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1. Introduction

Throughout this paper we will take q = e2"i7, where Im T > 0. Let G(z) be defined as

00 n%_n
_ q z
G(Z)_H;(l—q)(l—qz)'-«(l —qm’ (L)

Then the celebrated Rogers-Ramanujan identities are given as follows [2, Chapter 7], [13, p. 290]:

c=(x:¢°) (@4d°), and G@=(%:d), (@), (12)
where
(@ Qoo == [(1 —ag™).
n=0

The Rogers-Ramanujan continued fraction R(t) is defined by

1/5
q
q

R(7) = 1

(13)
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With the help of the Rogers—Ramanujan identities, both Rogers [22] and Ramanujan [20, Vol. I, Chap-
ter 16, Section 15], [6, p. 30] prove that

sG@ _ s (@ 0°)oo(q*; 4°)oo

R —al/ — 7 Joold 1 Joo
©=9"%0) (@)oo (1 oo

(1.4)

In his first two letters to G.H. Hardy [19, pp. xxvii, xxviii], [7, pp. 21-30, 53-62], S. Ramanujan made
several claims about R(7). In particular, in his first letter, he asserted that

[5445 V5+1
R(G) = +2‘/——f2+. (1.5)

Moreover, in his notebooks [20] and “lost notebook” [21], Ramanujan recorded without proofs many
results about R(t), and many studies on these results have appeared, see for examples, [3,4,8,9,18,24,
25].

In this paper, we establish several new identities associated with the Rogers-Ramanujan continued
fraction R(7). Using two elementary trigonometric sums and the Jacobi theta function 61, we will
derive the following theorem:

Theorem 1. Let |q| < 1, ¢ = —‘/— nd g = —‘/— . Then
o0 oo
1 5125
l_[ . l‘[ _ g2 n(257) R(57). (16)
Hatagregn  Lay et g n(57)

B

] S 1 [(sEsn
nl:[l (1 +aq” +g2) (xL[l 1+ Bq" +q2") =4q n(5DORGT)’ (1.7)
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where

n(t) =q"*4(q; Qo

Identities (1.6) and (1.7) appear to be new. We observe that by replacing T by 7/5 in (1.6) and (1.7)
and solving the resulting equations, we immediately deduce the following identities of S. Ramanujan
[21, p. 206].

Corollary 2. Suppose |q| < 1. Let o, B be given as in Theorem 1. Then

OO—_ 1/60 77(57)( 1 )
l_[ (1 + agq"/5 + q21/5) =4q () R(T) ayR(T) ), (1.8)

n=1

= 160 '7(5T)< )
l_[ a+ ﬂqn/S 25) =4 o \\ k() —BVR(D) (1.9)

n=1

Corollary 2 was first discussed in a paper by K.G. Ramanathan [18, p. 220, (46) and (47)]. To prove
Corollary 2, he stated without proofs the two identities [18, (50)]

2@ —aq'Ph@) =1 —¢"°) (1 + B4 +¢**). (1.10)
n=1

2@ —Bq"Ph@=[](1 - ") (1 +ag" +¢*"), (111)
n=1

where

ol 00
h= Y (1O 2 and g@)= Y (~1)gHm2,

n=—00 n=—00

The proofs of (1.10) and (1.11) were subsequently given by Berndt, Huang, Sohn, and Son [9] (see also
[5, p. 21]). Our proofs of Corollary 2, which relies on (1.6) and (1.7), are different from those given
in [9].

In [17], the third author established the following Eisenstein series identity involving R(t) by
using (1.6).

Theorem 3. Let |q| < 1. Then

i (qn _ q2n _ q3n + q4n) i (qn _ q2n _ q3n 4 q4n)
s - — 45

n=1 1 q " n=1 1 q "

n=2 (mod 5) n=3 (mod 5)

R(5t)n(257)
= 25 _— 112
n(t)n(257), | GT) (112)
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It turns out that (1.12) has the following companion:

Theorem 4. Let |q| < 1. Then

i (qn _ q2n _ q3n + q4n) B i (qn _ q2n _ q3n + q4n)
= 1— q5n = 1— q5n
n=1 (mod 5) n=4 (mod 5)

_ [ n@57)
=n(T)n(257) TGORGT) (113)

The rest of this paper is organized as follows. In Section 2, we will prove Theorem 1. Section 3 is
devoted to the proof of Theorem 4.

2. The Jacobi theta function ; and the proof of Theorem 1

The Jacobi triple product identity [10, p. 10], [13, pp. 282-283] is perhaps the most important
identity in the theory of elliptic theta functions, which states that

(@ Doo(Z Doo(@/2 Do = Y (D" V22", z0. 21

n=—o00

The Jacobi triple product identity was established by Jacobi in his famous Fundamenta Nova [14], but,
in fact, was first proved by Gauss [12]. There are now several elementary proofs of (2.1) which do not
use elliptic functions, see for examples, [1,11,15].

If we multiply both sides of (2.1) with z~1/2, then we can find that

[e.¢]
(z77 = 2'2) (@ 9o 42 Do @/2: Do = Y (=1)"q" V2212,

n=—oo

Replacing z by e?Z and e~2Z respectively in the equation above, we conclude that

o0
2i(sinz)(q; q)oo(QEZ'Z; q)oo(qe_zu; q)oo __ Z (_1)nqn(n—1)/2€(2n—1)zz’

n=—00

o0
ZI(SIHZ)(q, q)oo(quIZ; q)oo(qelel; q)oo — Z (_1)nqn(nfl)/Zef(anl)lz.

n=—oo

Making the index change n — n + 1 in the right-hand sides of the two equations above, adding the
two resulting equations together, we arrive at

e ¢}
2(sin2)(q: D)oo (96771 9) (g€ 7271 0) = D (= D"Q" "V sin@n + 1)z
n=—o0o

[ee]
=2 Z(—l)“q"m“)/z sin(2n + 1)z. (2.2)
n=0
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The well-known Jacobi theta function 6; is defined as follows

o0 o0
01(z|t) =2 Z(—l)"q(2"+1>2/8 sin@n+ 1)z =2q"8 Y "(—=1)"q"™*V/2sin(2n + 1)z.

n=0 n=0
Combining (2.2) and (2.3), we immediately find the infinite product representation of 0;:

—2iz.

61 (z|T) =298 (sin2)(q: D (€% q) . (q€ 51 q) -

Let z= % and z= ZT” respectively in (2.4). Then we have

b . T 27 —2mi
01<§‘r> =2q”8(sm§>(q;q)oo(qe25 1q)(ge 1) .

and

2 . 2w ami —4mi
91<?’r> :2q1/8(51n ?>(q;q)oo(qe 5:q) (qe75 5q).
Multiplying (2.5) and (2.6) together, and using the elementary identities

T . 27 /5

sin — sin — = —
5 5 4

and
(1 fxe%)(l - xe’%)(l - xe%)(l - xe’%) =1-x
in the resulting equation, and simplifying, we deduce the following useful identity:
0 <%’r>91 (z?n‘T) — V() (1),
We now give a proof of Theorem 1.

Proof. It is easily seen that we may rewrite (2.5) and (2.6) as follows

[o¢]
T 112 ¢in 2
6 <§“L’> =2q / (SIH §>n(f)ﬂ(l +O[qn +q ”)s

and
2T 2 ad
el _9a1/12 [ i 220 n 2n
91( s t)_2q (sm - )n(t)nlj[](l—i-ﬂq +q"),
where
2 1—-4/5 4T T 1 5
o =—-2c05s— = V5 and B=-2cos— =2cos— = +\/_.
5 2 5 5 2

(2.3)

(2.5)

(2.6)

(2.7)

(2.8)
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It follows that

o0 g
- 1 6:1(5l7)
[0 +aq"+¢") =g/ — 2 (2.10)
et n(r) 2sinz
and
> 1 63D
14+ n 4 2y _ 4—1/12 5 . 211
E( pa+a%) = n(t) 2sin X (211)
Multiplying the two equations above together and then using (2.7), we deduce that
= 5
1+ aq" + @) (1 + g’ +q?) =g /0 1CD. (2.12)
n()

n=1
We observe that by multiplying (1.8) and (1.9) and using (2.12), we obtain the following identity of

Ramanujan (see [6, pp. 265-267], [16]):

1 n(z)
—— —1-R(T)= —>—. (213)
R(7) n(571)
If we subtract (2.11) from (2.10), then we find that
oo oo big 2
_ 1 (6i(zlt) 6i(5 D)
1 n 2n\ _ 1 n 2ny _ 4—1/12 5 _ 5 ) 214
nl:[]( +ag" +¢*") ﬂ( ) = (ST e (214)
Using (2.3), we simplify the right-hand side of the equation above as
1 & 2
q—]/lz_ Z(_])HA(n)q(ZTH-]) /8, (2'15)
n( =
where
sinn+1)E  sin@n+ 1)
An) = (.n)S_ (,2)5. (2.16)
sin g sin <

Direct computations show that

AGn+1)=+5,  AGI+3)=-+5  AGN) =AGn+2)=AGn+4) =0.

Hence,

oo o0
S DT AmAY = /5 3 (1118,
n=0 n=-—00
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and the Jacobi triple product identity tells us that

'}
Z ( 1)nq(10n—3)2/8 — q9/8(q5; qZS)OO(qZO; qZS)OO(qZS’ qZS)OO.

n=—oo

Thus, we have
s 2
Z(—l)”A(n)q(Z”H) /8 — _\/5¢%/8 (qs; qZS)OO(qZO; qZS)OO(qzs; qzs)oo' (2.17)
n=0
Combining (2.14)-(2.17), we conclude that
n(257)
( zs)oo(qzo; qzs)oo' (218)

(1+aq"+¢*) - [[(1+B¢" +¢*") =5 )
n=1

o0
n=1
Dividing both sides of the equation above by []n2 (1 4+ ag" + > (1 + Bq" + q*"), we deduce that

_l_[(]+/3qn _|_an)*1
n=1
_ /51@50) (@5 4*)(0*°; 47)

n@) e (1 +oaq*+¢*)(A + Bg" + g2

o0
l_[(l +ag + an)*l

n=1

Substituting (2.12) into the right-hand side of the equation above, we find that

= 1 = 1
1_[(1 +aq" +q2n)* _ l—[(l + Bq" +q2n)*
n=1 n=1

1/6 N1(25T)
=50 G @

517(25r) R(5T).
n(57)

_q1/12
which is (1.6).

Next, we prove (1.7). Multiplying (2.10) by cos ZT” and (2.11) by cos = and then adding the two
resulting equations together, we find that

27 0 o T
2c05—H(1+oeq +q )+2cos§l_[(1+,3q +q°")
n=1 n=1
1 [cosZE cosT /om
=q71/127( -5 ( ) ) 231 91(7 r)) (2.19)
n(t) \ sink = 5 n=f 5
Using (2.3), we rewrite (2.19)
(2.20)

q71/12n( )Z( 1)"B(n)q(2”“)2/8
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where
cos 2L i cosZ 2
B(n)=2———2-sin2n+1)— 42— 5 sin(2n+1)—. (2.21)
sin 3 5 sin ?” 5

Direct computations show that

B(5n)=+/5, B(Gn+4)=-+5 B(Gn+1)=B(GBn+2)=B(Gn+3)=0.

Thus, by (2.1), we find that

o0 o0
Z(_l)nB(n)qanﬂ)Hs:ﬁ Z (_1)nq(10n+1)2/8

n=0 n=-—o00

_ ﬁql/S(qlo; qzs)oo(qw; qzs)oo(qzs; qzs)oo.
It follows that

o0 oo

2 2 /4 2
2COS?H(1+thn+q ")+2cos§l_[(l + 84" +q°")

n=1 n=1

25
—V5q°! n;(r;) (a":0%) .0 (0" ¢%) . (222)

Proceeding through the same steps as in the proof of (1.6), we divide both sides of the equation above
by

M (57)
[0 +ea" +a2) (1 +pa" +¢*) =g /o T2,
1" n(@)

and arrive at (1.7). Thus we complete the proof of Theorem 1. O
3. Anew Eisenstein series identity associated with R(7)

In this section, we will prove Theorem 4.

Proof of Theorem 4. We first recall the identity [17, p. 296, Eq. (5.8)]:

n?(1)61(2|57)61 (22|57)

i (qn _ q2n _ q3n 4 q4n)

sin2nz = (3.1)
ot 1—¢ 2n(5T)61 (2]7)
Taking z= % and then multiplying both sides by 28 =1+ V5 =2cos T we find that
o0 n 2n 3n 4n 0
— — 2 2 5
@0 =970 G 27 G 207 S 12 0y asy | AT )
b 1—g" 5 5 4 nzll—i—aq“—l—q“

In the same way by taking z = ZT” in (3.1) and then multiplying both sides by

2w
2a:1—\/§:—2cos?,
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we obtain

00 n 2n 3n 4n 0
- - 4 4 5
—Z @ -q qs +a7) sin il sin il £q’l/lzn(‘l:)r](ZS‘l:) 1_[ %.
=1 l—qn 5 5 4 n:l‘l+’3ql‘l+qn
Subtracting (3.3) from (3.2), we deduce that
et n 2n 3n 4n
—¢"— "+
Z(q q1_ q5n q )S(n)
n=1 d
ﬁ ; %) ﬂ e} o
=gV 2y(0)n257 - ;
g 1 e ,E 1+aq"+q2 nl:[] 1+ Bq" +
where
. 2w . 2nm . 4m | 4nmw
S(n) = sin — sin —— + sin — sin —.
5 5 5 5
Substituting (1.7) into the right-hand side of (3.4), we deduce that
el 2n 3n 4n
@" —q”" —q¢" +q") 5 (257)
3 — S(m) = 2n(@)n(257), | —ael
n=1 -4 4 n(T)R(GT)
By direct computation, we have
.2 T .2 2w 5
S(bn)=SGn+2)=SGn+3)=0, S(5n+1) =sin = + sin = = 7

SGn+4) = —sin? % —sin? 2% = _3.
5 5 - 1

Combining (3.6) and (3.7), we complete the proof of (1.13). O

4. Some concluding remarks
4.1. Let G denotes the multiplicative group
(Z/252)* := {[kl2s | ged(k,5) =1, 1<k < 25}.
Note that G is cyclic and generated by [2]25. Let X be defined by
X ([2]25) =i
and extend it to a Dirichlet character on Z by

X ([nlps) if ged(n,5) =1,
0, otherwise.

-]

(3.6)

(3.7)
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Then (1.12) and (1.13) can be rewritten as

=g =g+ n(mn*257) 1.
;X(n) o =G (R(ST)JH,/R(ST)).

Interpreting identities such as (1.12) and (1.13) with the help of group characters will certainly assist
us in understanding their existence.

4.2. If we set z= % in (3.1) and use 6; (% | T) = +/37(37) in the resulting equation, we find that

(1) (@ —¢*" —¢"+q¢*)  n*(r)n*(1517)
(3 = . (41)
3 1—gn nG3t)n(51)

n=1

We may rewrite the left-hand side of (4.1) as

¢

>

n=1m

e

Il
-

Interchanging summation, we deduce that

i(g)q“ — ¢ n*(0n*(151) (43)
5/1—¢"  n@BrnGT) '

n=1
The expression (4.2) is an example of g-series associated with genus characters of the imaginary
quadratic field Q(+/—15). Series associated with genus characters are recently used by P.C. Toh [23] to

derive explicit representations of certain theta series associated with positive definite quadratic forms
in terms of Lambert series. For example, using the ideas in [23], one can show that

1 m?4-mn+4n? m?4-3mn nz_oooom Y mn
5(2‘1 +mn+4 _an +3mn+2 )_ZZ<3>(5>q . (4.4)

m,nez m,nez n=1 m=1

Our identity (4.1) shows that indeed the left-hand side of (4.4) has a product representation, namely,

1( Z qszrrrm+4n2 _ Z q3m2+3mn+2n2) _ M
2 m,neZ m,neZ n3o)n(s7)

4.3. In this subsection, we present a different proof of Theorem 4 using (2.13) and the identity

S n

@24/02). 8.0 _ 5~ 2 g <), (45)
@.q/0,2,q4/z, Qo L= 1 —aq"
where (a1, az, ..., 005 Qoo := (a1; @)oo (a2; @)oo * - - (An; @)oo Theorem 3 can also be proved similarly.

The identity (4.5) is often referred to as a corollary of Ramanujan’s 1y summation formula
[6, Entry 17 p. 32] (and can be obtained by setting b =agq in [6, Entry 17 p. 32]).
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Second proof of Theorem 4. Noting that

e (qn _ an _ q3n) o (_q2n _ q3n + q4n)
n=1 (mod 5) n=4 (mod 5)
i (qn _ q2n _ q3n) i (_q—Zn _ q—3n + q—4n)
= T =5
n= 1 - q " n=—oo 1 - q "
n=1 (mod 5) n=1 (mod 5)
i an-H o0 q10n+2 o q15n+3
= — 25045 — 25045 — 25115
n=—oo 1 q " n=—oo 1 q " n=-—oo 1 q "
_y @"°,4",4%,¢”:0®)x 2 @"°,9",4%,¢”:¢%)x & @.9%.0°.4%;,¢%)
(@, q%%; q%)2, (@°,q'°,¢9%,¢%0; ¢*) @°.9'°,¢%,q%0;¢%)
zq(qm,qls,qzs,qzs;qzs)m g @ )% e @ 0%
@, q%%; ¢*)2, @.9%°; ¢%)0 @, 9%; ¢%°) oo

S i - [ SR
@°,9%°:4%)o0 | R(57)

n5t) ()
n(5T)R(57) n(257)

n(5T)R(GT)’

where we applied identity (4.5) three times in the third equality and (2.13) in the penultimate equal-
ity. O

Acknowledgment
The authors would like to thank the referee for his invaluable suggestions.

References

[1] G.E. Andrews, A simple proof of Jacobi’s triple product identity, Proc. Amer. Math. Soc. 16 (1965) 333-334.

[2] G.E. Andrews, The Theory of Partitions, Reprint of the 1976 original, Cambridge Math. Lib., Cambridge University Press,
Cambridge, 1998.

[3] G.E. Andrews, Ramanujan’s “lost” notebook, III, The Rogers-Ramanujan continued fraction, Adv. Math. 41 (1981) 186-208.

[4] G.E. Andrews, B.C. Berndt, L. Jacobsen, R.L. Lamphere, The continued fractions found in the unorganized portions of Ra-
manujan’s notebooks, Mem. Amer. Math. Soc. 99 (477) (1992).

[5] G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer-Verlag, New York, 2005.

[6] B.C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

[7] B.C. Berndt, R.A. Rankin, Ramanujan: Letters and Commentary, Amer. Math. Soc., Providence, RI, 1995, London Math. Soc.,
London, 1995.

[8] B.C. Berndt, H.H. Chan, L.-C. Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, J. Reine Angew.
Math. 480 (1996) 141-159.



H.H. Chan et al. / Journal of Number Theory 129 (2009) 1786-1797 1797

[9] B.C. Berndt, S.-S. Huang, ]J. Sohn, S.H. Son, Some theorems on the Rogers-Ramanujan continued fraction in Ramanujan’s
lost notebook, Trans. Amer. Math. Soc. 352 (2000) 2157-2177.

[10] B.C. Berndt, Number Theory in the Spirit of Ramanujan, Stud. Math. Libr,, vol. 34, Amer. Math. Soc., Providence, RI, 2006.

[11] J.A. Ewell, An easy proof of the triple-product identity, Amer. Math. Monthly 88 (1981) 270-272.

[12] C.E. Gauss, Hundert Theoreme Uber die neuen Transscendenten, in: Werke, 3, in: K. Gesell. Wiss. Géttingen, 1876, pp. 461-
469.

[13] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1980.

[14] C.GJ. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Borntrdger, Regiomonti, 1829.

[15] S. Kongsiriwong, Z.-G. Liu, Uniform proofs of g-series-product identities, Results Math. 44 (2003) 312-339.

[16] Z.-G. Liu, Some theta function identities associated with the modular equations of degree 5, Integers 1 (2001), A#03, 14 pp.

[17] Z.-G. Liu, A theta function identity and the Eisenstein series on I(5), J. Ramanujan Math. Soc. 22 (2007) 283-298.

[18] K.G. Ramanathan, On Ramanujan’s continued fraction, Acta Arith. 43 (1984) 209-226.

[19] S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927; reprinted by Chelsea, New York, 1960;
reprinted by Amer. Math. Soc., Providence, RI, 2000.

[20] S. Ramanujan, Notebooks (2 Volumes), Tata Institute of Fundamental Research, Bombay, 1957.

[21] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

[22] LJ. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894) 318-343.

[23] P.C. Toh, Representations of certain binary quadratic forms as Lambert series, preprint.

[24] G.N. Watson, Theorems stated by Ramanujan (VII): Theorems on a continued fraction, J. London Math. Soc. 4 (1929) 39-48.

[25] G.N. Watson, Theorems stated by Ramanujan (IX): Theorems on a continued fraction, J. London Math. Soc. 4 (1929) 231-

237.



	The Rogers-Ramanujan continued fraction and a new Eisenstein series identity
	Introduction
	The Jacobi theta function theta1 and the proof of Theorem 1
	A new Eisenstein series identity associated with R(tau)
	Some concluding remarks
	Acknowledgment
	References


