n=−∞

q2m2
+mn+3n2

= 3 + 2
∞∑
j=1

(
j

23

)
q j

1 − q j ,

∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+6n2

−

∞∑
m=−∞

∞∑
n=−∞

q2m2
+mn+3n2

= 2q
∞∏
j=1

(1−q j )(1−q23 j ).

The first of these is equivalent to another instance of Dirichlet’s theorem [Landau
1958, Theorem 204], and the second formula was noted by J.-P. Serre in [1977,
p. 242].

Example 2. For the case p = 3, results for 1 ≤ k ≤ 4 were given (without proof)
by Ramanujan [Andrews and Berndt 2005, pp. 402–403], and results for 3 ≤ k ≤ 6
were given by H. Petersson in [1982, p. 90]. For 2 ≤ k ≤ 6, these results are:( ∞∑

m=−∞

∞∑
n=−∞

qm2
+mn+n2

)2

= 1 + 12
∞∑
j=1

jq j

1 − q j − 36
∞∑
j=1

jq3 j

1 − q3 j ,( ∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+n2

)3

= 1 − 9
∞∑
j=1

(
j
3

)
j2q j

1 − q j + 27
∞∑
j=1

j2q j

1 + q j + q2 j ,( ∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+n2

)4

= 1 + 24
∞∑
j=1

j3q j

1 − q j + 216
∞∑
j=1

j3q3 j

1 − q3 j ,( ∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+n2

)5

= 1 + 3
∞∑
j=1

(
j
3

)
j4q j

1 − q j + 27
∞∑
j=1

j4q j

1 + q j + q2 j ,( ∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+n2

)6

= 1 +
252
13

∞∑
j=1

j5q j

1 − q j −
6804
13

∞∑
j=1

j5q3 j

1 − q3 j

+
216
13 q

∞∏
j=1

(1 − q j )6(1 − q3 j )6.
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Results for p = 3, 1 ≤ k ≤ 20, were given by G. Lomadze in [1989a; 1989b].
Lomadze’s expansions for 6 ≤ j ≤ 20 are different from ours. For example, Lo-
madze’s formula for k = 6 has

1
12

∞∑
n=1

(∑
x2

1+x1 y1+y2
1+x2

2+x2 y2+y2
2=n

9x4
1 − 9nx2

1 + n2
)

qn

in place of

q
∞∏
j=1

(1 − q j )6(1 − q3 j )6,

and Lomadze’s formulas become more complicated as k increases.

Example 3. For p = 7, the cases k = 2 and 3 of Theorem 1.2 give

(11)
( ∞∑

m=−∞

∞∑
n=−∞

qm2
+mn+2n2

)2

= 1 + 4
∞∑
j=1

jq j

1 − q j − 28
∞∑
j=1

jq7 j

1 − q7 j

and ( ∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+2n2

)3

(12)

= 1 −
7
8

∞∑
j=1

(
j
7

)
j2q j

1 − q j +
49
8

∞∑
j=1

j2(q j
+ q2 j

− q3 j
+ q4 j

− q5 j
− q6 j )

1 − q7 j

+
3
4q

∞∏
j=1

(1 − q j )3(1 − q7 j )3.

The identity (11) was given by Ramanujan; see [Andrews and Berndt 2005,
p. 405, Entry 18.2.15]. See [Chan and Ong 1999; Cooper and Toh 2008; Liu
2003] and [Williams 2006] for other proofs.

The identity (12) is a consequence of the formulas for E∞

3 (q;χ7) and E0
3(q;χ7)

in [Chan and Cooper 2008]. In [Chan et al. 2008], it was shown that

q
∞∏
j=1

(1 − q j )3(1 − q7 j )3 =
1
2

∞∑
m=−∞

∞∑
n=−∞

(
m + n

(1 + i
√

7
2

))2
qm2

+mn+2n2
.

Another result for z3
7 can be obtained by combining two of Ramanujan’s results,

[Andrews and Berndt 2005, p. 404, Entry 18.2.14] and [Berndt 1991, p. 467, Entry
5 (i)]:
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( ∞∑
m=−∞

∞∑
n=−∞

qm2
+mn+2n2

)3

(13)

=

∞∏
j=1

(1 − q j )7

(1 − q7 j )
+ 13q

∞∏
j=1

(1 − q j )3(1 − q7 j )3 + 49q2
∞∏
j=1

(1 − q7 j )7

(1 − q j )
.

Other proofs of (13) have been given by H. H. Chan and Y. L. Ong in [1999,
Lemma 2.2] and Z.-G. Liu in [2003].

The remainder of this paper is organized as follows. We shall give a proof
of Theorem 1.2 in Section 2. The proof depends on three transformation formulas
(Lemmas 2.1–2.3) for 00(p), as well as a result that says certain bounded functions
must be constant (Lemma 2.4). A proof of the identity (13) using the same tech-
nique is also given. Some applications to convolution sums are given in Section 3.

2. Proofs

Let

0 =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1

}
,

00(p)=

{(
a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1, c ≡ 0 (mod p)

}
.

For p = 3, 7, 11 or 23, define

(14) ηp(τ )= (η(τ )η(pτ))24/(p+1) .

The proof of Theorem 1.2 hinges on the following four lemmas.

Lemma 2.1. Let p = 3, 7, 11 or 23 and let
(a b

c d

)
∈ 00(p). Then, for ηp(τ ) defined

by (14), we have

ηp

(aτ + b
cτ + d

)
=

(
d
p

)24/(p+1)

(cτ + d)24/(p+1)ηp(τ )

and
ηp

(
−1
τ
√

p

)
= (−iτ)24/(p+1)ηp

( τ
√

p

)
.

Proof. These follow from the transformation formula for the Dedekind eta-function
[Apostol 1990, p. 52, Theorem 3.4]. �

Lemma 2.2. Let p = 3, 7, 11 or 23 and let
(a b

c d

)
∈ 00(p). Then, for z p(τ ) defined

by (7), we have

z p

(aτ + b
cτ + d

)
=

(
d
p

)
(cτ + d)z p(τ )
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and

z p

(
−1
τ
√

p

)
= −iτ z p

( τ
√

p

)
.

The same transformation formulas hold when z23 is replaced with z′

23.

Proof. The first result follows from [Schoeneberg 1974, p. 217, Theorem 4] by
taking r = 1, A =

(2 1
1 (p+1)/2

)
, h = (0, 0), k = 0 and Pk = 1. The corresponding

result for z′

23 follows by taking A =
(4 1

1 6

)
, with the other parameters being the same

as for the case p = 23.
The second result is a direct consequence of [Schoeneberg 1974, p. 205, (5)]. �

Lemma 2.3. Let p ≡ 3 (mod 4) be prime and let n be a positive integer. Let(a b
c d

)
∈ 00(p). Then for Fk(τ ; p) defined by (4)–(6), we have

Fk

(aτ + b
cτ + d

; p
)

=

(
d
p

)k

(cτ + d)k Fk(τ ; p)

and

Fk

(
−1
τ
√

p
; p

)
= (−iτ)k Fk

( τ
√

p
; p

)
.

Proof. For odd values of k, these follow from [Cooper 2008, Theorem 6.1] or
[Kolberg 1968, (1.8)–(1.12)]. For even values of k with k ≥ 4, these follow from
the well-known transformation formulas for E2k(τ ), for example, see [Serre 1973,
pp. 83, 92, 95–96]. For k = 2, the results are most easily proved by appealing to
the transformation formulas for the function

(
η(pτ)
η(τ )

)24 in [Apostol 1990, pp. 84–85,
Theorems 4.7 and 4.8], and then applying logarithmic differentiation. �

Lemma 2.4. Let f (τ ) be analytic and bounded in the upper half plane Im(τ ) > 0,
and suppose it satisfies the transformation property

(15) f
(aτ + b

cτ + d

)
= f (τ ) for all

(
a b
c d

)
∈ 00(p).

Then f is constant.

Proof. This is Theorem 4.4 in [Apostol 1990, p. 79]. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let p = 3, 7, 11 or 23, and let k be a positive integer. Let `
be the smallest integer that satisfies 24`

p+1 ≥ k. Consider the functions

ϕ(τ) = ϕp,k(τ )=
Fk(τ ; p)
(z p(τ ))k

( z p(τ )

η(τ )η(pτ)

)24`/(p+1)
and

ψ(τ) = ψp(τ )=

( z p(τ )

η(τ )η(pτ)

)24/(p+1)
.
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By Lemmas 2.1–2.3, ϕ(τ) and ψ(τ) satisfy the transformation property (15). Fur-
thermore, ϕ and ψ are both analytic in the upper half plane 0 < Im(τ ) < ∞, as
η(τ) does not vanish in this region. Let us analyze the behavior at τ = i∞. From
the q-expansions, we find that

ϕ(τ)=
(1 + O(q))
(1 + O(q))k

( 1 + O(q)
q + O(q2)

)`
= q−`

+ O(q−`+1) as τ → i∞.

Therefore ϕ(τ) has a pole of order ` at i∞. Similarly, we find that ψ(τ) has a
pole of order 1 at i∞. It follows that there exist constants b1, . . . , b`, such that the
function

(16) λ(τ) := ϕ(τ)−
∑̀
j=1

b j (ψ(τ))
j

has no pole at i∞. That is to say,

λ(τ)= b0 + O(q) as τ → i∞

for some constant b0. Let us consider the behavior of λ(τ) at τ = 0. By the second
result in each of Lemmas 2.1–2.3, we find that

ϕ
(

−1
τ
√

p

)
= ϕ

( τ
√

p

)
and ψ

(
−1
τ
√

p

)
= ψ

( τ
√

p

)
.

Therefore

λ(τ)= λ
(
−1
pτ

)
−→ b0 as τ → 0.

It follows from the description of the fundamental region for 00(p) given in [Apos-
tol 1990, p. 76, Theorem 4.2] that λ(τ) is bounded in the upper half plane. Hence
by Lemma 2.4, λ(τ) is constant, that is, λ(τ)≡ b0. Therefore, from (16) we have

ϕ(τ)=

∑̀
j=0

b j (ψ(τ))
j .

Using the fact that ψ(τ)= 1/3p(τ ), this is equivalent to

Fk(τ ; p)= zk
p

∑̀
j=0

b j3
`− j
p = zk

p

∑
0≤ j≤(p+1)k/24

c j3
j
p,

where c j = b`− j . Letting q = 0 on both sides we deduce that c0 = 1.
If we replace z23 and323 by z′

23 and3′

23, respectively, at every step in the proof,
we establish the result for z′

23 and 3′

23.
This completes the proof of Theorem 1.2. �
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Remarks. For p = 3, 7, 11 or 23, the genus of the normalizer of 00(p) in SL2(R)

(denoted by00(p)+) is 0. It turns out that for each p, the field of functions invariant
under 00(p)+ is generated by ψp(τ ), which has a simple pole at τ = i∞. Since
ϕp,k(τ ) has a pole of order ` at τ = i∞ and ϕp,k(τ ) is a function on 00(p)+, it
follows that ϕp,k(τ ) is a polynomial in ψp(τ ) with degree exactly `. This explains
the existence of relation (16).

The identity (13) may be proved similarly.

Proof of (13). Let

F(τ )=
z3

7

η3(τ )η3(7τ)
and G(τ )=

η4(τ )

η4(7τ)
.

Lemmas 2.1 and 2.2 imply F(τ ) satisfies the transformation formula (15). Fur-
thermore, [Apostol 1990, p. 87, Theorem 4.9] implies that G(τ ) also satisfies the
transformation formula (15). The q-expansions are

(17) F(τ )=
1
q

+ O(1) and G(τ )=
1
q

+ O(1) as τ → i∞.

Hence F(τ ) and G(τ ) both have a pole of order 1 at τ = i∞.
By the second parts of Lemmas 2.1 and 2.2, and by the transformation formula

for the Dedekind eta-function [Apostol 1990, p. 52, Theorem 3.4], we have

(18) F
(
−1
τ

)
= F(τ ) and G

(
−1
τ

)
=

49
G(τ )

.

Therefore at the point τ = 0, F(τ ) has a pole of order 1 and G(τ ) has a zero of
order 1.

Let

H(τ ) := F(τ )− aG(τ )−
b

G(τ )
,

where a and b are constants that will be chosen so that H(τ ) has no pole at 0 or
i∞. In order for there to be no pole at τ = i∞, (17) implies a = 1. In order for
there to be no pole at τ = 0, (17) and (18) imply b = 49. It follows that the function
H(τ ) with these values of a and b is bounded in the upper half plane, and Lemma
2.4 implies that it is constant. That is,

z3
7

η3(τ )η3(7τ)
= c +

η4(τ )

η4(7τ)
+ 49

η4(7τ)
η4(τ )

,

for some constant c. If we multiply by η3(τ )η3(7τ) and compare coefficients of q
on both sides, we find that c = 13. This completes the proof of (13). �
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3. Application to convolution sums

Let σ j (n) denote the sum of the j-th powers of the divisors of n, and let σ(n) =

σ1(n). The convolution sum

Wk(n)=

∑
1≤m<n/k

σ(m)σ (n − km)

has been evaluated for 1 ≤ k ≤ 14 and k = 16, 18 and 24. See [Alaca et al. 2007]
and [Royer 2007] for references. In this section, we show how Theorem 1.2 leads
to an evaluation of Wk(n) for the cases k = 3, 7, 11 and 23. The case k = 23 is
new. Let

P(q)= E2(τ ) = 1 − 24
∞∑
j=1

jq j

1 − q j ,

Q(q)= E4(τ ) = 1 + 240
∞∑
j=1

j3q j

1 − q j ,

S(q)= −
q
24

d
dq

P(q) =

∞∑
j=1

j2q j

(1 − q j )2
.

Theorem 3.1. For p = 3, 7, 11 and 23 we have

P(q)P(q p) =
1

p2 + 1
(Q(q)+p2 Q(q p))−

144
p
(S(q)+p2S(q p))−576 z4

pu p(3p),

where
u3(33)= 0,

u7(37)=
1

7037,

u11(311)=
1

671(15311 − 1732
11),

u23(323)=
1

2438(77323 − 22232
23 + 20133

23 − 3034
23).

Proof. By Theorem 1.2 with k = 2 and 4, we have

pP(q p)− P(q)
p − 1

= z2
p

(
1 −

∑
1≤ j≤(p+1)/12

cp, j3
j
p

)
,(19)

p2 Q(q p)+ Q(q)
p2 + 1

= z4
p

(
1 −

∑
1≤ j≤(p+1)/6

dp, j3
j
p

)
,(20)

for some constants cp, j and dp, j . If we square (19) and subtract the result from
(20), we obtain

p2 Q(q p)+ Q(q)
p2 + 1

−
(pP(q p)− P(q))2

(p − 1)2
= z4

p

∑
1≤ j≤(p+1)/6

d ′

p, j3
j
p,
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for some constants d ′

p, j . This may be rewritten as

P(q)P(q p)=
1

2p
(p2 P2(q p)+ P2(q))−

(p − 1)2

2p(p2 + 1)
(p2 Q(q p)+ Q(q))

+z4
p

∑
1≤ j≤(p+1)/6

d ′′

p, j3
j
p,

for some constants d ′′

p, j . Now use the result (see [Chan 2007; Glaisher 1885] or
[Ramanujan 2000, p. 142, Eq. (30)])

P2(q)= Q(q)− 288S(q)

to get

P(q)P(q p)=
1

p2 + 1
(Q(q)+ p2 Q(q p))−

144
p
(S(q)+ p2S(q p))

+z4
p

∑
1≤ j≤(p+1)/6

d ′′

p, j3
j
p.

The values of the coefficients d ′′

p, j may be determined by expanding in powers of
q and equating coefficients of q j for 1 ≤ j ≤ (p + 1)/6. In this way we obtain
the polynomials u p(3p) given in the statement of the theorem. This completes the
proof. �

Theorem 3.2. For p = 3, 7, 11 and 23 we have

Wp(n)=
5

12(p2 + 1)

(
σ3(n)+ p2σ3

( n
p

))
+

( 1
24

−
n

4p

)
σ(n)+

( 1
24

−
n
4

)
σ
( n

p

)
− cp(n).

Here cp(n) is defined by

∞∑
n=1

cp(n)qn
= z4

pu p(3p),

and u p(3p) is as in Theorem 3.1.

Proof. Equate coefficients of qn on both sides of the identity in Theorem 3.1. �
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