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Abstract

We prove an observation associated with η3(τ )η3(7τ) which is found on page 54 of Ramanujan’s Lost
Notebook (S. Ramanujan, The Lost Notebook and Other Unpublished Papers (Narosa, New Delhi, 1988)).
We then study functions of the type η3(aτ)η3(bτ) with a + b = 8.
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1. Introduction

Let q = e2π iτ with Im τ > 0 and set

η(τ) = q1/24
∞∏

k=1

(1 − qk).

On [11, p. 54], Ramanujan stated that if

F(τ ) :=

∞∑
n=1

anqn
= η3(τ )η3(7τ), (1.1)

then

∞∑
n=1

an

ns =
1

1 + 71−s

∏
p≡3,5,6 mod 7

1

1 − p2(1−s)

∏
p≡1,2,4 mod 7

1

1 + 2cp p−s + p2(1−s)
,

(1.2)
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where p are primes. Ramanujan also asserted that

cp = 7v2
− u2 (1.3)

with
p = u2

+ 7v2. (1.4)

Equation (1.3) is, in fact, false for the prime p = 2, and the correct formula is

cp =

{
3/2 if p = 2,

7v2
− u2 if p = u2

+ 7v2.
(1.5)

The above assertion of Ramanujan was first studied by Rangachari [12]. Rangachari
explained the existence of the Euler product expansion for the Dirichlet series
corresponding to F(τ ) but did not determine (1.5) explicitly.

On [11, p. 146], Ramanujan revisited F(τ ) and recorded the Euler product for its
corresponding Dirichlet series as

∞∑
n=1

an

ns =
1

1 + 71−s

∏
p≡3,5,6 mod 7

1

1 − p2(1−s)

∏
p≡1,2,4 mod 7

1

1 + C p p−s + p2(1−s)
,

(1.6)
where

C p = 2p − a2 (1.7)

with
4p = a2

+ 7b2. (1.8)

Note that if p is odd, then p = u2
+ 7v2 implies that 4p = (2u)2

+ 7(2v)2.
Conversely, if 4p = a2

+ 7b2 and p is odd then a and b are even and p = (a/2)2

+ 7(b/2)2. Hence (1.2) is equivalent to (1.6) when p is odd, namely,

C p = 2p − a2
= 2(p − 2u2) = 2(u2

+ 7v2
− 2u2) = 2(7v2

− u2) = 2cp.

When p is even, it is easy to check that C2 is equal to 2c2. This implies that
Ramanujan’s observations for F(τ ) on pages 54 and 146 of his Lost Notebook are
equivalent.

Equations (1.6) and (1.7) were first discussed in a recent paper by Berndt and
Ono [2, (8.4)]. They remarked that C p can be obtained by applying Jacobi’s
identity [1, p. 500] twice and gave a brief sketch of the proof (see the comments in
[2, (8.4)]). As a result, complete proofs of (1.5) and (1.7) are still missing.

In Section 2, we derive (1.2) and (1.5) using an approach similar to that suggested
in [2].

In Section 3, we give proofs of (1.2) and (1.5) using Schoeneberg’s theta functions
(more commonly known as spherical theta functions).

In Section 4, we study functions of the type η3(aτ)η3(bτ) with a + b = 8 and
obtain analogues of (1.2) and (1.5).
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2. Proofs of (1.2) and (1.5) using Jacobi’s identity

PROOFS OF (1.2) AND (1.5). As indicated in [12] and [2], the function F(τ ) is in
S := S3(00(7), (·/7)), the space of weight 3 cusp forms on 00(7) with character (·/7).
The space S is one dimensional [3, Théorème 1] and, hence, F(τ ) is an eigenform. As
a result, the corresponding Dirichlet series for F(τ ) has an Euler product expansion
[7, p. 163]

∞∑
n=1

an

ns =

∏
p

1

(1 − ap p−s + (p/7)p2(1−s))
. (2.1)

It remains to determine ap for all primes p.
When p = 7, it follows from the expansion of F(τ ) that a7 = −1 and we obtain the

first factor in (1.2). When p = 2, the value of a2 can also obtained directly from the
expansion of F(τ ), namely, a2 = −3. This gives the value of c2 in (1.5).

It remains to determine ap for other odd primes p. This will complete the proofs
of (1.2) and (1.5).

Recall that by Jacobi’s identity,

η3(τ ) =

∑
α∈Z

α≡1 mod 4

αqα2/8. (2.2)

Therefore,

η3(τ )η3(7τ) =

∑
α≡1 mod 4
β≡1 mod 4

αβq(α2
+7β2)/8.

Note that this means that for all primes p,

ap =

∑
(α,β)≡(1,1) mod 4

8p=α2+7β2

αβ.

If
8p = C2

+ 7D2 (2.3)

with
(C, D) ≡ (1, 1) mod 4 (2.4)

then
C = A − 7B and D = A + B (2.5)

for some A, B satisfying p = A2
+ 7B2. Suppose that A and B satisfy (2.5), then

A =
C + 7D

8
and B =

D − C

8
,

and we conclude that A and B are integers since by (2.3) and (2.4),

(C, D) ≡ (1, 1) or (5, 5) mod 8.



304 H. H. Chan, S. Cooper and W.-C. Liaw [4]

Note that p = A2
+ 7B2 since

8p = C2
+ 7D2

= (A − 7B)2
+ 7(A + B)2

= 8(A2
+ 7B2).

This shows that every solution of (2.3) with C and D satisfying (2.4) can be obtained
from a solution of p = A2

+ 7B2. In other words, ap is zero when p is not of the form
A2

+ 7B2. This happens when(
−7
p

)
=

(
p

7

)
= −1.

Consequently,

ap = 0 when p ≡ 3, 5, 6 mod 7.

This yields the second product on the right-hand side of (1.2).
We now show that p = A2

+ 7B2 if and only if p ≡ 1, 2, 4 mod 7. Let

ω = ((1 +
√

−7)/2), ω = ((1 −
√

−7)/2) and O := Z[(1 +
√

−7)/2].

Then the ideal pO splits in O if and only if p ≡ 1, 2 or 4 mod 7. This follows from
Kummer’s theorem [5, p. 129, Theorem 23 and p. 132, (2.29)], which allows us to say
that p splits if and only if

x2
+ x + 2 ≡ 0 mod p

is solvable. The latter condition is equivalent to the condition that(
−7
p

)
= 1

and this happens if and only if p ≡ 1, 2 or 4 mod 7.
Suppose that p is an odd prime congruent to 1, 2 or 4 mod 7. Since O is a principal

ideal domain, every ideal may be written as (a) = aO for some a ∈ O. Hence, for any
prime p ≡ 1, 2 or 4 mod 7, we deduce that

(p) = (α + βω) (α + βω),

for some α, β ∈ Z. Since ±1 are the only units in O, we conclude that

p = (α + βω)(α + βω) = α2
+ αβ + 2β2.

The above representation shows that α cannot be even, otherwise p would be even.
Hence, α is odd. However, this forces β to be even since p is odd. Therefore, we may
write

p =

(
α +

β

2

)2

+ 7
(

β

2

)2

.
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Hence, there are integers γ and δ such that

p = γ 2
+ 7δ2.

This shows that if p is an odd prime, then p ≡ 1, 2, 4 mod 7 if and only if
p = A2

+ 7B2.
We now return to the computation of ap for p ≡ 1, 2, 4 mod 7. If p = A2

+ 7B2,
then (A, B), (A, −B), (−A, B) and (−A, −B) are all solutions of p = γ 2

+ 7δ2 (this
follows from the splitting of (p) in O). Each of these gives rise to a solution (C, D)

of (2.3) (see our earlier computations), namely

(A − 7B, A + B), (A + 7B, A − B), (−A − 7B, −A + B) and

(−A + 7B, −A − B).

Only two, depending on (A, B) mod 4, out of the four give solutions satisfying (2.4).
For example, (A − 7B, A + B) and (A + 7B, A − B) could be the desired solutions
and in this case

(A − 7B)(A + B) + (A + 7B)(A − B) = 2(A2
− 7B2).

By considering all possible cases for (A, B) mod 4 we conclude that if p = A2
+ 7B2,

then

ap =

∑
(α,β)≡(1,1) mod 4

8p=α2+7β2

αβ = 2(A2
− 7B2).

This completes the proof of (1.5) and the derivation of the third factor in (1.2) for
primes p 6= 2. 2

3. Proofs of (1.2) and (1.5) using Schoeneberg’s theta functions

We first show that the following holds.

THEOREM 3.1. We have

η3(τ )η3(7τ) =
1
2

∞∑
m,n=−∞

(
m + n

{√
−7 + 1

2

})2

qm2
+mn+2n2

. (3.1)

We recall a class of theta functions studied by Schoeneberg [13].
Let f be an even positive integer and M = (mµ,ν) be a symmetric f × f matrix

such that:

(1) mµ,ν ∈ Z;
(2) mµ,µ is even; and
(3) xt Mx > 0 for all x ∈ R f such that x 6= 0.
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Let N be the smallest positive integer such that N M−1 also satisfies conditions 1–3.
Let

P M
k (x) :=

∑
y

cy(yt Mx)k,

where the sum is over finitely many y ∈ C f with the property yt My = 0, and cy are
arbitrary complex numbers.

When Mh ≡ 0 mod N and Im τ > 0, we define

ϑM,h,P M
k

(τ ) =

∑
n∈Z f

n≡h mod N

P M
k (n) exp(((2π iτ)/N )(1/2)((nt Mn)/N )). (3.2)

PROOF OF THEOREM 3.1. Substitute

y =

(
−1 −

√
−7

2

)
, A =

(
2 1
1 4

)
, h = (0, 0) and N = 7

in (3.2). Then we conclude that the function

A(τ ) =
1
2

∞∑
m,n=−∞

(
m + n

{√
−7 + 1

2

})2

qm2
+mn+2n2

is a weight 3 cusp form on 00(7) with multiplier system (·/7) (see [13, p. 217,
Theorem 4 and p. 218, Theorem 5]), namely,

A

(
aτ + b

cτ + d

)
= (cτ + d)3

(
d

7

)
A(τ ),

with (
a b
c d

)
∈ 00(7).

It can be verified directly that B(q) = η3(τ )η3(7τ) is also a form on 00(7) with
multiplier system (·/7) and that any cusp form of weight 3 on 00(7) with multiplier
system (·/7) is a constant multiple of B(q) since B(q) is an eigenform (see
[7, p. 145, Exercises 12 and 13]). By looking at the expansion of A(q) and B(q), we
conclude that the constant is 1 and this completes the proof of the theorem. 2

PROOFS OF (1.2) AND (1.5). We first give a formula for ap. As observed earlier,
if p is an odd prime and p = m2

+ mn + 2n2, then n = 2n′. Also, if p = A2
+ 7B2,

then m = A − B and n′
= B. Hence, the coefficient of q p in the expansion of G(τ ) is

given by

ap =
1
2 {(A − B +

√
−7B)2

+ (A + B +
√

−7(−B))2

+ (−A − B +
√

−7B)2
+ (−A + B +

√
−7(−B))2

} = 2(A2
− 7B2). (3.3)
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The value of a2 can be obtained directly from the expansion of η3(τ )η3(7τ).
Alternatively, it follows from the right-hand side of (3.1) that

a2 = −3.

In Section 2, we concluded that the Euler product for the corresponding Dirichlet
series for F(τ ) exists because F(τ ) is an eigenform. Alternatively, we may establish
this fact using the right-hand side of (3.1) as follows.

Since O := Z[(1 +
√

−7)/2] is a principal ideal domain and there are only two
units, namely ±1, and every integral ideal has only two generators. With this
observation, we find that the series representation of η3(τ )η3(7τ) can be expressed
in the form

1
2

∑
α∈O

α2qN(α)
=

∑
a =(α)⊂O

α2qN(a).

Let P denote the set of nonzero prime ideals of O. The corresponding Dirichlet
series for G(τ ) is∑

0 6=(α)⊂O

α2

(N(α))s =

∏
p =(α)∈P

α2 is prime in Z

(
1 +

α2

N(p)s +
α4

N(p2)s
+ · · ·

)

×

∏
p =(α)∈P,

α is prime in Z

(
1 +

α2

N(p)s +
α4

N(p2)s
+ · · ·

)

×

∏
p =(α),p ′=(α′),p 6=p ′

αα′=p,a prime in Z

(
1 +

α2

N(p)s +
α4

N(p2)s
+ · · ·

)
.

There is only one term in the first product and the prime ideal involved is (
√

−7).
The first product is then given by

1 −
7
7s +

72

72s
− · · · =

1

1 + 71−s
.

The second product is over all integral primes p such that (p) is a prime ideal in O
(these are primes that are quadratic nonresidues modulo 7). A typical term is given by

1 +
p2

p2s
+

p4

p4s
+ · · · =

1

1 − p2−2s
.

Finally we can pair up the terms in the third product for each prime p that splits in O,
namely,

p = αα′ with α, α′
∈ O.
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A typical term is given by(
1 +

α2

ps +
α2

p2s
+ · · ·

)(
1 +

α′2

ps +
α′2

p2s
+ · · ·

)
=

1

1 − α2 p−s
·

1

1 − α′2 p−s

=
1

1 − (α2 + α′2)p−s + p2−2s

=
1

1 − ap p−s + p2−2s
.

Hence,∑
n≥1

an

ns =
1

1 + 71−s

∏
p≡3,5,6 mod 7

1

1 − p2−2s

∏
p≡1,2,4 mod 7

1

1 − ap p−s + p2−2s
.

Comparing this with (1.2), we conclude that

ap = −2cp. (3.4)

Using (3.3), we complete the proof of (1.5). 2

We end this section with a proof of a congruence satisfied by Ramanujan’s τ

function.

COROLLARY 3.2. Let

1(τ) := η24(τ ) =

∑
k≥1

τ(k)qk .

Then

τ(p) ≡

{
0 mod 7 if p ≡ 3, 5, 6 mod 7

2u2 mod 7 if p ≡ 1, 2, 4 mod 7 and p = u2
+ 7v2.

PROOF. Write

1 ≡ η3(τ )η3(7τ) mod 7.

We then conclude that
ap ≡ τ(p) mod 7. (3.5)

We know that ap is zero when p is a quadratic nonresidue modulo 7 and, hence, the
first part follows.

When p is a quadratic residue, we have p = u2
+ 7v2 and by (1.3) and (3.4),

ap ≡ −2cp ≡ 2u2
− 14v2

≡ 2u2 mod 7.

Using (3.5), we conclude that if p is a quadratic residue modulo 7, then

τ(p) ≡ 2u2 mod 7. (3.6)

2



[9] On η3(aτ)η3(bτ) with a + b = 8 309

Note that we may also rewrite (3.6) as

τ(p) ≡ p4
+ p mod 7, (3.7)

when p is a quadratic residue modulo 7. Congruence (3.7) is due to Ramanathan [10].
For more congruences such as (3.7) satisfied by τ(n) and the reasons why such
congruences exist, see [14].

4. Identities associated with η3(aτ)η3(bτ), with a + b = 8

In our attempt to derive ap for primes p of the form u2
+ 7v2 where an is defined

as in (1.1), we also discovered similar results for the η-products

η3(2τ)η3(6τ), η3(3τ)η3(5τ) and η6(4τ).

The proofs of the following identities are similar to the proof of Theorem 3.1.

THEOREM 4.1. We have

η3(2τ)η3(6τ) =
1
2

∞∑
m,n=−∞

(m + n
√

−3)2qm2
+3n2

, (4.1)

η3(3τ)η3(5τ) =
1
2

∞∑
m,n=−∞

(
m + n

(
1 +

√
−15

2

))2

qm2
+mn+4n2

. (4.2)

η6(4τ) =
1
2

∞∑
m,n=−∞

(m + 2n
√

−1)2qm2
+4n2

. (4.3)

PROOF. Let S3(00(N ), (δ/·)) be the space of cusp forms of weight 3 with multiplier
(δ/·) under the action of 00(N ).

Let the right-hand side of (4.1) be denoted as R1(τ ). By [13, p. 217, Theorem 4 and
p. 218, Theorem 5],

R1(τ ) ∈ S3(00(12), (−6/·)) =: C1.

The space C1 is one dimensional [3, Théorème 1] over C and generated by L1(τ )

= η3(2τ)η3(6τ) (see [6, p. 174]). By comparing the leading coefficients of R1(τ ) and
L1(τ ), we complete the proof of (4.1).

To prove (4.2), let the right-hand side of (4.2) be R2(τ ). Then

R2(τ ) ∈ S3(00(15), (−15/·)) =: C2.

The dimension of C2 over C is two [3, Théorème 1] and a basis can be taken as

{η3(τ )η3(15τ), η3(3τ)η3(5τ)}.

Comparing the coefficients of R2(τ ) and the elements in the basis, we conclude the
proof of (4.2).

The proof of (4.3) is similar and follows from the fact that S3(00(16), (−4/·)) is
one dimensional [3, Théorème 1] and spanned by η6(4τ). 2
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REMARKS. The Euler products exist for the Dirichlet series corresponding to the
forms in (4.1) and (4.3) since these are eigenforms [7, p. 163].

By comparing the coefficients of both sides in (4.1) and (4.3), we obtain the
following analogues of (1.5).

COROLLARY 4.2. (i) Let

η3(2τ)η3(6τ) =

∞∑
n=1

bnqn.

Then

bp = 2(u2
− 3v2) when p = u2

+ 3v2 and p > 3.

(ii) Let

η6(4τ) =

∞∑
n=1

dnqn.

Then

dp = 2(u2
− 4v2) when p = u2

+ 4v2.

PROOF. It is known that [4, p. 61] if p can be written as am2
+ bn2 with gcd(a, b) = 1

and ab > 1, then there are exactly four ways of writing p in this form. Therefore, the
only four solutions to the equation p = u2

+ 3v2 are (u, v), (u, −v), (−u, −v) and
(−u, v). Hence,

bp =
1
2 ((u + v

√
−3)2

+ (u − v
√

−3)2
+ (−u + v

√
−3)2

+ (−u − v
√

−3)2)

= 2(u2
− 3v2).

The expression for dp can also be proved in the same way. 2

REMARKS. Using Schoeneberg’s theta series as we did in the proof of Theorem 3.1,
one can also show the following identity:

η3(τ )η3(15τ) =
−3
2

∞∑
m,n=−∞

(
m + n

(
3 +

√
−15

6

))2

q3m2
+3mn+2n2

. (4.4)

The analogue of (1.5) in this case is given by the following result.

COROLLARY 4.3. Let

E±(τ ) = η3(3τ)η3(5τ) ± η3(τ )η3(15τ) :=

∞∑
n=1

e±
n qn.
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Then E±(τ ) are eigenforms. When p 6= 2, 3, 5, then

e±
p =

{
∓2(3u2

− 5v2) if p = 3u2
+ 5v2,

2(u2
− 15v2) if p = u2

+ 15v2.
(4.5)

Furthermore,

e±

2 = ±1, e±

3 = ∓3 and e±

5 = ±5.

PROOF. Let

E1(τ ) = η3(3τ)η3(5τ) =

∞∑
n=1

α(n)qn

and

E2(τ ) = η3(τ )η3(15τ) =

∞∑
n=2

β(n)qn.

Let

E(τ ) =

∞∑
n=1

ε(n)qn

be an eigenform in S3(00(15), (−15/·)) with ε(1) = 1. Suppose

E(τ ) = E1(τ ) + vE2(τ ).

Applying the Hecke operator T2 (see [7, p. 161]) to both sides of the above, we find
that

E(τ )|T2 = ε(2)E(τ ) = E1(τ )|T2 + vE2(τ )|T2 . (4.6)

Comparing the coefficients of q and q2 of (4.6), we find that

ε(2) = α(2) + vβ(2) = vβ(2) = v

and

ε(2)2
= α(4) + 4α(1) + vβ(4) + 4vβ(1) = 1.

Hence, v = ±1 and E±(τ ) are indeed the eigenforms for S3(00(15), (−15/·)).
In order to determine the eigenvalues e±

p corresponding to Tp for E±, we note that
if p = 3m2

+ 3mn + 2n2, then p = 3u2
+ 5v2 where

u = m +
n

2
and v =

n

2
.
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By [4, p. 61], we find that there are exactly four solutions to the latter equation and
these are

S := {(u, v), (−u, −v), (u, −v), (−u, v)}.

Using the right-hand side of (4.4), together with the substitutions

m = U − V, n = 2V with (U, V ) ∈ S,

we deduce immediately the first part of (4.5). The second part of (4.5) follows similarly
using the right-hand side of (4.2). The values of e±

p for p = 2, 3 and 5 follow from
the expansion of E±(τ ). 2

REMARKS. The functions η3(τ )η3(7τ), η3(2τ)η3(6τ) and η6(4τ) were studied by
Ono in connection with Gaussian hypergeometric series over finite fields. For more
details, see [9, pp. 194–195]. Murata also connected the coefficients bp and dp with
the number of Fp-rational points on the K 3-surfaces

xy(x + y + 1)(x + y + xy) = z2 and xy(x − y)(xy − 1) = z2

respectively. Readers who are interested in this connection are encouraged to read [8].
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