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Ramanujan’s Series for 1/π: A Survey∗

Nayandeep Deka Baruah, Bruce C. Berndt, and Heng Huat Chan

In Memory of V. Ramaswamy Aiyer,
Founder of the Indian Mathematical Society in 1907

When we pause to reflect on Ramanujan’s life, we see that there were certain
events that seemingly were necessary in order that Ramanujan and his mathemat-
ics be brought to posterity. One of these was V. Ramaswamy Aiyer’s founding
of the Indian Mathematical Society on 4 April 1907, for had he not launched the
Indian Mathematical Society, then the next necessary episode, namely, Ramanu-
jan’s meeting with Ramaswamy Aiyer at his office in Tirtukkoilur in 1910, would
also have not taken place. Ramanujan had carried with him one of his notebooks,
and Ramaswamy Aiyer not only recognized the creative spirit that produced its
contents, but he also had the wisdom to contact others, such as R. Ramachandra
Rao, in order to bring Ramanujan’s mathematics to others for appreciation and
support. The large mathematical community that has thrived on Ramanujan’s
discoveries for nearly a century owes a huge debt to V. Ramaswamy Aiyer.

1. THE BEGINNING. Toward the end of the first paper [57], [58, p. 36] that
Ramanujan published in England, at the beginning of Section 13, he writes, “I shall
conclude this paper by giving a few series for 1/π .” (In fact, Ramanujan concluded
his paper a couple of pages later with another topic: formulas and approximations for
the perimeter of an ellipse.) After sketching his ideas, which we examine in detail
in Sections 3 and 9, Ramanujan records three series representations for 1/π . As is
customary, set

(a)0 := 1, (a)n := a(a + 1) · · · (a + n − 1), n ≥ 1.

Let

An := ( 1
2)

3
n

n!3 , n ≥ 0. (1.1)

Theorem 1.1. If An is defined by (1.1), then

4

π
=

∞∑
n=0

(6n + 1)An
1

4n
, (1.2)

16

π
=

∞∑
n=0

(42n + 5)An
1

26n
, (1.3)

32

π
=

∞∑
n=0

(
(42

√
5 + 30)n + 5

√
5 − 1

)
An

1

26n

(√
5 − 1

2

)8n

. (1.4)

∗This paper was originally solicited by the Editor of Mathematics Student to commemorate the founding of
the Indian Mathematical Society in its centennial year. Mathematics Student is one of the two official journals
published by the Indian Mathematical Society, with the other being the Journal of the Indian Mathematical
Society. The authors thank the Editor of Mathematics Student for permission to reprint the article in this
MONTHLY with minor changes from the original.
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The first two formulas, (1.2) and (1.3), appeared in the Walt Disney film, High
School Musical, starring Vanessa Anne Hudgens, who plays an exceptionally bright
high school student named Gabriella Montez. Gabriella points out to her teacher that
she had incorrectly written the left-hand side of (1.3) as 8/π instead of 16/π on the
blackboard. After first claiming that Gabriella is wrong, her teacher checks (possibly
Ramanujan’s Collected Papers?) and admits that Gabriella is correct. Formula (1.2)
was correctly recorded on the blackboard.

After offering the three formulas for 1/π given above, at the beginning of Section
14 [57], [58, p. 37], Ramanujan claims, “There are corresponding theories in which q
is replaced by one or other of the functions”

qr := qr (x) := exp

(
−π csc(π/r)

2 F1

(
1
r ,

r−1
r ; 1; 1 − x

)
2 F1

(
1
r ,

r−1
r ; 1; x

)
)

, (1.5)

where r = 3, 4, or 6, and where 2 F1 denotes one of the hypergeometric functions
p Fp−1, p ≥ 1, which are defined by

p Fp−1

(
a1, . . . , ap; b1, . . . , bp−1; x

) :=
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bp−1)n

xn

n! , |x | < 1.

(The meaning of q is explained in Section 3.) Ramanujan then offers 14 further series
representations for 1/π . Of these, 10 belong to the quartic theory, i.e., for r = 4; 2
belong to the cubic theory, i.e., for r = 3; and 2 belong to the sextic theory, i.e., for
r = 6. Ramanujan never returned to the “corresponding theories” in his published
papers, but six pages in his second notebook [59] are devoted to developing these
theories, with all of the results on these six pages being proved in a paper [16] by
Berndt, S. Bhargava, and F. G. Garvan. That the classical hypergeometric function
2 F1(

1
2 ,

1
2 ; 1; x) in the classical theory of elliptic functions could be replaced by one of

the three hypergeometric functions above and concomitant theories developed is one of
the many incredibly ingenious and useful ideas bequeathed to us by Ramanujan. The
development of these theories is far from easy and is an active area of contemporary
research.

All 17 series for 1/π were discovered by Ramanujan in India before he arrived
in England, for they can be found in his notebooks [59], which were written prior to
Ramanujan’s departure for England. In particular, (1.2), (1.3), and (1.4) can be found
on page 355 in his second notebook and the remaining 14 series are found in his third
notebook [59, p. 378]; see also [14, pp. 352–354]. It is interesting that (1.2), (1.3),
and (1.4) are also located on a page published with Ramanujan’s lost notebook [60,
p. 370]; see also [3, Chapter 15].

2. THE MAIN ACTORS FOLLOWING IN THE FOOTSTEPS OF RAMANU-
JAN. Fourteen years after the publication of [57], the first mathematician to address
Ramanujan’s formulas was Sarvadaman Chowla [37], [38], [39, pp. 87–91, 116–119],
who gave the first published proof of a general series representation for 1/π and used
it to derive (1.2) of Ramanujan’s series for 1/π [57, Eq. (28)]. We briefly discuss
Chowla’s ideas in Section 4.

Ramanujan’s series were then forgotten by the mathematical community until
November, 1985, when R. William Gosper, Jr. used one of Ramanujan’s series, namely,

9801

π
√

8
=

∞∑
n=0

(4n)! (1103 + 26390n)

(n!)4 3964n
, (2.1)
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to calculate 17,526,100 digits of π , which at that time was a world record. There was
only one problem with his calculation—(2.1) had not yet been proved. However, a
comparison of Gosper’s calculation of the digits of π with the previous world record
held by Y. Kanada made it extremely unlikely that (2.1) was incorrect.

In 1987, Jonathan and Peter Borwein [23] succeeded in proving all 17 of Ramanu-
jan’s series for 1/π . In a subsequent series of papers [24], [25], [29], they established
several further series for 1/π , with one of their series [29] yielding roughly fifty dig-
its of π per term. The Borweins were also keen on calculating the digits of π , and
accounts of their work can be found in [30], [28], and [26].

At about the same time as the Borweins were devising their proofs, David and Gre-
gory Chudnovsky [40] also derived series representations for 1/π and, in particular,
used their series

1

π
= 12

∞∑
n=0

(−1)n (6n)!
(n!)3 (3n)!

13591409 + 545140134n

(640320)3n+3/2
(2.2)

to calculate a world record 2,260,331,336 digits of π . The series (2.2) yields 14 digits
of π per term. A popular account of the Chudnovskys’ calculations can be found in a
paper written for The New Yorker [56].

The third author of the present paper and his coauthors (Berndt, S. H. Chan, A. Gee,
W.-C. Liaw, Z.-G. Liu, V. Tan, and H. Verrill) in a series of papers [19], [31], [33], [34],
[36] extended the ideas of the Borweins, in particular, without using Clausen’s formula
in [31] and [36], and derived general hypergeometric-like formulas for 1/π . We devote
Section 8 of our survey to discussing some of their results.

Stimulated by the work and suggestions of the third author, the first two authors
[9], [7] systematically returned to Ramanujan’s development in [57] and employed
his ideas in order not only to prove most of Ramanujan’s original representations for
1/π but also to establish a plethora of new such identities as well. In another paper
[8], motivated by the work of Jesús Guillera [48]–[53], who both experimentally and
rigorously discovered many new series for both 1/π and 1/π2, the first two authors
continued to follow Ramanujan’s ideas and devised series representations for 1/π2.

In the survey which follows, we delineate the main ideas in Sections 3, 6, 7, 8,
and 9, where the ideas of Ramanujan, the Borwein brothers, the Chudnovsky brothers,
Chan and his coauthors, and the present authors, respectively, are discussed.

3. RAMANUJAN’S IDEAS. To describe Ramanujan’s ideas, we need several defi-
nitions from the classical theory of elliptic functions, which, in fact, we use throughout
the paper. The complete elliptic integral of the first kind is defined by

K := K (k) :=
∫ π/2

0

dϕ√
1 − k2 sin2 ϕ

, (3.1)

where k, 0 < k < 1, denotes the modulus. Furthermore, K ′ := K (k ′), where k ′ :=√
1 − k2 is the complementary modulus. The complete elliptic integral of the second

kind is defined by

E := E(k) :=
∫ π/2

0

√
1 − k2 sin2 ϕ dϕ. (3.2)
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If q = exp(−π K ′/K ), then one of the central theorems in the theory of elliptic
functions asserts that [13, p. 101, Entry 6]

ϕ2(q) = 2

π
K (k) = 2 F1(

1
2 ,

1
2 ; 1; k2), (3.3)

where ϕ(q) in Ramanujan’s notation (or ϑ3(q) in the classical notation) denotes the
classical theta function defined by

ϕ(q) =
∞∑

j=−∞
q j2

. (3.4)

Note that, in the notation (1.5), q = q2 and x = k2. The second equality in (3.3) fol-
lows from expanding the integrand in a binomial series and integrating termwise. Con-
versely, it is also valuable to regard k as a function of q, and so we write k = k(q).

Let K , K ′, L , and L ′ denote complete elliptic integrals of the first kind associated
with the moduli k, k ′, �, and �′, respectively. Suppose that, for some positive integer n,

n
K ′

K
= L ′

L
. (3.5)

A modular equation of degree n is an equation involving k and � that is induced by
(3.5). Modular equations are always algebraic equations. An example of a modular
equation of degree 7 may be found later in (9.18). Alternatively, by (3.3), (3.5) can
be expressed in terms of hypergeometric functions. We often say that � has degree n
over k. Derivations of modular equations ultimately rest on (3.3). If we set K ′/K =√

n, so that q = e−π
√

n , then the corresponding value of k, which is denoted by kn :=
k(e−π

√
n), is called the singular modulus. The multiplier m = m(q) is defined by

m := m(q) := 2 F1

(
1
2 ,

1
2 ; 1; k2(q)

)
2 F1

(
1
2 ,

1
2 ; 1; �2(q)

) . (3.6)

We note here that, by (3.3), (3.6) and [13, Entry 3, p. 98; Entry 25(vii), p. 40], m(q)

and k2(q) can be represented by

m(q) = ϕ2(q)

ϕ2(qn)
and k2(q) = 16q

ψ4(q2)

ϕ4(q)
,

respectively, where ϕ(q) is defined by (3.4) and

ψ(q) =
∞∑
j=0

q j ( j+1)/2.

Thus, modular equations can also be written as theta function identities.
Ramanujan begins Section 13 of [57] with a special case of Clausen’s formula [23,

p. 178, Proposition 5.6(b)],

4K 2

π2
=

∞∑
j=0

( 1
2 )

3
j

( j !)3
(2kk ′)2 j = 3 F2

(
1
2 ,

1
2 ,

1
2 ; 1, 1; (2kk ′)2

)
, (3.7)
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which can be found as Entry 13 of Chapter 11 in his second notebook [59] [12, p. 58].
Except for economizing notation, we now quote Ramanujan. “Hence we have

q1/3(q2; q2)4
∞ =

(
1

4
kk ′
)2/3 ∞∑

j=0

( 1
2 )

3
j

( j !)3
(2kk ′)2 j , (3.8)

where

(a; q)∞ := (1 − a)(1 − aq)(1 − aq2) · · · . (3.9)

Logarithmically differentiating both sides in (3.8) with respect to k, we can easily shew
that

1 − 24
∞∑
j=1

jq2 j

1 − q2 j
= (1 − 2k2)

∞∑
j=0

(3 j + 1)
( 1

2)
3
j

( j !)3
(2kk ′)2 j . (3.10)

But it follows from

1 − 3

π
√

n
− 24

∞∑
j=1

j

e2π j
√

n − 1
=
(

K

π

)2

A(k) (3.11)

where A(k) is a certain type of algebraic number, that, when q = e−π
√

n, n being a
rational number, the left-hand side of (3.10) can be expressed in the form

A

(
2K

π

)2

+ B

π
,

where A and B are algebraic numbers expressible by surds. Combining (3.7) and
(3.10) in such a way as to eliminate the term (2K/π)2, we are left with a series for
1/π .” He then gives the three examples (1.2)–(1.4).

Ramanujan’s ideas will be described in more detail in Section 9. However, in clos-
ing this section, we note that the series on the left-hand sides of (3.10) and (3.11) is
Ramanujan’s Eisenstein series P(q2), with q = e−π

√
n in the latter instance, where

P(q) := 1 − 24
∞∑
j=1

jq j

1 − q j
, |q| < 1. (3.12)

Ramanujan’s derivation of (3.11) arises firstly from the transformation formula for
P(q), which in turn is an easy consequence of the transformation formula for the
Dedekind eta-function, given in (9.11) below. The second ingredient in deriving (3.11)
is an identity for n P(q2n) − P(q2) in terms of the moduli k and �, where � has degree
n over k. Formula (3.8) follows from a standard theorem in elliptic functions that
Ramanujan also recorded in his notebooks [59], [13, p. 124, Entry 12(iii)].

4. SARVADAMAN CHOWLA. Chowla’s ideas reside in the classical theory of
elliptic functions and are not unlike those that the Borweins employed several years
later. We now briefly describe Chowla’s approach [37], [38], [39, pp. 87–91, 116–
119]. Using classical formulas of Cayley and Legendre relating the complete elliptic
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integrals K and E , defined by (3.1) and (3.2), respectively, he specializes them by
setting K/K ′ = √

n. He then defines

Sr :=
∞∑
j=0

jr
( 1

2 )
3
j

( j !)3
(2kk ′)2 j (4.1)

and

Tr :=
∞∑
j=0

jr
( 1

4 )
2
j

( j !)2
(2kk ′)2 j . (4.2)

Chowla then writes “Then it is known that, when k ≤ 1/
√

2,”

2K

π
= 1 + T0 and

4K 2

π2
= 1 + S0. (4.3)

Chowla does not give his source for either formula, but the second formula in (4.3), as
noted above, is a special case of Clausen’s formula (3.7). The first formula is a special
case of Kummer’s quadratic transformation [23, pp. 179–180], which was also known
to Ramanujan. Each of the formulas of (4.3) is differentiated twice with respect to k,
and, without giving details, Chowla concludes that if K/K ′ = √

n, then

1

K
= a1 + b1T0 + c1T1,

K

π
= d1T1 + e1T2,

1

π
= a2S0 + b2S1,

1

K 2
= a3 + b3S0 + c3S1 + d3S2,

“where a1, b1, . . . are algebraic numbers.” He then sets n = 3 and k = sin(π/12) in
each of the four formulas above to deduce, in particular, identity (1.2) from the second
formula above.

5. R. WILLIAM GOSPER, JR. As we indicated in the Introduction, in November,
1985, Gosper employed a lisp machine at Symbolics and Ramanujan’s series (2.1) to
calculate 17,526,100 digits of π , which at that time was a world record. (During the
1980s and 1990s, Symbolics made a lisp-based workstation running an object-oriented
programming environment. Unfortunately, the machines were too expensive for the
needs of most customers, and the company went bankrupt before it could squeeze the
architecture onto a chip.) Of the 17 series found by Ramanujan, this one converges
the fastest, giving about 8 digits of π per term. At the time of Gosper’s calculation,
the world record for digits of π was about 16 million digits calculated by Y. Kanada.
Before the Borwein brothers had later found a “conventional” proof of Ramanujan’s
series (2.1), they had shown that either (2.1) yields an exact formula for π or that it
differs from π by more than 10−3000000. Thus, by demonstrating that his calculation of
π agreed with that of Kanada, Gosper effectively had completed the Borweins’ first
proof of (2.1). However, Gosper’s primary goal was not to eclipse Kanada’s record
but to study the (simple) continued fraction expansion of π for which he calculated
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17,001,303 terms. In email letters from February, 1992 and May, 1993, Gosper offered
the following remarks on his calculations:

Of course, what the scribblers always censor is that the digits were a by-product.
I wanted to change the object of the game away from meaningless decimal digits.

I used what I call a resumable matrix tower to exactly compute an enormous
rational equal to the sum of a couple of million terms of Ramanujan’s 99−4n

series. I then divided to form the binary integer = floor(π258,000,000). I converted
this to decimal and sent a summary to Kanada for comparison, and converted the
binary fraction to a cf using an fft based scheme.

Gosper’s world record was short lived, as in January, 1986, D. H. Bailey used an
algorithm of the Borweins arising from a fourth order modular equation to compute
29,360,000 digits of π . Gosper’s calculation of the continued fraction expansion of
π was motivated by the fact that many important mathematical constants do not have
interesting decimal expansions but do have interesting continued fraction expansions.
That continued fraction expansions are considerably more interesting than decimal ex-
pansions is a view shared by the Chudnovsky brothers [43]. Continued fraction expan-
sions can often be used to distinguish a constant from others, while decimal expansions
likely will be unable to do so. For example, the simple continued fraction of e, namely,

e = 2 + 1

1 +
1

2 +
1

1 +
1

1 +
1

4
+ 1

1 +
1

1 +
1

6 +
1

1 + · · ·

has a pattern. On the contrary, taking a large random string of digits of e would not
help one identify e. It is an open problem if the simple continued fraction of π , namely,

π = 3 + 1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1 +
1

1 +
1

2 +
1

1 +
1

3 +
1

1 +
1

14

+
1

2 +
1

1 +
1

1 +
1

2 +
1

2 +
1

2 +
1

2 +
1

1 +
1

84 +
1

2 +
1

1 +
1

1 +
1

15

+
1

3 +
1

13 +
1

1 +
1

4 +
1

2 +
1

6 + · · ·
has a pattern.

Gosper also derived a hypergeometric-like series representation for π , namely,

π =
∞∑
j=0

50 j − 6(3 j
j

)
2 j

, (5.1)

which can be used to calculate any particular binary digit of π . See a paper by
G. Almkvist, C. Krattenthaler, and J. Petersson [1] for a proof of (5.1) as well as
generalizations, which include the following theorem.

Theorem 5.1. For each integer k ≥ 1, there exists a polynomial Sk( j) in j of degree
4k with rational coefficients such that

π =
∞∑
j=0

Sk( j)(8k j
4k j

)
(−4)k j

.
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6. JONATHAN AND PETER BORWEIN. One key to the work of both Ramanu-
jan and Chowla in their derivations of formulas for 1/π is Clausen’s formula for the
square of a complete elliptic integral of the first kind or, by (3.3), for the square of
the hypergeometric function 2 F1(

1
2 ,

1
2 ; 1; k2). The aforementioned rendition (3.7) of

Clausen’s formula is not the most general version of Clausen’s formula, namely,

2 F2
1

(
a, b; a + b + 1

2 ; z
) = 3 F2

(
2a, 2b, a + b; a + b + 1

2 , 2a + 2b; z
)
. (6.1)

Indeed, the work of many authors who have proved Ramanujan-like series for 1/π

ultimately rests on special cases of (6.1). In particular, squares of certain other hyper-
geometric functions lead one to Ramanujan’s alternative theories of elliptic functions.

A second key step is to find another formula for (K/π)2, which also contains an-
other term involving 1/π . Combining the two formulas to eliminate the term (K/π)2

then produces a hypergeometric-type series representation for 1/π . Evidently, unaware
of Chowla’s earlier work, the Borweins proceeded in a similar fashion and used Leg-
endre’s relation [23, p. 24]

E(k)K ′(k) + E ′(k)K (k) − K (k)K ′(k) = π

2

and other relations between elliptic integrals to produce such formulas.
Having derived a series representation for 1/π , one now faces the problem of eval-

uating the moduli and elliptic integrals that appear in the formulas. If q = e−π
√

n, then
for certain positive integers n one can evaluate the requisite quantities. This leads us
to the definition of the Ramanujan–Weber class invariants. After Ramanujan, set

χ(q) := (−q; q2)∞, |q| < 1, (6.2)

where (a; q)∞ is defined by (3.9). If n is a positive rational number and q = e−π
√

n,

then the class invariants Gn and gn are defined by

Gn := 2−1/4q−1/24χ(q) and gn := 2−1/4q−1/24χ(−q). (6.3)

In the notation of H. Weber [63], Gn = 2−1/4f(
√−n) and gn = 2−1/4f1(

√−n). As
mentioned in Section 3, kn := k(e−π

√
n) is called the singular modulus. In his volumi-

nous work on modular equations, Ramanujan sets α := k2 and β := �2. Accordingly,
we set αn := k2

n . Because [13, p. 124, Entries 12(v), (vi)]

χ(q) = 21/6{α(1 − α)/q}−1/24 and χ(−q) = 21/6{α(1 − α)−2/q}−1/24,

it follows from (6.3) that

Gn = {4αn(1 − αn)}−1/24 and gn = {4αn(1 − αn)
−2}−1/24. (6.4)

In the form (6.4), the class invariant Gn appears on the right-hand sides of (3.7) and
(3.10), and consequently the values of Gn for several values of n are important in
deriving certain series for 1/π . It is known that if n ≡ 1 (mod 4) then G4

n generates
the Hilbert class field of the quadratic field Q(

√−n) [32, Cor. 5.2], and this fact is
very useful in evaluating Gn . When we say that a series for 1/π is associated with the
imaginary quadratic field Q(

√−n), we mean that the constants involved in the series
are related to the generators of the Hilbert class field of Q(

√−n).
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Singular moduli and class invariants are actually algebraic numbers. In general, as
n increases, the corresponding series for 1/π converges more rapidly. The series (2.2)
is associated with the imaginary quadratic field Q(

√−163).
The Borweins’ proofs of all 17 of Ramanujan’s series for 1/π can be found in their

book [23]. Their derivations arise from several general hypergeometric-like series rep-
resentations for 1/π given in terms of singular moduli, class invariants, and complete
elliptic integrals [23, pp. 181–184]. Another account of their work, but with fewer de-
tails, can be found in their paper [24] commemorating the centenary of Ramanujan’s
birth. Further celebrating the 100th anniversary of Ramanujan’s birth, the Borweins
derived further series for 1/π in [25]. The series in this paper correspond to imaginary
quadratic fields with class number 2, with one of their series corresponding to n = 427
and yielding about 25 digits of π per term. In [29], the authors derived series for 1/π

arising from fields with class number 3, with a series corresponding to n = 907 yield-
ing about 37 or 38 digits of π per term. Their record is a series associated with a field
of class number 4 giving about 50 digits of π per term; here, n = 1555 [28]. The latter
paper gives the details of what we have written in this paragraph.

The Borweins have done an excellent job of communicating their work to a wide
audience. Besides their paper [28], see their paper in this MONTHLY [30], with
D. H. Bailey, on computing π , especially via work of Ramanujan, and their delightful
paper in the Scientific American [26], which has been reprinted in [22, pp. 187–199]
and [11, pp. 588–595].

7. DAVID AND GREGORY CHUDNOVSKY. In our Introduction we mentioned
that the Chudnovsky brothers, Gregory and David, used (2.2) to calculate over 2 billion
digits of π . They had first used (2.2) to calculate 1,130,160,664 digits of π in the fall
of 1989 on a “borrowed” computer. They then built their own computer, “m zero,”
described colorfully in [56], and set a world record of 2,260,321,336 digits of π . The
world record for digits of π has been broken several times since then, and since it is
not the purpose of this paper to delineate this computational history, we refrain from
mentioning further records.

The Chudnovskys, among others, have extensively examined their calculations for
patterns. It is a long outstanding conjecture that π is normal. In particular, for each k,
0 ≤ k ≤ 9,

lim
N→∞

# of appearances of k in the first N digits of π

N
= 1

10
.

The Chudnovskys’ calculations, and all subsequent calculations of Kanada, lend cre-
dence to this conjecture. As a consequence, the average of the digits over a long in-
terval should be approximately 4.5. The Chudnovskys found that for the first billion
digits the average stays a bit on the high side, while for the next billion digits, the
average hovers a bit on the low side. Their paper [43] gives an interesting statistical
analysis of the digits up to one billion. For example, strings of consecutive digits of
maximal lengths between 8 and 10 occur for each digit.

The Chudnovskys deduced (2.2) from a general series representation for 1/π , which
we will describe after making several definitions. For τ ∈ H = {τ : Im τ > 0} and
each positive integer k, the Eisenstein series E2k(τ ) is defined by

E2k(τ ) := 1 − 4k

B2k

∞∑
j=1

σ2k−1( j)q j , q = eπ iτ , (7.1)
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where Bk , k ≥ 0, denotes the kth Bernoulli number and σk(n) = ∑
d|n dk . Klein’s ab-

solute modular J -invariant is defined by

J (τ ) := E3
4(τ )

E3
4(τ ) − E2

6(τ )
, τ ∈ H. (7.2)

It is well known that if α(q) := k2(q), where k is the modulus, then [13, pp. 126–127,
Entry 13]

J (2τ) = 4
(
1 − α(q) + α2(q)

)3

27α2(q)(1 − α(q))2
. (7.3)

Thus, (6.4) and (7.3) show that, when q = e−π
√

n , singular moduli, class invariants,
and the modular J -invariant are intimately related. Now define

s2(τ ) := E4(τ )

E6(τ )

(
E2(τ ) − 3

π Im τ

)
.

We are now ready to state the Chudnovskys’ main formula [44, p. 122]. If τ =
(1 + √−n)/2, then

∞∑
μ=0

{
1

6
(1 − s2(τ )) + μ

}
(6μ)!

(3μ)! μ!3
1

1728μ J μ(τ )
=

√−J (τ )

π

1√
n(1 − J (τ ))

.

(7.4)

The Chudnovskys’ series (2.2) is the special case n = 163 of (7.4).
The Chudnovsky brothers developed and extended Ramanujan’s ideas in directions

different from those of other authors. They obtained hypergeometric-like representa-
tions for other transcendental constants and proved, for example, that

�
(

1
3

)
π

and
�2
(

1
24

)
�
(

1
3

)
�
(

1
4

)
are transcendental [42]. Their advances involve the “second” solution of the hypergeo-
metric differential equation. Recall from the theory of linear differential equations that
2 F1(a, b; c; x) is a solution of a certain second-order linear differential equation with a
regular singular point at the origin [5, p. 1]. A second linearly independent solution is
generally not analytic at the origin, and in [43] and [44, pp. 124–126], the Chudnovsky
brothers establish new hypergeometric series identities involving the latter function.
Their identities in this paper lead to hypergeometric-like series representations for π ,
including Gosper’s formula (5.1). In [45], the authors provide a lengthy list of such
examples, including

45π + 644 =
∞∑
j=0

8 j (430 j2 − 6240 j − 520)(4 j
j

) .

The Chudnovsky brothers have also employed series for 1/π to derive theorems on
irrationality measures μ(α), which are defined by

μ(α) := inf

{
μ > 0 : 0 <

∣∣∣∣α − p

q

∣∣∣∣ <
1

qμ
has only finitely many solutions

p

q
∈ Q

}
.

576 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 116



Integre Technical Publishing Co., Inc. American Mathematical Monthly 116:7 March 31, 2009 5:03 p.m. berndt.tex page 577

By the famous Thue–Siegel–Roth Theorem [6, p. 66],

μ(α)

⎧⎪⎨
⎪⎩

= 1, if α is rational,
= 2, if α is algebraic but not rational,
≥ 2, if α is transcendental.

Although the Chudnovskys can obtain irrationality measures for various constants, the
one they obtain for π is not as good as one would like. Currently, the world record
for the irrationality measure of π is held by M. Hata [54], who proved that μ(π) ≤
8.016045 . . . . Their methods are much better for obtaining irrationality measures for
expressions, such as π/

√
640320, arising in their series (2.2). See also a paper by

W. Zudilin [64].

8. RAMANUJAN’S CUBIC CLASS INVARIANT AND HIS ALTERNATIVE
THEORIES. In Sections 3, 4, 6, and 7, we emphasized how Ramanujan–Weber class
invariants and singular moduli were of central importance for Ramanujan and others
who followed in deriving series for 1/π . We also stressed in Section 1, in particular, in
the discourse after (1.5), that Ramanujan’s remarkable idea of replacing the classical
hypergeometric function 2 F1(

1
2 ,

1
2 ; 1; x) by 2 F1(

1
r ,

r−1
r ; 1; x), r = 3, 4, 6, leads to new

and beautiful alternative theories. On the top of page 212 in his lost notebook [60],
Ramanujan defines a cubic class invariant λn (i.e., r = 3 in (1.5)), which is an ana-
logue of the Ramanujan–Weber classical invariants Gn and gn defined in (6.3). Define
Ramanujan’s function

f (−q) := (q; q)∞, |q| < 1, (8.1)

where (a; q)∞ is defined in (3.9), and the Dedekind eta-function η(τ)

η(τ ) := e2π iτ/24
∞∏
j=1

(1 − e2π i jτ ) =: q1/24 f (−q), (8.2)

where q = e2π iτ and Im τ > 0. Then Ramanujan’s cubic class invariant λn is defined
by

λn = 1

3
√

3

f 6(q)√
q f 6(q3)

= 1

3
√

3

⎛
⎜⎜⎜⎝

η

(
1 + i

√
n/3

2

)

η

(
1 + i

√
3n

2

)
⎞
⎟⎟⎟⎠

6

, (8.3)

where q = e−π
√

n/3, i.e., τ = 1
2 i

√
n/3.

Chan, Liaw, and Tan [34] established a general series representation for 1/π in
terms of λn that is analogous to the general formulas of the Borweins and Chudnovskys
in terms of the classical class invariants. To state this general formula, we first need
some definitions. Define

1

α∗(q)
:= − 1

27q

f 12(q)

f 12(q3)
+ 1. (8.4)

Thus, when q = e−π
√

n/3 and α∗
n := α∗(e−π

√
n/3), (8.3) and (8.4) imply that

1

α∗
n

= 1 − λ2
n.
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In analogy with (3.6), define the multiplier m(q) by

m(q) := m(α∗, β∗) := 2 F1

(
1
3 ,

2
3 ; 1; α∗)

2 F1

(
1
3 ,

2
3 ; 1; β∗) ,

where β∗ = α∗(qn). We are now ready to state the general representation of 1/π de-
rived by Chan, Liaw, and Tan [34, p. 102, Theorem 4.2].

Theorem 8.1. For n ≥ 1, let

an = −α∗
n(1 − α∗

n)√
n

dm(α∗, β∗)
dα∗

∣∣∣∣
α∗=1−α∗

n ,β∗=α∗
n

,

bn = 1 − 2α∗
n ,

and

Hn = 4α∗
n(1 − α∗

n).

Then

1

π

√
3

n
=

∞∑
j=0

(an + bn j)

(
1
2

)
j

(
1
3

)
j

(
2
3

)
j

( j !)3
H j

n . (8.5)

We give one example. Let n = 9; then α∗
9 = 9

8 . Then, without providing further
details,

4

π
√

3
=

∞∑
j=0

(5 j + 1)

(
1
2

)
j

(
1
3

)
j

(
2
3

)
j

( j !)3

(
− 9

16

) j

,

which was discovered by Chan, Liaw, and Tan [34, p. 95].
Another general series representation for 1/π in the alternative theories of Ramanu-

jan was devised by Berndt and Chan [19, p. 88, Eq. (5.80)]. We will not state this for-
mula and all the requisite definitions, but let it suffice to say that the formula involves
Ramanujan’s Eisenstein series P(q), Q(q) = E4(τ ), and R(q) = E6(τ ) at the argu-
ment q = −e−π

√
n and the modular j-invariant, defined by j (τ ) = 1728J (τ ), where

J (τ ) is defined by (7.2). In particular,

j

(
3 + √−3n

2

)
= −27

(λ2
n − 1)(9λ2

n − 1)3

λ2
n

,

a proof of which can be found in [18]. The hypergeometric terms are of the form(
1
2

)
j

(
1
6

)
j

(
5
6

)
j

( j !)3
.

Berndt and Chan used their general formula to calculate a series for 1/π that yields
about 73 or 74 digits of π per term.
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Lastly, we conclude this section by remarking that Berndt, Chan, and Liaw [20]
have derived series representations for 1/π that fall under the umbrella of Ramanujan’s
quartic theory of elliptic functions. Because the quartic theory is intimately connected
with the classical theory, their general formulas [20, p. 144, Theorem 4.1] involve the
classical invariants Gn and gn in their summands. Not surprisingly, the hypergeometric
terms are of the form

Bj :=
(

1
2

)
j

(
1
4

)
j

(
3
4

)
j

( j !)3
.

The simplest example arising from their theory is given by [20, p. 145]

9

2π
=

∞∑
j=0

Bj (7 j + 1)

(
32

81

) j

.

9. THE PRESENT AUTHORS AS DISCIPLES OF RAMANUJAN. As men-
tioned in Section 2, the first two authors were inspired by the third author to continue
the development of Ramanujan’s thoughts. In their first paper [9], Baruah and Berndt
employed Ramanujan’s ideas in the classical theory of elliptic functions to prove 13
of Ramanujan’s original formulas and many new ones as well. In [7], they utilized
Ramanujan’s cubic and quartic theories to establish five of Ramanujan’s 17 formu-
las in addition to some new representations. Lastly, in [8], motivated by the work
of J. Guillera, described briefly in Section 10 below, the first two authors extended
Ramanujan’s ideas to derive hypergeometric-like series representations for 1/π2. For
example,

24

π2
=

∞∑
μ=0

(44571654400μ2 + 5588768408μ + 233588841)Bμ

(
1

994

)μ+1

,

where

Bμ =
μ∑

ν=0

(
1
4

)
ν

(
1
4

)
μ−ν

(
1
2

)
ν

(
1
2

)
μ−ν

(
3
4

)
ν

(
3
4

)
μ−ν

ν!3 (μ − ν)!3 .

In Section 3, we defined Ramanujan’s Eisenstein series P(q) in (3.12) and offered
several definitions from Ramanujan’s theories of elliptic functions in giving a brief
introduction to Ramanujan’s ideas. Here we highlight the role of P(q) in more detail
before giving a complete proof of (1.3). Because these three series representations
(1.2)–(1.4) can also be found in Ramanujan’s lost notebook, our proof here is similar
to that given in [3, Chapter 15].

Following Ramanujan, set

z := 2 F1

(
1
2 ,

1
2 ; 1; x

)
. (9.1)

The two most important ingredients in our derivations are Ramanujan’s representation
for P(q2) given by [13, p. 120, Entry 9(iv)]

P(q2) = (1 − 2x)z2 + 6x(1 − x)z
dz

dx
(9.2)
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and Clausen’s formula (3.7), which, using (9.1), we restate in the form

z2 = 3 F2(
1
2 ,

1
2 ,

1
2 ; 1, 1; X) =

∞∑
j=0

A j X j , (9.3)

where, as in (1.1),

A j := ( 1
2 )

3
j

j !3 and X := 4x(1 − x). (9.4)

From (9.3) and (9.4),

2z
dz

dx
=

∞∑
j=0

A j j X j−1 · 4(1 − 2x). (9.5)

Hence, from (9.2), (9.3), (9.5), and (9.4),

P(q2) = (1 − 2x)

∞∑
j=0

A j X j + 3(1 − 2x)

∞∑
j=0

A j j X j

=
∞∑
j=0

{(1 − 2x) + 3(1 − 2x) j}A j X j . (9.6)

For q := e−π
√

n , recall (9.1) and set

xn = k2(e−π
√

n), zn := 2 F1

(
1
2 ,

1
2 ; 1; xn

)
(9.7)

and

Xn = 4xn(1 − xn). (9.8)

For later use, we note that [3, p. 375]

1 − xn = x1/n and z1/n = √
nzn. (9.9)

With the use of (9.7) and (9.8), (9.6) takes the form

P(e−2π
√

n) =
∞∑
j=0

{(1 − 2xn) + 3(1 − 2xn) j}A j X j
n

= (1 − 2xn)z
2
n + 3

∞∑
j=0

(1 − 2xn) j A j X j
n . (9.10)

In order to utilize (9.10), we require two different formulas, each involving both
P(q2) and P(q2n), where n is a positive integer. The first comes from a transformation
formula for P(q), which in turn arises from the transformation formula for f (−q)

defined in (8.1) or the Dedekind eta function defined in (8.2), and is for general n. This
transformation formula is given by [13, p. 43, Entry 27(iii)]

e−α/12α1/4 f (−e−2α) = e−β/12β1/4 f (−e−2β), (9.11)
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where αβ = π2, with α and β both positive. Taking the logarithm of both sides of
(9.11), we find that

− α

12
+ 1

4
log α +

∞∑
j=1

log(1 − e−2 jα) = − β

12
+ 1

4
log β +

∞∑
j=1

log(1 − e−2 jβ).

(9.12)

Differentiating both sides of (9.12) with respect to α, we deduce that

− 1

12
+ 1

4α
+

∞∑
j=1

2 je−2 jα

1 − e−2 jα
= β

12α
− 1

4α
−

∞∑
j=1

(2 jβ/α)e−2 jβ

1 − e−2 jβ
. (9.13)

Multiplying both sides of (9.13) by 12α and rearranging, we arrive at

6 − α

(
1 − 24

∞∑
j=1

je−2 jα

1 − e−2 jα

)
= β

(
1 − 24

∞∑
j=1

je−2 jβ

1 − e−2 jβ

)
. (9.14)

Setting α = π/
√

n, so that β = π
√

n, recalling the definition (3.12) of P(q), and
rearranging slightly, we see that (9.14) takes the shape

6
√

n

π
= P(e−2π/

√
n) + n P(e−2π

√
n). (9.15)

This is the first desired formula.
The second gives representations for Ramanujan’s function [57], [58, pp. 33–34]

fn(q) := n P(q2n) − P(q2) (9.16)

for certain positive integers n. (Ramanujan [57], [58, pp. 33–34] used the notation
f (n) instead of fn(q).) In [57], Ramanujan recorded representations for fn(q) for 12
values of n, but he gave no indication of how these might be proved. These formulas
are also recorded in Chapter 21 of Ramanujan’s second notebook [59], and proofs may
be found in [13].

We now give the details for our proof of (1.3), which was clearly a favorite of
Gabriella Montez, the precocious student in High School Musical. Unfortunately, we
do not know whether she possessed a proof of her own. We restate (1.3) here for
convenience.

Theorem 9.1. If A j , j ≥ 0, is defined by (9.4), then

16

π
=

∞∑
j=0

(42 j + 5)A j
1

26 j
. (9.17)

Proof. The identity (9.17) is connected with modular equations of degree 7. Thus, our
first task is to calculate the singular modulus x7. To that end, we begin with a modular
equation of degree 7

{
x(q)x(q7)

}1/8 + {
(1 − x(q))(1 − x(q7))

}1/8 = 1, (9.18)
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due to C. Guetzlaff in 1834 but rediscovered by Ramanujan in Entry 19(i) of Chapter
19 of his second notebook [59], [13, p. 314]. In the notation of our definition of a
modular equation after (3.5), we have set x(q) = k2(q), and so x(q7) = �2(q). Set
q = e−π/

√
7 in (9.18) and use (9.9) and (9.8) to deduce that

2 {x7(1 − x7)}1/8 = 1 and X7 = 1

26
. (9.19)

Ramanujan calculated the singular modulus x7 in his first notebook [59], [15, p. 290],
from which, or from (9.19), we easily can deduce that

1 − 2x7 = 3
√

7

8
. (9.20)

In the notation (9.16), from either [57], [58, p. 33], or [13, p. 468, Entry 5(iii)],

f7(q) = 3z(q)z(q7)
(

1 +√
x(q)x(q7) +√

(1 − x(q))(1 − x(q7))
)

. (9.21)

Putting q = e−π/
√

7 in (9.21) and employing (9.9) and (9.19), we find that

f7(e
−π/

√
7) = 3

√
7
(

1 + 2
√

x7(1 − x7)
)

z2
7 = 3

√
7 · 9

8
z2

7. (9.22)

Letting n = 7 in (9.15) and (9.10), and using (9.20), we see that

6
√

7

π
= P(e−2π/

√
7) + 7P(e−2π

√
7) (9.23)

and

P(e−2π
√

7) = (1 − 2x7)z
2
7 + 3

∞∑
j=0

(1 − 2x7) j A j X j
7

= 3
√

7

8
z2

7 + 9
√

7

8

∞∑
j=0

j A j

26 j
, (9.24)

respectively. Eliminating P(e−2π/
√

7) from (9.22) and (9.23) and putting the resulting
formula for P(e−2π

√
7) in (9.24), we find that

3
√

7

7π
+ 27

√
7

16 · 7
z2

7 = 3
√

7

8
z2

7 + 9
√

7

8

∞∑
j=0

j A j

26 j
,

which upon simplification with the use of (9.3) yields (9.17).

10. JESÚS GUILLERA. A discrete function A(n, k) is hypergeometric if

A(n + 1, k)

A(n, k)
and

A(n, k + 1)

A(n, k)

are both rational functions. A pair of functions F(n, k) and G(n, k) is said to be a WZ
pair (after H. S. Wilf and D. Zeilberger ) if F and G are hypergeometric and

F(n + 1, k) − F(n, k) = G(n, k + 1) − G(n, k).
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In this case, H. Wilf and D. Zeilberger [55] showed that there exists a rational function
C(n, k) such that

G(n, k) = C(n, k)F(n, k).

The function C(n, k) is called a certificate of (F, G). Defining

H(n, k) = F(n + k, n + 1) + G(n, n + k),

Wilf and Zeilberger showed that

∞∑
n=0

H(n, 0) =
∞∑

n=0

G(n, 0).

Ekhad (Zeilberger’s computer) and Zeilberger [46] were the first to use this method to
derive a one-page proof of the representation

2

π
=

∞∑
j=0

(−1) j (4 j + 1)

(
1
2

)3

j

( j !)3
. (10.1)

The identity (10.1) was first proved by G. Bauer in 1859 [10]. Ramanujan recorded
(10.1) as Example 14 in Section 7 of Chapter 10 in his second notebook [59], [12,
pp. 23–24]. Further references can be found in [9]. In 1905, generalizing Bauer’s ap-
proach, J. W. L. Glaisher [47] found further series for 1/π .

Motivated by this work, Guillera [48] found many new WZ-pairs (F, G) and de-
rived new series not only for 1/π but for 1/π2 as well. One of his most elegant formu-
las is

128

π2
=

∞∑
j=0

(−1) j

(
2 j

j

)5
(820 j2 + 180 j + 13)

210 j
.

Subsequently, Guillera empirically discovered many series of the type

A

π
=

∞∑
j=0

c j
B j2 + Dj + E

H j
.

Most of the series he discovered cannot be proved by the WZ-method; it appears that
the WZ-method is only applicable to those series for 1/π when H is a power of 2. An
example of Guillera’s series which remains to be proved is [49]

128
√

5

π2
=

∞∑
j=0

(−1) j

(
1
2

)
j

(
1
3

)
j

(
2
3

)
j

(
1
6

)
j

(
5
6

)
j

( j !)5803 j
(5418 j2 + 693 j + 29).

For further Ramanujan-like series for 1/π2, see Zudilin’s papers [65], [66].

11. RECENT DEVELOPMENTS. We have emphasized in this paper that Clausen’s
formula (6.1) is an essential ingredient in most proofs of Ramanujan-type series repre-
sentations for 1/π . However, there are other kinds of series for 1/π that do not depend
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upon Clausen’s formula. One such series discovered by Takeshi Sato [62] is given by

1

π

√
15

120(4
√

5 − 9)
=

∞∑
μ=0

μ∑
ν=0

(
μ

ν

)2(
μ + ν

ν

)2 (1

2
− 3

20

√
5 + μ

)(√
5 − 1

2

)12μ

.

(11.1)

In unpublished work (personal communication to the third author), Sato derived a
more complicated series for 1/π that yields approximately 97 digits of π per term. A
companion to (11.1), which was derived by a new method devised by the third author,
S. H. Chan, and Z.-G. Liu [31], is given by

8√
3π

=
∞∑

μ=0

aμ

5μ + 1

64μ
, (11.2)

where

aμ :=
μ∑

ν=0

(
2μ − 2ν

μ − ν

)(
2ν

ν

)(
μ

ν

)2

. (11.3)

We cite three further new series arising from this new method. The first is another
companion of (11.2), which arises from recent work of Chan and H. Verrill [36] (after
the work of Almkvist and Zudilin [2]), and is given by

9

2
√

3π
=

∞∑
μ=0

� μ
3 ∑

ν=0

(−1)μ−ν3μ−3ν

(
μ

3ν

)(
μ + ν

ν

)
(3ν)!
(ν!)3

(4μ + 1)

(
1

81

)μ

.

The second is from a paper by Chan and K. P. Loo [35] and takes the form

2
√

3(3 + 2
√

2)

9π
=

∞∑
μ=0

Cμ

(
μ + 1 − 2

3

√
2

)(
−1 + 3

4

√
2

)μ

,

where

Cμ =
μ∑

ν=0

{
ν∑

j=0

(
ν

j

)3 μ−ν∑
i=0

(
μ − ν

i

)3
}

.

The third was derived by Y. Yang (personal communication) and takes the shape

18

π
√

15
=

∞∑
μ=0

μ∑
ν=0

(
μ

ν

)4 4μ + 1

36ν
.

Motivated by his work with Mahler measures and new transformation formulas for
5 F4 series, M. D. Rogers [61, Corollary 3.2] has also discovered series for 1/π in the
spirit of the formulas above. For example, if aμ is defined by (11.3), then

2

π
=

∞∑
μ=0

(−1)μaμ

3μ + 1

32μ
.

This series was also independently discovered by Chan and Verrill [36].
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According to W. Zudilin [67], G. Gourevich empirically discovered a hyper-
geometric-like series for 1/π3, namely,

32

π3
=

∞∑
μ=0

(
1
2

)7

μ

(μ!)7 26μ
(168μ3 + 76μ2 + 14μ + 1).

This series and the search for further series representations for 1/πm , m ≥ 2, are de-
scribed in a paper by D. H. Bailey and J. M. Borwein [4].

12. CONCLUSION. One test of “good” mathematics is that it should generate more
“good” mathematics. Readers have undoubtedly concluded that Ramanujan’s original
series for 1/π have sown the seeds for an abundant crop of “good” mathematics.
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