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THE APÉRY NUMBERS, THE ALMKVIST-ZUDILIN NUMBERS
AND NEW SERIES FOR 1/π

Heng Huat Chan and Helena Verrill

Abstract. This paper concerns series for 1/π, such as Sato’s series (1.4), and the series
of H.H. Chan, S.H. Chan and Z.-G. Liu (1.8) below. The examples of Sato, Chan, Chan

and Liu are related to two index 2 subgroups of Γ0(6)+. These examples motivate us to

look at a third subgroup of Γ0(6)+. We give a new method of constructing such series
using the theory of modular forms and conclude our work with several new examples.

1. Introduction

For n ≥ 1, define

(1.1) αn =
n∑

j=0

(
n
j

)2(
n + j

j

)2

.

These numbers are known as Apéry’s numbers, because of their appearance in Apéry’s
proof of the irrationality of ζ(3) [2]. The first few terms are 1, 5, 73, 1445 (this is
sequence A005259 in [18]). Let q = e2πiτ and

η(τ) = q1/24
∞∏

n=1

(1− qn)

be the Dedekind eta function. From [14, Theorem 5], it follows that if

(1.2) t1(τ) =
(

η(6τ)η(τ)
η(2τ)η(3τ)

)12

and F1(τ) =
(η(2τ)η(3τ))7

(η(τ)η(6τ))5
,

then provided |t1(τ)| is sufficiently small,

(1.3) F1(τ) =
∞∑

n=0

αntn1 (τ).

T. Sato [16] used (1.3) to obtain the following series for 1/π:

(1.4)
1
π

=
(
72
√

15− 160
√

3
) ∞∑

n=0

αn

(
1
2
− 3

√
5

20
+ n

)(
1−

√
5

2

)12n

.

Sato’s work motivated H.H. Chan, S.H. Chan and Z.-G. Liu [7] to consider

(1.5) t2(τ) =
(

η(2τ)η(6τ)
η(τ)η(3τ)

)6

and F2(τ) =
(η(τ)η(3τ))4

(η(2τ)η(6τ))2
.
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It turns out that when |t2(τ)| is sufficiently small, we have the following analogue of
(1.3):

(1.6) F2(τ) =
∞∑

n=0

βntn2 (τ)

where βn = (−1)nβ̃n, where

(1.7) β̃n =
n∑

j=0

(
n
j

)2(2j
j

)(
2(n− j)
n− j

)
=

∑
p+q+r+s=n

(
n

p, q, r, s

)2

,

where (
n

a1, a2, · · · , ar

)
=

n!
a1!a2! · · · ar!

,with a1 + a2 + · · · ar = n.

Note that the second equality here follows from writing∑
p+q+r+s=n

(
n

p, q, r, s

)2

=
∑

k+j=n

(
n

k, j

)2 ∑
p+q=k

(
k

p, q

)2 ∑
r+s=j

(
j

r, s

)2

and using the identity
∑s

i=1

(
s
i

)2 =
(
2s
s

)
. The first few values of β̃n are 1, 4, 28, 256;

this is sequence A002895 in [18].
An example (given in [7]) of a series for 1/π in terms of the β̃n is

(1.8)
8√
3π

=
∞∑

n=0

β̃n(1 + 5n)
(

1
64

)n

.

The functions t1(τ) and t2(τ) are Hauptmoduls of Γ0(6)+6 and Γ0(6)+3 respec-
tively, which are two of the three index 2 subgroups lying between Γ0(6) and its
normalizer in SL2(R). These are given by Γ0(6)+k = 〈Γ0(6), wk〉, where k = 2, 3, 6,
and w2 = 1√

2

(
2 −1
6 −2

)
, w3 = 1√

3

(
3 −2
6 −3

)
, w6 = 1√

6

(
0 −1
6 0

)
.

It is natural to ask whether there exist analogues of (1.3) and (1.6) for the third
such group, Γ0(6)+2. We will show that the answer is affirmative. In fact, when

t3(τ) =
(

η(3τ)η(6τ)
η(τ)η(2τ)

)4

, and F3(τ) =
(η(τ)η(2τ))3

η(3τ)η(6τ)
,

and |t3(τ)| sufficiently small, we show that

F3(τ) =
∞∑

n=0

γntn3 (τ),

where γn are the Almkvist-Zudilin numbers [1] given by

(1.9) γn =
n∑

j=0

(−1)n−j 3n−3j(3j)!
(j!)3

(
n
3j

)(
n + j

j

)
.

The first few terms of this sequence are 1,−3, 9,−3,−279, 2997. In this paper, we
prove that we have the following analogues of (1.4) and (1.8):

(1.10)
3
√

3
2π

=
∞∑

n=0

γn(4n + 1)
(

1
81

)n

,
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(1.11)
3
√

3
π

=
∞∑

n=0

γn(4n + 1)
(
−1
27

)n

.

Experimentally, we find further series such as

(1.12)
3
√

3
7 · 23π

(
5 + 2

√
6
)

=
∞∑

n=0

γn

(
2n + 1− 2

√
6

7

)(
49− 20

√
6

9

)n

.

In this article, in the course of proving (1.10) and (1.11), we give a general strategy
for finding such series (Theorem 2.1). A number of other series are derived experi-
mentally, and they are given in Tables 1, 2 and 3.

1.1. Comparison with earlier works. Our methods are similar to those of [7].
Our series also have the form

(1.13)
1
π

=
∑

an(An + B)tn0 ,

where A,B are constants, and t0 is the value of a Hauptmodul t for some genus
zero subgroup of SL2(R) at some point z0 in the upperhalf complex plane. Our t

plays the same role as X in [7, (2.7)], and e−2π
√

N/s of [7, (2.12)] is now replaced by
− exp(2πiz0), i.e., setting z0 of this paper to z0 = i

√
N/s+1/2, for integers N and s,

will lead towards the formulas of [7, (2.12)]. However, in this paper, z0 does not have
to have this form. In theory, z0 just has to be in an imaginary quadratic extension of
Q, though in practice, to actually be able to compute the values of t(z0), the possible
values of z0 are still restricted. The series (1.10), proved in Theorem 3.14 corresponds
to z0 = i/

√
2, and (1.11), proved in Theorem 3.15 corresponds to z0 = (i + 1)/2 (see

Lemma 3.12). In the experimental results in Tables 1, 2 and 3, we take z0 = i
√

`/6,
for various integers `.

Another difference of this work compared with [7] is that in the earlier work, the
constants A and B in (1.13) were given in terms of the derivative of a modular form
f(τ) with respect to the variable q, where q = exp(2πiτ). In this paper, the model
for our formulas is (2.17), where the derivative is now with respect to the variable t.
In this paper, the ingredients of the main result, Theorem 2.1, are a Hauptmodul t, a
modular form of weight 2, F , and an order 2 element g of SL2(R). In order to apply
the theorem to obtain explicit formulas for 1/π, we need to be able to determine the
value of t(z0), where z0 is the fixed point of g, and we need to be able to express
the weight 0 modular function R = F |(2,g)/(tF ) as an algebraic function of t, where
F |(2,g) is given by the usual action of SL2(R) on modular forms (2.1). This determines
the value of the term pg in (3.12), (4.2), (5.1). We also need to express Θt/F as an
algebraic function of t, where Θ = q d

dq . Thus, for fixed t and F , once t0 and R

are determined, in order to determine a series for 1/π corresponding to a choice of g
reduces to determining the value of t(z0) and F |(2,g)/F as an algebraic function of t,
e.g., as in Lemma 3.9. An empirical process to find pg can be obtained from [4].

In the examples in Tables 1, 2 and 3, one can observe that in most cases t0 is a
unit. This phenomenon is explained in [8, Cor. 5.2, page 87].

2. A strategy for finding series for 1/π using the theory of modular forms

2.1. Modular forms.
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Let Γ be a subgroup of SL2(R), commensurable with SL2(Z), and χ a character
of Γ of finite order, namely, a group homomorphism

χ : Γ → C∗

with finite image. A modular form of weight k, character χ for Γ ⊂ SL2(R) is a
holomorphic function F (z) on the upper half complex plane h satisfying the following
conditions:
(a) For every g =

(
a b
c d

)
∈ GL+

2 (R),

F |(k,g)(z) = χ(g)F (z),

where

(2.1) F |(k,g)(z) = det(g)k/2j(g, z)−kF (gz),

with j(g, z) = cz + d and

gz :=
az + b

cz + d
.

For the rest of this article we always assume det(g) = 1.
(b) F (z) is holomorphic at cusps.

The space of all such modular forms is denoted byMk(Γ, χ), and χ is omitted when
it is the trivial character. We writeAk(Γ, χ) to denote the space of meromorphic forms
satisfying

F |(k,g)(z) = χ(g)F (z).
See for example [12, §2.1] or [17, Chapter 2] for complete definitions.

2.2. Differentiation and the appearance of π. In general, the derivative of a
modular form is not a modular form [22]. Differentiating (2.1) with respect to z, and
assuming det(g) = 1, gives

d
dz (F |(k,g)(z)) =

1
j(g, z)k+2

d
dz F (gz)− ck

j(g, z)k+1
F (gz)

i.e., writing c = cg, fz = df
dz , and dividing through by F |k,g, we have(

F |(k,g)

)
z

= (Fz)|(k+2,g) −
cgk

j(g, z)
F |(k,g).(2.2)

This shows that if F |(0,g) = F , then Fz = (Fz)|(2,g), i.e., the derivative of a weight
k = 0 function has weight 2. We will be interested in the case k = 2.

Provided that ( 1 1
0 1 ) ∈ Γ, and χ(( 1 1

0 1 )) = 1, then a modular form F (z) ∈Mk(Γ, χ)
can be written as a function of q(z) = exp(2πiz), and we define F̃ (q) to be a function
such that F (z) = F̃ (q(z)). The condition that F be holomorphic at cusps means that
F̃ (q) has a Taylor series expansion

F̃ (q) =
∑
n≥0

anqn

for some constants an. This function is called the q-expansion of F . When q d
dq is

applied to a Taylor series in q with integral coefficients, the resulting series also has
integral coefficients. This is our motivation for setting

Θ =
1

2πi

d

dz
,
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so that ΘF (z) = q(z) d
dq F̃ (q(z)). In terms of Θ, (2.2) becomes

Θ
(
F |(k,g)

)
= (ΘF )|(k+2,g) −

cgk

j(g, z)2πi
F |(k,g).(2.3)

This equation will lead to a series for 1/π.

2.3. Genus zero subgroups of SL2(R) commensurable with SL2(Z).

We denote by h the upper-half complex plane, and h∗ = h ∪ Q ∪ {∞}. If the
Riemann surface X(Γ) := Γ \ h∗ has genus zero then there is a function t, known as
a Hauptmodul, satisfying A0(Γ) = C(t). In other words, any element of A0(Γ) can
be written as a rational function in t. In this case we say that Γ has genus 0. For
the remainder of this article we will always assume Γ has genus zero and that t is a
Hauptmodul associated with Γ.

2.4. Power series for F (t).

If ( 1 1
0 1 ) ∈ Γ and χ(( 1 1

0 1 )) = 1, so that F ∈ Mk(Γ, χ) and t ∈ A0(Γ, χ) both
have q-expansions. If we also have t(i∞) = 0, then by a series inversion, for Im(z)
sufficiently large, we have F (z) = F̂ (t(z)), where for some sequence γn,

(2.4) F̂ (t) =
∞∑

n=0

γntn.

The γn satisfy a recurrence relation, which follows from the existence of differential
equations solved in terms of modular forms [19], [21].

2.5. Conjugation of subgroups of SL2(R).
Let g, h ∈ SL2(R). Since the action defined by (2.1) is a group action, we have

F |(k,g)|(k,g−1hg) = F |(k,h)|(k,g).

If F |(k,h) = χ(h)F , then
F |(k,g)|(k,hg) = χ(h)F |(k,g),

where hg = g−1hg. This shows that if F ∈Mk(Γ, χ), then

F |(k,g) ∈Mk(g−1Γg, χg−1
),

where
χg−1

(h) = χ(ghg−1).

Hence

(2.5)
F |(k,g)

F
∈ A0(Γ ∩ Γg, χg−1

χ−1),

where Γg = g−1Γg. We define F g by

(2.6) F g :=
F |(k,g)

F
.

When Γ has genus 0, Hauptmodul t, if Γg = Γ and χg−1
= χ, then F g is a rational

function of t, since in this case (2.5) says that F g ∈ A0(Γ). Provided that Γ and Γg

are commensurable, F g(z) will be an algebraic function of t, since F g ∈ A0(H) where
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H ⊂ Γ∩Γg is the kernel of χg−1
χ−1, which is a subgroup of Γ of finite index. We will

suppose that we are in a situation where there is some algebraic function P g with

(2.7) P g(t(z)) = F g(z).

Applying Θ ◦ ln to (2.6) gives

(2.8)
ΘF g

F g
=

Θ(F |(k,g))
F |(k,g)

− ΘF

F
.

From (2.3) we have

Θ
(
F |(k,g)

)
F |(k,g)

=
(ΘF )|(k+2,g)

F |(k,g)
− cgk

2πij(g, z)
.(2.9)

Together with (2.8), this gives the following identity

(2.10)
cgk

2πij(g, z)
=
(

ΘF

F

)∣∣∣∣
(2,g)

−
(

ΘF

F
+

ΘF g

F g

)
.

Note that we have used the fact that A|(k1,g)

B|(k2,g)
= (A

B )|(k1−k2,g).

Take F̂ (t) as in (2.4). In a neighbourhood of z = i∞ where F (z) = F̂ (t(z)) we
have

(2.11)
ΘF (z)
F (z)

=
(Θt(z))
F (z)

(
d

dt
F̂

)
(t(z)).

From (2.7) we have

(2.12)
ΘF g(z)
F g(z)

= Θt(z)
d
dtP

g(t(z))
P g(t(z))

substituting (2.12) and (2.11) into (2.10) gives
(2.13)

cgk

2πij(g, z)
=
(

Θt(z)
F (z)

d
dt F̂ (t(z))

)∣∣∣∣
(2,g)

− Θt(z)
F (z)

(
d
dt F̂ (t(z)) +

d
dtP

g(t(z))
P g(t(z))

F (z)

)
.

2.6. The case k = 2.
From § 2.2, if t ∈ A0(Γ) then Θt ∈ A2(Γ), so if F ∈ M2(Γ, χ), then Θt(z)

t(z)F (z) ∈
A0(Γ, χ). Suppose that there is an algebraic function R with

(2.14)
Θt(z)

t(z)F (z)
= R(t(z)).

Substituting (2.14) and (2.4) into (2.13), we obtain(
R(t(z))

∞∑
n=0

nγnt(z)n

)∣∣∣∣∣
(2,g)

−R(t(z))
∞∑

n=0

(
n +

t(z) d
dtP

g(t(z))
P g(t(z))

)
γnt(z)n

=
cg

πij(g, z)
.(2.15)

Now let z0 be a fixed point of g and set t0 = t(z0). Then (2.15) becomes

(2.16)
−cg

πij(g, z0)
= R(t0)

∞∑
n=0

(
n

[
1− 1

j(g, z0)2

]
+

t0
d
dtP

g(t0)
P g(t0)

)
γntn0 .
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In the case that g2 = −I, we have j(g, z0) = i and so we obtain

(2.17)
cg

πR(t0)
=

∞∑
n=0

(
2n +

t0
d
dtP

g(t0)
P g(t0)

)
γntn0 .

To summarize, we have now proved the following:

Theorem 2.1. Let t(z) be a Hauptmodul for some genus 0 subgroup Γ ⊂ SL2(R)
commensurable with SL2(Z), and let F ∈M2(Γ′), where Γ′ is a finite index subgroup
of Γ. Let g ∈ SL2(R) with g2 = −I. Let z0 be a point in the upperhalf complex plane
fixed by g. Let t0 = t(z0). Suppose that t(i∞) = 0. Let F̂ (t) =

∑
n≥0 γntn be a

function such that for some M > 0, provided Im(z) > M , we have F̂ (t(z)) = F (z).
Suppose that there are algebraic functions R(t) and P g(t) so that R(t(z)) = Θt(z)

t(z)F (z)

and P g(t(z)) = F (z)|(2,g)

F (z) . Then provided Im(z0) > M , (2.17) holds.

3. Series for 1/π arising from modular forms for Γ0(6)+2

We now take Γ = Γ0(6)+2, the group generated by Γ0(6) and w2, where

Γ0(6) =
{(

a b
c d

)
∈ SL2(Z)|c ≡ 0 mod 6

}
, w2 = 1√

2

(
2 −1
6 −2

)
.

We will apply Theorem 2.1 with g =
(

0 −
√

`/6√
6/` 0

)
, F = F3, t = t3, where

(3.1)
t3(τ) =

(
η(6τ)η(3τ)
η(τ)η(2τ)

)4

= q + 4q2 + 18q3 + 52q4 + 159q5 + · · ·

F3(τ) =
(η(τ)η(2τ))3

η(6τ)η(3τ)
= 1− 3q − 3q2 + 15q3 − 3q4 − 18q5 + · · ·

Lemma 3.1. F3 ∈ M2(Γ0(6)+2, χ), where χ(g) = −1 if g ∈ Γ0(6)+2 \ Γ0(6), and
χ(g) = 1 otherwise, and t3 is a Hauptmodul for Γ0(6)+2.

Proof. Since η(τ) is a modular form of weight 1/2 for SL2(Z), η(Nτ) is a modular
form of weight 1/2 for Γ0(N), and so F3 is a modular form of weight 2 for Γ0(6). Its
transformation behavior under the action of w2 can be determined by using Dedekind’s
functional equation [3, Theorem 3.4]

(3.2) η

(
az + b

cz + d

)
= η(z)

√
−i(cz + d) · εs(a,b,c,d),

where ε = exp(2πi/24),

s(a, b, c, d) =
a + d

c
+ 12

c−1∑
r=1

r

c

(
−dr

c
−
[
−dr

c

]
− 1

2

)
and a, b, c, d are integers with ad− bc = 1, and c > 0. The transformation properties
of t3 can similarly be checked; t3 is also given in Conway and Norton’s tables [9] as a
Hauptmodul for Γ0(6)+2. �
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Lemma 3.2. If δn is a sequence such that in a neighborhood of τ = i∞,

F3(τ) =
∞∑

n=0

δntn3 (τ),

then δn satisfy a recurrence relation

(3.3) n3δn + (2n− 1)(7n2 − 7n + 3)δn−1 + 81(n− 1)3δn−2 = 0.

Proof. First note that F3t3 = s2r, where s and r are modular functions for Γ0(6)
defined by

(3.4) s(τ) =
η(3τ)6η(2τ)
η(τ)2η(6τ)3

, r(τ) =
η(τ)3η(6τ)9

η(2τ)3η(3τ)9
.

Let S(r) be a series defined by

S(r) =
∞∑

n=0

ζnrn where ζn =
n∑

j=0

(
n

j

)3

.

Then by interpreting s as a differential form on a family of elliptic curves, (as in e.g.,
[14]) near τ = i∞ we have s(τ) = S(r(τ)) (see [20, Table 2]).

The sequence ζn is classical, (see e.g., Sloane’s sequence A000172 [18] for several
references) and S(r) satisfies the differential equation

(3.5) (8r− 1)(r + 1)Θ2
rS + r(16r + 7)ΘrS + 2r(4r + 1)S = 0,

where Θr = r d
dr . We will now substitute r for r and s for S. By replacing s by r−1/2u,

we find that u = r1/2s satisfies Eu = 0 where

(3.6) E = (8r − 1)(r + 1)Θ2
r + (8r2 + 1)Θr + 1

4 (8r2 + r − 1).

Note that u2 = t3F3. Since r is a Hauptmodul for Γ0(6) (taken from [9]), our Haupt-
modul t = t3 for Γ0(6)+2 is given by a degree 2 rational function in r, namely

(3.7) t =
r

(r + 1)(1− 8r)
.

Make a substitution to write (3.6) in terms of t, which transforms E to

Θ2
t +

[
2− (r + 1)(8r − 1)(8r2 − 1)

(8r2 + 1)2

]
Θt −

(r + 1)(8r − 1)(8r2 + r − 1)
4(8r2 + 1)2

,

which can be written as

(3.8) Θ2
t +

[
2− 7t + 1

81t2 + 14t + 1

]
Θt −

6t + 1
4(81t2 + 14t + 1)

.

A substitution shows that K = t−1/2u =
√

F3 satisfies GK = 0 where

(3.9) G := Θ2
t + t(14Θ2

t + 7Θt + 3
2 ) + 81t2(Θt + 1

2 )2.

As explained in [1, Proposition 9], the symmetric square of G is

(3.10) D = Θ3
t − t(2Θt + 1)(7Θ + 7Θ + 3) + 81t2(Θ + 1)3,

and so K2 =
∑∞

n=0 δntn satisfies D(K2) = 0. By the Frobenius method, this is
equivalent to the δn satisfying the recurrence relation (3.3) [10, Chapter XVI, §16.11].

�
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Lemma 3.3. With δn as in Lemma 3.2, for n ≥ 0 we have δn = γn, where the
Almkvist-Zudilin numbers γn are given by (1.9).

Proof. By Lemma 3.2, the δn satisfy the recurrence (3.3). According to [1, (δ) p.
498], the

∑
n≥0 γntn satisfy the differential equation (3.10), which is equivalent to the

γn satisfying (3.3). In more detail, the summand of γn has the simple form

cn,j = (−3)n (n + j)!
j!4(n− 3j)!

(
−1
27

)j

,

and so Zeilberger’s telescoping sum algorithm for finding recurrences, described in [15,
Chapter 6], applies, and the book’s accompanying Maple package Ekhad, computes
the easily verifiable relation

81 (n + 1)3 cn,j + (2n + 3)
(
7n2 + 21n + 17

)
cn+1,j + (n + 2)3 cn+2,j

= G(n, j + 1)−G(n, j),

where G(n, j) = −324
(4n + 5) j4

(n + 2− 3j) (n + 1− 3j)
cn,j ,

which via Zeilberger’s method (i.e., summing over all j) leads to (after substituting
n− 2 for n) the recurrence (3.3).

A substitution of the inversion of the q-expansion of t3 into the q-expansion for F3

shows that the first few δn are 1,−3, 9,−3,−279, and so are equal to the γn, and so
all terms agree. �

Lemma 3.4. With the Almkvist-Zudilin numbers γn as in (1.9),
∑∞

n=0 γntn has
radius of convergence 1

9 .

Proof. This follows from [10, Chapter XVI, §16.2] by writing (3.10) as

(81t2 + 14t + 1)t3
d3

dt3
+ 3(162t2 + 21t + 1)t2

d2

dt2
+ (21t + 1)(27t + 1)t

d

dt
+ 3(27t + 1)t

and noting that the roots of 81t2 + 14t + 1 = 0 have absolute value 1
9 . �

Lemma 3.5. As (multivalued) functions on X(Γ0(6)), F3 and t3 have orders of
vanishing at cusps of Γ0(6), denoted by Oc, as in the following table:

cusp c ∞ 0 1/2 1/3
width 1 6 3 1
Oc(t3) 1 −1 −1 1
Oc(F3) 0 1 1 0

Proof. Quoting [11, (5)], the Fourier series of ηg(z) at the cusp a
c is

ηg(z)| 1
2

“
a b
c d

” = C exp

2πiz

24

s∑
j=1

gcd(tj , c)2

tj
rj

Ga/c(z),

where C is a constant and Ga/c(z) is holomorphic and nonvanishing at i∞. This
formula allows us to compute the leading term of the q = exp(2πiz) expansion. If
this is qd for cusp c, then we must multiply d by the cusp width to obtain the order
of vanishing.
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�

Lemma 3.6. Let F and t be defined as in (3.1). Using the notation of (2.14),

R(t) =
√

81t2 + 14t + 1(3.11)

Proof. Since F (z) ∈ M2(Γ0(6)), t(z) ∈ A0(Γ0(6)) and Θt(z) ∈ A2(Γ0(6)), we have
R(t(z)) ∈ A0(Γ0(6)), and so R(t(z)) may be expressed as a rational function in terms
of the Hauptmodul r (given by (3.4)) for Γ0(6). Since Θt(z) has exactly the same
orders of vanishing at cusps as t, the orders of vanishing of R(t(z)) at cusps are
determined by those of F , so from Lemma 3.5, R(t(z)) has poles of order one at 0
and 1

2 , and no other poles (since t is holomorphic on h, any poles of R(t(z)) are at
cusps). Thus R is a degree 2 rational function of r. By comparing q expansions, we
find that R = 1+8r2

(1+r)(1−8r) . Using expression (3.7) leads to (3.11). �

Corollary 3.7. Let ` be a positive integer. Let the Almkvist-Zudilin numbers γn be
as in (1.9), and t0 = t(i

√
`/6), where t is as in (3.1), and let pg = t0

d
dt P g(t0)

P g(t0)
with

P g as in (2.7). Then provided |t0| < 1/9,

(3.12)
1
π

√
6√

`(81t20 + 14t0 + 1)
=

∞∑
n=0

(
2n + pg

)
γntn0

Proof. This is an application of Theorem 2.1 with F and t as in (3.1) and g =(
0 −

√
`/6√

6/` 0

)
. Values of γn come from Lemma 3.3, R(t0) is given by Lemma 3.6,

and the radius of convergence is in Lemma 3.4. �

Example 3.8. Since t3 is an eta product, the value of t0 in (3.12) can be found to
many decimal places using a computer program such as PARI [13]. Now (3.12) has
the form A(t0) = B(t0) + pgC(t0), so an approximation to t0 allows us to determine
the expected value of pg. Experimentally, we can search for values of ` where t0 and
pg both appear to be roots of quadratic equations, obtaining the series in Table 1.
We will only prove the case ` = 3.
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` = 2
3(3 +

√
3)

10π
=

∞∑
n=0

(
2n + 1−

√
3

5

)
γn

(
2−

√
3

9

)n

` = 3
9

4
√

3π
=

∞∑
n=0

(
2n +

1
2

)
γn

(
1
81

)n

` = 5
3
√

6(3 + 2
√

2)
40π

=
∞∑

n=0

(
2n + 1− 9

√
2

20

)
γn

(
17− 12

√
2

9

)n

` = 7
3
√

3(5 + 2
√

6)
56π

=
∑∞

n=0

(
2n + 1− 2

√
6

7

)
γn

(
49− 20

√
6

9

)n

` = 13
3
√

3(17 + 12
√

2)
260π

=
∞∑

n=0

(
2n + 1− 36

√
2

65

)
γn

(
577− 408

√
2

9

)n

` = 17
3
√

51(33 + 8
√

17)
2380π

=
∞∑

n=0

(
2n + 1− 117

35
√

17

)
γn

(
2177− 528

√
17

9

)n

Table 1. Series for 1
π in terms of the Almkvist-Zudilin numbers

Lemma 3.9. With t and F as in (3.1), g =
(

0 −
√

1
2√

2 0

)
, and P = F3|(2,g)(τ)

F3(τ) ,

P 3 = −27t(1− P + P 2),

pg(t) :=
t d

dtP (t)
P (t)

=
P 2 − P + 1
P 2 − 2P + 3

.

Proof. We have g(z) = − 1
2z , and by Dedekind’s functional equation, (with a numerical

computation to be sure of the sign of the square root),

P (t(τ)) =
F3|(2,g)(τ)

F3(τ)
= −3

η(6τ)η(3τ)
η( τ

3 )η( 2τ
3 )

.

So, P (3τ) = −3
x(τ) , where x(τ) = η(τ)η(2τ)

η(18τ)η(9τ) . Note that x(τ)4t(3τ)t(τ) = 1. Since x is
a Hauptmodul for Γ0(18) [9], t for Γ0(6), and [Γ0(6) : Γ0(18)] = 3, it is possible to
write t as a degree 3 rational function in x, which we can determine, by comparision
of q-expansions, to be tx3 = (x2 + 3x + 9). From this we have 1 = x(τ)4t(3τ)t(τ) =
x(τ)t(3τ)(x(τ)2 +3x(τ)+9). By substituting x(τ) = − 3

P (3τ) , and replacing τ by τ/3,
this gives the first statement, from which the second follows. �

Lemma 3.10. With t = t3 we have t
(

1
6τ

)
· t(τ) · 81 = 1.

Proof. This follows from Dedekind’s functional equation for η. �

To determine t
(

i√
2

)
, we use the relationship between Γ0(6)+2 and Γ0(2)+.

Lemma 3.11. Γ0(2)+ has a Hauptmodul t2A satisfying

(3.13) t2A =
(1 + 27t)4

t
,

where t is as in (3.1).
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Proof. From [9] we have t2B = t2A + 4096/t2A, where t2B = (η(τ)/η(2τ))24. From
this we find enough terms of the q-expansion to determine the relation between t and
t2A, which has degree 4 in t, since [Γ0(2)+ : Γ0(6)+2] = 4. �
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Lemma 3.9. With t and F as in (3.1), g =
(

0 −
√

1
2√

2 0

)
, and P =

F3|(2,g)(τ)

F3(τ) ,

P 3 = −27t(1 − P + P 2),

pg(t) :=
t d

dtP (t)

P (t)
=

P 2 − P + 1

P 2 − 2P + 3
.

Proof. We have g(z) = − 1
2z , and by Dedekind’s functional equation, (with a numerical

computation to be sure of the sign of the square root),

P (t(τ)) =
F3|(2,g)(τ)

F3(τ)
= −3

η(6τ)η(3τ)

η( τ
3 )η(2τ

3 )
.

So, P (3τ) = −3
x(τ) , where x(τ) = η(τ)η(2τ)

η(18τ)η(9τ) . Note that x(τ)4t(3τ)t(τ) = 1. Since x is

a Hauptmodul for Γ0(18) [9], t for Γ0(6), and [Γ0(6) : Γ0(18)] = 3, it is possible to
write t as a degree 3 rational function in x, which we can determine, by comparision
of q-expansions, to be tx3 = (x2 + 3x + 9). From this we have 1 = x(τ)4t(3τ)t(τ) =
x(τ)t(3τ)(x(τ)2 +3x(τ)+9). By substituting x(τ) = − 3

P (3τ) , and replacing τ by τ/3,

this gives the first statement, from which the second follows. �

Lemma 3.10. With t = t3 we have t
(

1
6τ

)
· t(τ) · 81 = 1.

Proof. This follows from Dedekind’s functional equation for η. �

To determine t
(

i√
2

)
, we use the relationship between Γ0(6)+2 and Γ0(2)+.

b

b

0

(
2 −1
2 0

)

(
2 −1
2 0

)2
=
(

1 −1
2 −1

)

G
(

0 −1
2 0

)
i√
2

1+i
2

b b

1
2

0− 1
2

− 1
3+i

√

2
6

1
3 +i

√

2
6

(−2 −1
6 2

) (
2 −1
6 −2

)

( 1 1
0 1 )

Gm1G

m2G m3G

m1=
(

0 −1
2 0

)
, m2=

(
1 0
−2 1

)
, m3=

(
0 −1
2 −2

)

Figure 1. Fundamental domain G for Γ0(2)+ and domain for
Γ0(6)+2 in terms of G. Matrices I, m1, m2, m3 are coset represen-
tatives for Γ0(6)+2 in Γ0(2)+. Matrices written near elliptic points
fix these points, and identify adjacent edges. The edge identifying
matrices in each case generate the groups. Matrices are only given
up to a real constant.

Figure 1. Fundamental domain G for Γ0(2)+ and domain for
Γ0(6)+2 in terms of G. Matrices I,m1,m2,m3 are coset represen-
tatives for Γ0(6)+2 in Γ0(2)+. Matrices written near elliptic points
fix these points, and identify adjacent edges. The edge identifying
matrices in each case generate the groups. Matrices are only given
up to a real constant.

Lemma 3.12. With t as in (3.1), we have

t

(
1 + i

2

)
= − 1

27
, t

(
i√
2

)
=

1
81

and t

(
i√
18

)
= 1

Proof. Motivated by (3.13), define

fα(y) := (1 + 27y)4 − yα.

Note that 1
2 (1 + i) and i√

2
are elliptic points of Γ0(2)+, but not of the subgroup

Γ0(6)+2. This is illustrated in Figure 1 showing fundamental domains for these groups,
from which we see that the image of (1 + i)/2 in X(Γ0(2)+) has only one preimage
in X(Γ0(6)+2), whereas the image of i/

√
2 has three preimages, two being elliptic

points, the other mapping to i/
√

2 with multiplicity 2. This means that fα(y) = 0
has a quadruple root when α = t2A((1+i)/2), and a double root when α = t2A(i/

√
2).

The discriminant of fα(y) is −327α3(α− 28), and so for fα(y) = 0 to have a multiple
root, we require α = 0 or α = 28. If α = 0, we have a quadruple root, y = −1/27, so
t2A((1 + i)/2) = −1/27.

With α = 28, we have

f28(y) = (81y − 1)2(81y2 + 14y + 1),
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from which we obtain t(i/
√

2) = 1/81, as well as the fact that the values of t at the
elliptic points of Γ0(6)+2 are roots of 81t2+14t+1. The value for t(i/

√
18) = t(i

√
2/6)

now follows from Lemma 3.10. �

Lemma 3.13. With P as in Lemma 3.9, P (i/
√

2) = −1.

Proof. From Lemma 3.9, we have P 3 = −27t(1 − P + P 2), and P (3τ)4 =
(−3)4t(3τ)t(τ). For τ = i/

√
18, the latter implies P (i/

√
2)4 = 1, by Lemma 3.10.

The first relation, together with t(i/
√

2) = 1/81 (Lemma 3.12) implies (P +1)(3P 2−
2P + 1) = 0, so the only possibility is P

(
i√
2

)
= −1. �

Theorem 3.14. With the Almkvist-Zudilin numbers γn as in (1.9), we have

9
2
√

3π
=

∞∑
n=0

γn(4n + 1)
(

1
81

)n

.

Proof. We apply Corollary 3.7 with ` = 3. From Lemma 3.12, t0 = 1/81, and
from Lemma 3.13 and Lemma 3.9, pg = 1/2. Plugging these values into (3.12) and
multiplying by 2, gives the result. �

In Lemma 3.12, we saw that t((1+i)/2) = −1/27. Since m =
(

1 −1
2 −1

)
fixes (1+i)/2,

we apply Theorem 2.1 with g = m. The function R(t) is still as in Lemma 3.6, and
R
(−1

27

)
= 4

3
√

3
, and in Lemma 3.16 below we show that pg = pm = 1/2. Plugging

these values into (2.17) we obtain the following

Theorem 3.15.

(3.14)
3
√

3
π

=
∞∑

n=0

(
4n + 1

) γn

(−27)n
.

Lemma 3.16. With t and F as in (3.1), m =
(

1 −1
2 −1

)
, and P = F3|(2,m)(τ)

F3(τ) ,

P 3α3 = 81t(α2P 2 + 3αP + 9)

pm(t) :=
t d

dtP (t)
P (t)

=
α2P 2 + 3αP + 9
α3P 2 + 6αP + 27

,

where α = 3
√
−i. Moreover, pm(t((1 + i)/2)) = 1

2 .

Proof. First note that 2(mτ) = g1(2τ), 2(mτ) = g2(u), 6(mτ) = g3(2u), where
g1 =

(
1 −2
1 −1

)
, g2 =

(
3 −2
2 −1

)
and g3 =

(
3 −4
1 −1

)
are all in SL2(Z), and u = 1

3 (z + 1). From
Dedekind’s functional equation, (3.2), it follows that

F3|(2,m)(z) = 3
√
−i

(η(z)η(2z))3

η(u)η(2u)
.

Since z = 3u − 1, we have Pm(z) = η(9u)η(18u)
η(u)η(2u) = 3

√
−i

x(u) , with x as in Lemma 3.9.
Proceeding as in Lemma 3.9, using t(3u + 1) = t(3u) = (x(u)4t(u))−1, we obtain the
expression relating P and t, from which the second expression follows.
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By Lemma 3.12, t((1 + i)/2) = − 1
27 , and y = αP (−1/27) satisfies y3 + 3(y2 +

3y + 9) = (y + 3)(y2 + 9) = 0. One can check numerically that the correct root is
αP (−1/27) = −3, from which we obtain pm(−1/27) = 1/2. �

4. Series for 1/π arising from modular forms for Γ0(6)+3

Exactly the same method as used for Γ0(6)+2 and F3, t3 in Section 3 can be applied
to Γ0(6)+3 and F2, t2 (given by (1.5)), using the same g. The value of r, given by
Lemma 3.6 for the t3, F3 case, is now replaced by

(4.1) R(t) =
√

(4t + 1)(16t + 1),

(4.2)
√

6
π
√

`(4t0 + 1)(16t0 + 1)
=

∞∑
n=0

(
2n + pg

)
βntn0 ,

As explained in Example 3.8, one can now search for series for 1/π. Experimentally,
we obtain the series in Table 2. The exact details of proof should be similar to the
above methods, with the ` = 2 case being the simplest.

` = 2
4
3π

=
∞∑

n=0

(
2n +

2
3

)
βn

(
1
32

)n

` = 3
2(
√

3 +
√

2)
5π

=
∞∑

n=0

(
2n + 1−

√
6

5

)
βn

(
5− 2

√
6

8

)n

` = 4
2√
3π

=
∞∑

n=0

(
2n + 1−

√
3

3

)
βn

(
−5 + 3

√
3

32

)n

` = 5
2
√

15(3 +
√

10)
45π

=
∞∑

n=0

(
2n + 1−

√
10
5

)
βn

(
19− 6

√
10

8

)n

` = 7
28
√

3 + 18
√

7
105π

=
∞∑

n=0

(
2n + 1− 16

√
21

105

)
βn

(
55− 12

√
21

8

)n

` = 8
2
√

6 + 8
15π

=
∞∑

n=0

(
2n + 1− (4

√
6 + 1)
15

)
βn

(
−22 + 9

√
6

64

)n

` = 10
8(4

√
3 + 9)

165π
=

∞∑
n=0

(
2n + 1− (56

√
3 + 27)
165

)
βn

(
26− 15

√
3

64

)n

` = 13
2
√

39(5
√

13 + 18)
663π

=
∞∑

n=0

(
2n + 1− 48

√
13

221

)
βn

(
649− 180

√
13

8

)n

` = 17
2
√

51(35 + 6
√

34)
1683π

=
∞∑

n=0

(
2n + 1− 26

√
34

187

)
βn

(
(35− 6

√
34)2

8

)n

5. Series for 1/π arising from modular forms for Γ0(6)+6

For F1 and t1 as in (1.2), we apply Theorem 2.1 with

g =
(

0 −
√

`/6√
6/` 0

)
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Now R is given by R(t) =
√

t2 − 34t + 1, and we have

(5.1)
√

6
π
√

`
√

t20 − 34t0 + 1
=

∞∑
n=0

(
2n + pg

)
αntn0 ,

where t0 = t1(i/
√

6`), and αn are the Apéry numbers, defined by (1.1). Experimen-
tally, we obtain series as in Table 3. For ` = 5 we recover Sato’s example (1.4) (cf.
[16]).

` = 2
9 + 5

√
3

6π
=

∞∑
n=0

(
2n + 1− 1√

3

)
αn(2−

√
3)3n

` = 3
√

2(5 + 2
√

6)
8π

=
∞∑

n=0

(
2n + 1−

√
3

2
√

2

)
αn(

√
3−

√
2)4n

` = 5
9 + 4

√
5

4
√

15π
=

∞∑
n=0

(
2n + 1− 3

√
5

10

)
αn(2−

√
5)4n

` = 7
15 + 4

√
14

12
√

7π
=

∞∑
n=0

(
2n + 1− 4

√
14

21

)
αn(15− 4

√
14)2n

` = 13
√

3(51 + 10
√

26)
72
√

13π
=

∞∑
n=0

(
2n + 1− 2

√
26

13

)
αn(

√
26− 5)4n

` = 17
√

6(
√

2 + 1)6

816π
=

∞∑
n=0

(
2n + 1− 39

√
2

68

)
αn(

√
2− 1)12n
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[18] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2006, Published online at

www.research.att.com/∼njas/sequences/.
[19] P. Stiller. Special values of Dirichlet series, monodromy, and the periods of automorphic forms,

Mem. Amer. Math. Soc. 49 (1984), iv+116.
[20] H. Verrill. Some congruences related to modular forms, MPIM Preprint Series, MPIM1999-26,

1999. available from http://www.mpim-bonn.mpg.de/Research/MPIM+Preprint+Series/.
[21] Y.F. Yang. On differential equations satisfied by modular forms, Math. Z. 246 (2004), 1–19.

[22] D. Zagier. Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104

(1994), 57–75. K. G. Ramanathan memorial issue.

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Sin-

gapore 117543

E-mail address: matchh@nus.edu.sg

Department of Mathematics, Louisiana State University, Baton Rouge 70803, Louisiana

E-mail address: verrill@math.lsu.edu


