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Abstract

We develop a theory for Eisenstein series to the septic base, which was started by S. Ramanujan in his
“Lost Notebook.” We show that two types of septic Eisenstein series may be parameterized in terms of the

septic theta function
∑∞

m=−∞
∑∞

n=−∞ qm2+mn+2n2
and the eta quotient η4(7τ )/η4(τ ). This is accom-

plished by constructing elliptic functions which have the septic Eisenstein series as Taylor coefficients. The
elliptic functions are shown to be solutions of a differential equation, and this leads to a recurrence relation
for the septic Eisenstein series.
© 2007 Elsevier Inc. All rights reserved.

MSC: 11F11; 11F20; 14K25; 33D52; 33E05

1. Introduction

Let q = exp(2πiτ) where Im(τ ) > 0 and define

z = z(q) =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+2n2
,

h = h(q) = q

∞∏
n=1

(1 − q7n)4

(1 − qn)4
,
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k = k(q) =
∞∏

n=1

(1 − qn)7

(1 − q7n)
,

x = x(q) = 7h

1 + 7h
. (1.1)

S. Ramanujan [20, pp. 53, 355, 357] stated without proof results which are equivalent to

1 + 2
∞∑

j=1

(
j

7

)
qj

1 − qj
= z, (1.2)

8 − 7
∞∑

j=1

(
j

7

)
j2qj

1 − qj
= k(49h + 8), (1.3)

and Z.-G. Liu [17, Eq. (1.18)] proved that

16 +
∞∑

j=1

(
j

7

)
j4qj

1 − qj
= k5/3(49h + 16)

(
49h2 + 13h + 1

)2/3
. (1.4)

Here (
j
7 ) is the Legendre symbol. If we use the result [12, Lemma 2.2]

z3 = k
(
49h2 + 13h + 1

)
,

then (1.3) and (1.4) may be rewritten as

8 − 7
∞∑

j=1

(
j

7

)
j2qj

1 − qj
= z3 49h + 8

49h2 + 13h + 1
, (1.5)

16 +
∞∑

j=1

(
j

7

)
j4qj

1 − qj
= z5 49h + 16

49h2 + 13h + 1
. (1.6)

Motivated by these examples, we empirically discovered the relation

584 −
∞∑

j=1

(
j

7

)
j6qj

1 − qj
= z7 (16807h3 + 25039h2 + 7007h + 584)

(49h2 + 13h + 1)2
(1.7)

as well as a similar formula for

282592 + 7
∞∑(

j

7

)
j8qj

1 − qj
.

j=1
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The goal of this paper is to show that (1.2) and (1.5)–(1.7) are the first few instances of an
infinite family of results. In order to make a general statement, we require some definitions. The
Bernoulli numbers Bn are defined by

x

ex − 1
=

∞∑
n=0

Bn

xn

n! .

Let p be an odd prime and define the generalized Bernoulli numbers Bn,p by [1, p. 59]

x

epx − 1

p−1∑
k=1

(
k

p

)
ekx =

∞∑
n=0

Bn,p

xn

n! . (1.8)

The classical Eisenstein series E2n(q) are defined, for positive integers n, by

E2n(q) = −B2n

4n
+

∞∑
j=1

j2n−1qj

1 − qj
. (1.9)

Define the septic Eisenstein series E∞
2n+1(q;χ7) and E0

2n+1(q;χ7), for non-negative integers n,
by [18, Eq. (6)]

E∞
2n+1(q;χ7) = −B2n+1,7

4n + 2
+

∞∑
j=1

(
j

7

)
j2nqj

1 − qj
, (1.10)

and

E0
2n+1(q;χ7) = δn,0

2
+

∞∑
j=1

j2n(qj + q2j − q3j + q4j − q5j − q6j )

1 − q7j
, (1.11)

where

δn,0 =
{

1 if n = 0,

0 otherwise

is the Kronecker delta. Let us also define

E∞
2n(q;χ7) = E2n(q) − 72nE2n

(
q7), (1.12)

and

E0
2n(q;χ7) = E2n(q) − E2n

(
q7). (1.13)

Throughout this work, pk(h) will denote a polynomial in h of degree � k.
We will prove the following two theorems:
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Theorem 1.1. Let n be a positive integer, and let k = �(2n + 1)/3�. There exists a polynomial
p2k−1(h) of degree � 2k − 1 such that

E∞
2n+1(q;χ7) = z2n+1 p2k−1(h)

(49h2 + 13h + 1)k
.

When n = 0 we have

E∞
1 (q;χ7) = z

2
.

Theorem 1.2. Let n be a non-negative integer, and let k = �(2n + 1)/3�. There exists a polyno-
mial p2k(h) of degree � 2k such that

E0
2n+1(q;χ7) = z2n+1 p2k(h)

(49h2 + 13h + 1)k
.

Equations (1.5)–(1.7) are the cases n = 1,2 and 3 of Theorem 1.1, respectively. The cases
n = 0,1,2 and 3 of Theorem 1.2 will be given in full at the end of Section 5.

The analogous results for classical Eisenstein series were given by Ramanujan [19, Chap-
ter 17, Entries 13–17] and [21, pp. 140–141]. See [5, pp. 126–139] for a proof of Ramanujan’s
results, and see [14] for a detailed analysis.

The theory for cubic analogues was started by Ramanujan [19, p. 257], and has been devel-
oped further in [6,9,10] and [13].

The quartic and sextic theories were started by Ramanujan. See [6] for an analysis of Ra-
manujan’s results. The quartic theory has been extended in [7].

The quintic theory has been developed recently by H.H. Chan and Z.-G. Liu [11].
Some results on septic theta functions have been given in [12] and [17]. Equation (1.2) has

been proved in [2, pp. 404–405]. Equations (1.3) and (1.4) have been proved in [17]. Equation
(1.7) and Theorems 1.1 and 1.2 are new.

This work is organized as follows. Four elliptic functions are defined in Section 2, and their
periodicity properties and poles are studied. A differential equation relating two of the elliptic
functions is given in Section 3. In Section 4, the results from Sections 2 and 3 are used to prove
Theorem 1.1. The imaginary transformation τ → −1/(7τ) is analyzed in Section 5, and the
result is used to prove Theorem 1.2. We conclude with some remarks in Section 6.

2. Elliptic functions

Let us define the generating functions L, �, M and m by

L(u) = L(u|τ) =
∞∑

n=0

E∞
2n+1(q;χ7)

(−1)n(2u)2n

(2n)! , (2.1)

�(u) = �(u|τ) =
∞∑

n=0

E0
2n+1(q;χ7)

(−1)n(2u)2n

(2n)! , (2.2)

M(u) = M(u|τ) =
∞∑

E∞
2n+2(q;χ7)

(−1)n(2u)2n+1

(2n + 1)! , (2.3)

n=0
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m(u) = m(u|τ) =
∞∑

n=0

E0
2n+2(q;χ7)

(−1)n(2u)2n+1

(2n + 1)! . (2.4)

In this section we will show that L and � are elliptic functions of order 6, and calculate their
periods, poles and residues. Although M and m are not elliptic functions, their derivatives are.
We determine the periods and poles.

If we substitute (1.10) into (2.1), we obtain

L(u) = −
∞∑

n=0

B2n+1,7

(4n + 2)

(−1)n(2u)2n

(2n)! +
∞∑

n=0

∞∑
j=1

(
j

7

)
qj

(1 − qj )

(−1)n(2ju)2n

(2n)! .

Now interchange the order of summation and use (1.8) to obtain the Fourier expansion

L(u) = sin 5u + sin 3u − sinu

2 sin 7u
+

∞∑
j=1

(
j

7

)
qj

1 − qj
cos 2ju. (2.5)

In the Fourier series, write

qj

1 − qj
=

∞∑
k=1

qjk and cos 2ju = e2iju + e−2iju

2
,

and reverse the order of summation. The result is the analytic continuation formula

L(u) = 1

2

∞∑
k=0

qke2iu + q2ke4iu − q3ke6iu + q4ke8iu − q5ke10iu − q6ke12iu

1 − q7ke14iu

+ 1

2

∞∑
k=1

qke−2iu + q2ke−4iu − q3ke−6iu + q4ke−8iu − q5ke−10iu − q6ke−12iu

1 − q7ke−14iu
. (2.6)

This implies the periodicity properties

L(u + π) = L(u) and L(u + πτ) = L(u).

Furthermore, it shows that L has simple poles at u = πj/7 + πτk, where j and k are integers
and j is not a multiple of 7, and is analytic at all other points in the complex plane. The residue
of L at the point u = jπ/7 may be calculated using the Fourier series (2.5), and the residues at
the other poles follow from the periodicity properties. The result is

Res

(
L(u);u = jπ

7
+ kπτ

)
= −

√
7

28

(
j

7

)
, (2.7)

where j and k are integers and j �≡ 0 (mod 7).
A similar analysis may be performed for the function �. The Fourier series is

�(u) = 1

2
+

∞∑ qj + q2j − q3j + q4j − q5j − q6j

1 − q7j
cos 2ju;
j=1
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the analytic continuation is

�(u) = 1

2
+ 1

2

∞∑
k=1

(
k

7

)
qke2iu

1 − qke2iu
+ 1

2

∞∑
k=1

(
k

7

)
qke−2iu

1 − qke−2iu
;

and the periodicity properties are

�(u + π) = �(u) and �(u + 7πτ) = �(u).

The function � has simple poles at u = πj + πτk where j and k are integers and k is not a
multiple of 7, and � is analytic for all other values of u. The residues are

Res
(
�(u);u = jπ + kπτ

) = − i

4

(
k

7

)
. (2.8)

Here are the corresponding results for M and m. The function M has simple poles at jπ/7 +
kπτ , where j and k are integers and j is not a multiple of 7, and no other singularities. It satisfies
the properties

M(u + π) = M(u) and M(u + πτ) = M(u) + 3i.

Thus M is not an elliptic function, but its derivative is. Lastly, the function m has simple poles at
jπ + kπτ , where j and k are integers and k is not a multiple of 7, and no other singularities. It
satisfies the properties

m(u + π) = m(u) and m(u + 7πτ) = m(u) − 3i,

so m is not an elliptic function, but its derivative is.
The functions M and m are related to the logarithmic derivative of the theta function. The

precise identifications are given in the next section in Lemma 3.4.

3. A differential equation

The main result of this section is the following differential equation involving L and M :

Theorem 3.1.

L(4) = 20L
(
M ′′′ − 48E4(q)

) + 40L′′(M ′ + 12E2(q)
) − 1120L′′L2

− 240L
(
M ′ + 12E2(q)

)2 + 4480L3(M ′ + 12E2(q)
) − 12544L5.

Observe that each term L(4), 20L(M ′′′ − 48E4(q)), etc., in Theorem 3.1 is an even elliptic
function with periods π and πτ , and (counting according to multiplicity) has 30 poles in a period
parallelogram.

In order to prove Theorem 3.1, we first define the theta function θ1, and establish several
lemmas.



686 H.H. Chan, S. Cooper / Journal of Number Theory 128 (2008) 680–699
Definition 3.2. Let

θ1(z|τ) := −i

∞∑
n=−∞

(−1)nq(2n+1)2/8e(2n+1)iz,

and write

θ ′
1

θ1
(z|τ) := θ ′

1(z|τ)

θ1(z|τ)
,

where the prime denotes differentiation with respect to z.

Lemma 3.3. The theta function satisfies the following properties:

θ1(z + π |τ) = −θ1(z|τ),

θ1(z + πτ |τ) = −q−1/2e−2izθ1(z|τ),

θ1(z|τ) = 2q1/8 sin z

∞∏
n=1

(
1 − qne2iz

)(
1 − qne−2iz

)(
1 − qn

)
,

θ ′
1

θ1
(z|τ) = cot z + 4

∞∑
n=1

qn

1 − qn
sin 2nz, and

θ ′
1

θ1
(z|τ) = 1

z
+ 4

∞∑
n=0

E2n+2(q)
(−1)n(2z)2n+1

(2n + 1)! .

Proof. These are standard results. The first four results can be found in [22, pp. 465, 470, 489].1

The fifth result follows from the fourth by expanding in powers of z and using (1.9). �
Lemma 3.4. The functions M and m satisfy the properties

M(u) = 1

4

(
θ ′

1

θ1
(u|τ) − 7

θ ′
1

θ1
(7u|7τ)

)
,

m(u) = 1

4

(
θ ′

1

θ1
(u|τ) − θ ′

1

θ1
(u|7τ)

)
.

Proof. These follow by substituting (1.12) and (1.13) into (2.3) and (2.4), and comparing with
the last result in Lemma 3.3. �

1 In [22] the convention q = exp(iπτ) is used instead of our q = exp(2πiτ), and so the formulas in [22] have q2 in
place of our q .
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Lemma 3.5. Let F(z) be any meromorphic function, and define φ(z) = F ′(z)
F (z)

. Then

F ′ = φF,

F ′′ = (
φ′ + φ2)F,

F ′′′ = (
φ′′ + 3φ′φ + φ3)F,

F (4) = (
φ′′′ + 4φ′′φ + 3(φ′)2 + 6φ′φ2 + φ4)F,

F (5) = (
φ(4) + 5φ′′′φ + 10φ′′φ′ + 10φ′′φ2 + 15(φ′)2φ + 10φ′φ3 + φ5)F.

Proof. Each identity follows from the preceding one by the product rule for differentiation. �
Before stating the next lemma, we recall that the set of quadratic residues modulo 7 is {1,2,4}.

Lemma 3.6. Let

f (z,u|τ) =
∏

j∈{1,2,4} θ1(z + u + jπ
7 |τ)θ1(z − u + jπ

7 |τ)

θ6
1 (z|τ)

.

Then f is an elliptic function of z with periods π and πτ . Furthermore, f has poles of order 6
at z = mπ + nπτ for all integers m and n, and no other singularities.

Proof. All of these follow from properties of the function θ1 given in Lemma 3.3. �
Lemma 3.7. Let f (z,u|τ) be as defined in Lemma 3.6. Let F(z) = z6f (z,u|τ) and φ(z) =
F ′(z)/F (z). Then

F(0) �≡ 0,

φ(z) = 6

(
1

z
− θ ′

1

θ1
(z|τ)

)

+
∑

j∈{1,2,4}

{
θ ′

1

θ1

(
z + u + jπ

7

∣∣∣∣τ
)

+ θ ′
1

θ1

(
z − u + jπ

7

∣∣∣∣τ
)}

,

and

(
φ(4) + 5φ′′′φ + 10φ′′φ′ + 10φ′′φ2 + 15(φ′)2φ + 10φ′φ3 + φ5)∣∣

z=0 = 0.

Proof. First,

F(0) = 1

(θ ′
1(0))6

∏
θ1

(
u + jπ

7

∣∣∣∣τ
)

θ1

(
−u + jπ

7

∣∣∣∣τ
)

�≡ 0.
j∈{1,2,4}
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Second, the formula for φ(z) follows from the definitions of f (z), F(z) and φ(z). Third, consider
f (z,u|τ) as a function of z. In a fundamental period parallelogram, f has a sixth order pole at
z = 0 and no other singularities. Thus the residue of f at this pole is zero, and therefore

1

5!
d5

dz5
z6f (z,u|τ)

∣∣∣∣
z=0

= 0.

Hence

d5

dz5
F(z)

∣∣∣∣
z=0

= 0.

Now invoke Lemma 3.5 and use the fact that F(0) �≡ 0 to complete the proof. �
We will require the following sums:

Lemma 3.8. Let p be an odd prime, and define

cp =
{

1, if p ≡ 1 (mod 4),

i, if p ≡ 3 (mod 4).

Let m and n be positive integers, and let u be a complex variable. Then

p−1∑
j=0

e2ij2nπ/p = cp
√

p

(
n

p

)
; (3.1)

p−1∑
j=1

(
j

p

)
cot

(
u + jπ

p

)
= 2icp

√
p

e2ipu − 1

p−1∑
k=1

(
k

p

)
e2iku; (3.2)

p−1∑
j=1

(
j

p

)
sin 2n

(
u + jπ

p

)
=

{√
p( n

p
) sin 2nu, if p ≡ 1 (mod 4),√

p( n
p
) cos 2nu, if p ≡ 3 (mod 4); (3.3)

m−1∑
j=0

csc2
(

u + jπ

m

)
= m2 csc2 mu; (3.4)

m−1∑
j=0

cos 2n

(
u + jπ

m

)
=

{
0, if n �≡ 0 (mod m),

m cos 2nu, if n ≡ 0 (mod m).
(3.5)

Proof. The first of these is a standard result, for example, see [3, p. 195]. Let us prove (3.2). To
begin with, assume Imu > 0. Using

cotx = −i

(
1 + 2e2ix

1 − e2ix

)
,

we have
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p−1∑
j=1

(
j

p

)
cot

(
u + jπ

p

)
= −2i

p−1∑
j=1

(
j

p

)
e2i(u+jπ/p)

1 − e2i(u+jπ/p)

= −2i

p−1∑
j=1

(
j

p

) ∞∑
k=1

e2ik(u+jπ/p)

= −2i

∞∑
k=1

e2iku

p−1∑
j=1

(
j

p

)
e2ijkπ/p

= −2icp
√

p

∞∑
k=1

(
k

p

)
e2iku

= 2icp
√

p

(e2ipu − 1)

p−1∑
k=1

(
k

p

)
e2iku.

The identity in (3.1) has been used to obtain the penultimate step. This proves (3.2) for Imu > 0.
The result holds true for other complex values of u by analytic continuation, as both sides are
meromorphic functions of u. This completes the proof of (3.2).

Let us prove (3.3). Equation (3.1) implies

p−1∑
j=1

(
j

p

)
e2in(u+jπ/p) = e2inu

p−1∑
j=0

e2ij2nπ/p = e2inucp
√

p

(
n

p

)
.

Equation (3.3) now follows for real values of u by equating imaginary parts of both sides. The
result holds for complex values of u by analytic continuation. This completes the proof of (3.3).

To prove (3.4), observe that

m−1∏
j=0

sin

(
u + jπ

m

)
=

m−1∏
j=0

ei(u+jπ/m) − e−i(u+jπ/m)

2i
= eimu − e−imu

2mi
= sinmu

2m−1
.

Now take logarithms and differentiate twice with respect to u to obtain (3.4). Finally we
prove (3.5). By geometric series, we have

m−1∑
j=0

e2in(u+jπ/m) =
{

0, if n �≡ 0 (mod m),

me2inu, if n ≡ 0 (mod m).

The result now follows for real values of u by equating real parts, and for complex values of u

by analytic continuation.
This completes the proof of Lemma 3.8. �
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Lemma 3.9. Let φ(z) be the function that was defined in Lemma 3.7. Then

φ(0) = 4
√

7L(u),

φ′(0) = −4M ′(u) − 48E2(q),

φ′′(0) = 4
√

7L′′(u),

φ′′′(0) = −4M ′′′(u) − 192E4(q),

φ(4)(0) = 4
√

7L(4)(u).

Proof. Since θ ′
1(z|τ)/θ1(z|τ) is an odd function of z with period π we have

φ(0) =
∑

j∈{1,2,4}

{
θ ′

1

θ1

(
u + jπ

7

∣∣∣∣τ
)

+ θ ′
1

θ1

(
−u + jπ

7

∣∣∣∣τ
)}

=
6∑

j=1

(
j

7

)
θ ′

1

θ1

(
u + jπ

7

∣∣∣∣τ
)

=
6∑

j=1

(
j

7

){
cot

(
u + jπ

7

)
+ 4

∞∑
n=1

qn

1 − qn
sin 2n

(
u + jπ

7

)}
.

Equations (3.2) and (3.3) of Lemma 3.8 with p = 7 imply

6∑
j=1

(
j

7

)
cot

(
u + jπ

7

)
= −2

√
7

e14iu − 1

6∑
k=1

(
k

7

)
e2iku

= 2
√

7
(sin 5u + sin 3u − sinu)

sin 7u

and

6∑
j=1

(
j

7

)
sin 2n

(
u + jπ

7

)
= √

7

(
n

7

)
cos 2nu.

Therefore

φ(0) = 2
√

7
(sin 5u + sin 3u − sinu)

sin 7u
+ 4

√
7

∞∑
n=1

(
n

7

)
qn

1 − qn
cos 2nu

= 4
√

7L(u).

In a similar way we find

φ′(0) = −48E2(q) −
6∑

csc2
(

u + jπ

7

)
+ 8

∞∑ nqn

1 − qn

6∑
cos 2n

(
u + jπ

7

)
.

j=1 n=1 j=1



H.H. Chan, S. Cooper / Journal of Number Theory 128 (2008) 680–699 691
By Eqs. (3.4) and (3.5) of Lemma 3.8 with m = 7 we obtain

φ′(0) = −48E2(q) − 4M ′(u).

The results for φ′′(0), φ′′′(0) and φ(4)(0) are proved similarly. �
Theorem 3.1 may now be proved by substituting the results of Lemma 3.9 into the last part of

Lemma 3.7.

4. Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1, which expresses E∞
2n+1(q;χ7) as a product

of z2n+1 and a rational function of h. We shall accomplish this by first proving an analogous
result for E∞

2n(q;χ7), and then using the differential equation in Theorem 3.1 to obtain the result
for E∞

2n+1(q;χ7). We will require some preparatory lemmas.

Lemma 4.1. Let z, h, k and E2 be defined by (1.1) and (1.9). Then

z = 1 + 2
∞∑

j=1

(
j

7

)
qj

1 − qj
, (4.1)

z2 = 4
(
E2(q) − 7E2

(
q7)), (4.2)

z3 = k
(
49h2 + 13h + 1

)
. (4.3)

Proof. Equation (4.1) was stated without proof by Ramanujan [20, pp. 355, 357] and has been
proved by G.E. Andrews and B.C. Berndt [2, p. 404]. It is equivalent to a special case of a result
of Dirichlet; see [16, Theorem 204].

Equation (4.2) was known to Ramanujan [20, pp. 355, 357]. Proofs of (4.2) have been given
by Andrews and Berndt [2, p. 405], S. Cooper and P.C. Toh [15], Liu [17, Eq. (1.17)] and
Williams [23]. The proofs in [15] and [17] use the Lambert series representation for z given
by Eq. (4.1) instead of the double series in Eq. (1.1). H.H. Chan and Y.L. Ong [12] pointed out
that (4.2) is equivalent to

q
dx

dq
= z2x(1 − x).

Equation (4.3) was known to Ramanujan. It is a combination of [19, Chapter 21, Entry 5(i)] and
(4.1). For proofs, see Berndt [5, pp. 467–471], Chan and Ong [12, Lemma 2.2] and Liu [17,
Eq. (1.16)]. �

It will be convenient to use Ramanujan’s Eisenstein series Q and R defined by

Q(q) = 240E4(q) = 1 + 240
∞∑

n=1

n3qn

1 − qn
,

R(q) = −504E6(q) = 1 − 504
∞∑ n5qn

1 − qn
. (4.4)
n=1
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Lemma 4.2.

Q(q) = k4/3(1 + 245h + 2401h2)(1 + 13h + 49h2)1/3
,

Q
(
q7) = k4/3(1 + 5h + h2)(1 + 13h + 49h2)1/3

,

R(q) = k2(1 − 490h − 21609h2 − 235298h3 − 823543h4),
R

(
q7) = k2(1 + 14h + 63h2 + 70h3 − 7h4).

Proof. These results were given by Ramanujan [20, p. 53]. Proofs have been given by Berndt
et al. [8], Cooper and Toh [15], Liu [17] and S. Raghavan and S.S. Rangachari [18]. �
Lemma 4.3.

Q(q) = z4 1 + 245h + 2401h2

1 + 13h + 49h2
, (4.5)

Q
(
q7) = z4 1 + 5h + h2

1 + 13h + 49h2
, (4.6)

R(q) = z6 1 − 490h − 21609h2 − 235298h3 − 823543h4

(1 + 13h + 49h2)2
, (4.7)

R
(
q7) = z6 1 + 14h + 63h2 + 70h3 − 7h4

(1 + 13h + 49h2)2
. (4.8)

Proof. Use (4.3) to eliminate k from the results in Lemma 4.2. �
Lemma 4.4. Let E2n(q) be as in (1.9). Then for n � 2 we have

E2n(q) =
∑

2α+3β=n
α,β�0

cα,β

(
Q(q)

)α(
R(q)

)β
,

where cα,β are positive rational numbers.

Proof. This is a well-known result, for example, see [4, Theorem 1.13 and Ex. 1.11] or [21,
p. 141]. �
Theorem 4.5. Let z, h, and E∞

2n(q;χ7) be as defined in (1.1) and (1.10). Let n � 2 be an integer,
and let k = �2n/3�. Then there exists a polynomial p2k−1(h) of degree 2k − 1 such that

E∞
2n(q;χ7) = z2n p2k−1(h)

(49h2 + 13h + 1)k
.

Furthermore, we have

E∞
2 (q;χ7) = z2 2 + 13h

49h2 + 13h + 1
+ 3zh

dz

dh
.
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Proof. Let us first prove the result for n � 2. We have

E∞
2n(q;χ7) = E2n(q) − 72nE2n

(
q7)

=
∑

2α+3β=n
α, β�0

cα,β

((
Q(q)

)α(
R(q)

)β − 72n
(
Q

(
q7))α(

R
(
q7))β)

=
∑

2α+3β=n
α, β�0

cα,βz4α+6β
f α

1 f
β

2 − 72nf α
3 f

β

4

(49h2 + 13h + 1)α+2β
,

where

f1 = 2401h2 + 245h + 1,

f2 = −(
823543h4 + 235298h3 + 21609h2 + 490h − 1

)
,

f3 = h2 + 5h + 1,

f4 = −(
7h4 − 70h3 − 63h2 − 14h − 1

)
.

The highest power of h occurring in f α
1 f

β

2 − 72nf α
3 f

β

4 is � 2α + 4β − 1, because the coefficient
of the highest possible power h2α+4β is

(2401)α(−823543)β − 72n(−7)β = (−7)β
(
74α+6β − 72n

) = 0.

Therefore

E∞
2n(q;χ7) = z2n

∑
2α+3β=n
α, β�0

cα,β

p2α+4β−1(h)

(49h2 + 13h + 1)α+2β

= z2n p2�2n/3�−1(h)

(49h2 + 13h + 1)�2n/3� ,

because n/2 � α + 2β � 2n/3. This proves the result for E∞
2n(q;χ7) for n � 2.

Next, by (1.13) and (4.2), we have

E∞
2 (q;χ7) = 7

4
z2 − 6E2(q). (4.9)

By [12, Eqs. (2.23) and (2.27)], this becomes

E∞
2 (q;χ7) = 7

4
z2 + z2

4

(7 − 53x − 3x2)

(7 − x + x2)
+ 3

z
q

dz

dq

= z2 (14 − 15x + x2)

2
+ 3zx(1 − x)

dz
.

(7 − x + x ) dx
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Now make the change of variable x = 7h/(1 + 7h) to obtain

E∞
2 (q;χ7) = z2 2 + 13h

49h2 + 13h + 1
+ 3zh

dz

dh
. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We use induction on n. The result is known to be true for E∞
1 (q;χ7)

and E∞
3 (q;χ7) by (1.2) and (1.5). Assume the result is true for E∞

1 (q;χ7), E∞
3 (q;χ7),

. . . ,E∞
2n+3(q;χ7) and consider E∞

2n+5(q;χ7). If we use the expansions (2.1) and (2.3) in The-
orem 3.1 and compare coefficients of u2n, we find that E∞

2n+5(q;χ7) is a linear combination
of

E∞
2aE∞

2b+1, a + b = n + 2, a � 2;
E∞

2a+1E
∞
2b+1E

∞
2c+1, a + b + c = n + 1;

E∞
2aE∞

2bE∞
2c+1, a + b + c = n + 2, a, b � 2;

E∞
2aE∞

2b+1E
∞
2c+1E

∞
2d+1, a + b + c + d = n + 1, a � 2;

E∞
2a+1E

∞
2b+1E

∞
2c+1E

∞
2d+1E

∞
2e+1, a + b + c + d + e = n;

E4(q)E∞
2n+1;(

E∞
2 + 6E2(q)

)
E∞

2n+3;(
E∞

2 + 6E2(q)
)
E∞

2aE∞
2b+1, a + b = n + 1, a � 2;(

E∞
2 + 6E2(q)

)2
E∞

2n+1;(
E∞

2 + 6E2(q)
)
E∞

2a+1E
∞
2b+1E

∞
2c+1, a + b + c = n,

where we have written E∞
k for E∞

k (q;χ7), and a, b, c, d and e are non-negative integers which
satisfy the given conditions. Let us consider the terms in the first line. By the induction hypothesis
and Theorem 4.5 we have, for b � 1,

E∞
2aE∞

2b+1 = z2a p2�2a/3�−1(t)

(49t2 + 13t + 1)�2a/3� × z2b+1 p2�(2b+1)/3�−1(t)

(49t2 + 13t + 1)�(2b+1)/3�

= z2n+5 p2�(2n+5)/3�−2(t)

(49t2 + 13t + 1)�(2n+5)/3� ,

because �j/3� + �k/3� � �(j + k)/3� for all non-negative integers j , k. If b = 0, then

E∞
2n+4E

∞
1 = z2n+4 p2�(2n+4)/3�−1(t)

(49t2 + 13t + 1)�(2n+4)/3� × z

2

= z2n+5 p2�(2n+5)/3�−1(t)

2 �(2n+5)/3� .

(49t + 13t + 1)
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The other terms may be analyzed similarly. For the term involving E4(q), use (4.5). For the terms
involving E∞

2 + 6E2(q), use (4.9) to write

E∞
2 + 6E2(q) = 7

4
z2.

In summary, all of the terms can be shown to have the form

z2n+5 p2�(2n+5)/3�−1(t)

(49t2 + 13t + 1)�(2n+5)/3�

and therefore E∞
2n+5(q;χ7) also has this form. This completes the proof of Theorem 1.1. �

5. The imaginary transformation τ → −1/(7τ), and proof of Theorem 1.2

Let Im(τ ) > 0, and recall that Dedekind’s eta-function is defined by

η(τ) = eπiτ/12
∞∏

j=1

(
1 − e2πijτ

)
.

Let

q = exp(2πiτ) and p = exp(−2πi/7τ).

In this section we will find a relation between E∞
2n+1(q;χ7) and E0

2n+1(p;χ7), and use it to prove
Theorem 2. We begin with some lemmas.

Lemma 5.1.

η(τ) =
√

i

τ
η

(
− 1

τ

)
,

h(q)h(p) = 1

49
,

and

z(q) =
(

i

τ
√

7

)
z(p).

Proof. The first result is standard, for example, see [4, p. 48]. For the second result, using (1.1),
we have

h(q) = η4(7τ)

η4(τ )
=

(
i

7τ

)2(
τ

i

)2
η4(−1/7τ)

η4(−1/τ)
= 1

49h(p)
.

For the third result, first observe that
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h(q)k(q) = η3(τ )η3(7τ) =
(

i

τ
√

7

)3

η3
(

− 1

τ

)
η3

(−1

7τ

)

=
(

i

τ
√

7

)3

h(p)k(p).

Then by (4.3), we have

z3(q) = h(q)k(q)

(
49h(q) + 13 + 1

h(q)

)

=
(

i

τ
√

7

)3

k(p)h(p)

(
1

h(p)
+ 13 + 49h(p)

)

=
(

i

τ
√

7

)3

z3(p).

The result now follows by taking cube roots. The branch may be determined by using the fact
that q = p = exp(−2π/

√
7 ) when τ = i/

√
7. �

Lemma 5.2.

z(q) = 2E∞
1 (q;χ7) = 2E0

1(q;χ7).

Proof. The first result is just (4.1). For the second result, we have

E∞
1 (q;χ7) = 1

2
+

∞∑
j=1

(
j

7

)
qj

1 − qj

= 1

2
+

∞∑
j=1

∞∑
k=1

(
j

7

)
qjk.

Interchange the order of summation to obtain

E∞
1 (q;χ7) = 1

2
+

∞∑
k=1

qk + q2k − q3k + q4k − q5k − q6k

1 − q7k
= E0

1(q;χ7). �

Lemma 5.3.

L(u|τ) = i

τ
√

7
�

(
u

τ

∣∣∣∣−1

7τ

)
.

Proof. By (2.7) and (2.8), we find that L(u|τ) and i

τ
√

7
�(u

τ
|−1

7τ
) both have simple poles at u =

πj/7 + πτk, where j and k are integers and j is not a multiple of 7, and no other singularities.
The residues of each function coincide, and the functions have the same periods. The difference
is therefore an entire elliptic function, and by Liouville’s theorem must be a constant. The value
of the constant may be found by setting u = 0:
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L(0|τ) − i

τ
√

7
�

(
0

∣∣∣∣−1

7τ

)
= E∞

1 (q;χ7) − i

τ
√

7
E0

1(p;χ7)

= z(q)

2
− i

τ
√

7

z(p)

2

= 0,

by Lemmas 5.1 and 5.2. This completes the proof. �
Corollary 5.4. Let q = exp(2πiτ) and p = exp(−2πi/7τ). For any non-negative integer n we
have

E∞
2n+1(q;χ7) = i

τ 2n+1
√

7
E0

2n+1(p;χ7).

Proof. Substitute the series expansions (2.1) and (2.2) into Lemma 5.3, and compare coefficients
of u2n. �
Proof of Theorem 1.2. Let us write h = h(q), z = z(q), h1 = h(p) and z1 = z(p). Replace τ

with −1/7τ in Corollary 5.4, then apply Theorem 1.1 to get

E0
2n+1(q;χ7) = i

√
7

(7τ)2n+1
E∞

2n+1(p;χ7)

= i
√

7

(7τ)2n+1
z2n+1

1
p2�(2n+1)/3�−1(h1)

(49h2
1 + 13h1 + 1)�(2n+1)/3� .

Now apply Lemma 5.1 to obtain

E0
2n+1(q;χ7) = (−1)n

7n
z2n+1 p2�(2n+1)/3�−1(1/49h)

(1/49h2 + 13/49h + 1)�(2n+1)/3�

= (−1)n

7n
z2n+1 (49h2)�(2n+1)/3�p2�(2n+1)/3�−1(1/49h)

(49h2 + 13h + 1)�(2n+1)/3� . (5.1)

If we observe that (49h2)jp2j−1(1/49h) is a polynomial in h of degree � 2j with no constant
term, we complete the proof of Theorem 1.2. �

Equation (5.1) may be used to obtain values for E0
2n+1(q;χ7) from the corresponding values

for E∞
2n+1(q;χ7). For example, from (1.2), (1.5)–(1.7), we obtain

E0
1(q;χ7) = z

2
,

E0
3(q;χ7) = z3 8h2 + h

49h2 + 13h + 1
,

E0
5(q;χ7) = z5 16h2 + h

2
,

49h + 13h + 1
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E0
7(q;χ7) = z7 4088h4 + 1001h3 + 73h2 + h

(49h2 + 13h + 1)2
.

By (4.3), the result for E0
3(q;χ7) is equivalent to

E0
3(q;χ7) = k

(
8h2 + h

)
.

This was given by Ramanujan [20, p. 53].

6. Concluding remarks

Remark 6.1.

For n � 1, define

F∞
2n+1(τ |χ7) =

∑
j

∑
k

(
j
7 )

(j + kτ)2n+1
,

F 0
2n+1(τ |χ7) =

∑
j

∑
k

( k
7 )

(j + kτ)2n+1
,

where the summation is over all integers j and k except (j, k) = (0,0). Clearly

F 0
2n+1

(−1

7τ

∣∣∣∣χ7

)
= −(7τ)2n+1F∞

2n+1(7τ |χ7).

By the techniques in [13, Section 5] it can be shown that

F∞
2n+1(τ |χ7) = 2(−1)n(2π)2n+1

(2n)!72n+ 1
2

E∞
2n+1

(
q

1
7 ;χ7

)
,

F 0
2n+1(τ |χ7) = 2(−2πi)2n+1

(2n)! E0
2n+1(q;χ7).

This leads to another proof of Corollary 5.4 in the case n � 1.

Remark 6.2. The polynomials in the numerators of the right-hand sides of Theorems 1.1 and 1.2
can be computed by equating coefficients in the q-expansions of both sides. For example, the
case n = 4 of Theorem 1.1 implies

(
282592 + 7

∞∑
j=1

(
j

7

)
j8qj

1 − qj

)(
49h2 + 13h + 1

)3

= z9(c0 + c1h + c2h
2 + c3h

3 + c4h
4 + c5h

5),
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for some constants c0, c1, c2, c3, c4 and c5. If we equate coefficients of qk on both sides for
0 � k � 5, then we obtain a triangular system of linear equations, from which we successively
obtain

c0 = 282592,

c1 = 5934439,

c2 = 47477374,

c3 = 168120421,

c4 = 225650782,

c5 = 40353607.

The calculations are easily performed using computer algebra.
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