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A famous identity of Ramanujan connected with partitions modulo 5 is shown to
be equivalent to another identity of Ramanujan. The latter identity is used to
establish a differential equation for the Rogers]Ramanujan continued fraction
found in Ramanujan’s lost notebook. We also prove that two other identities of
Ramanujan are equivalent, one of which is associated with Ramanujan’s partition
congruence modulo 7. Last, we give a new proof of the transformation formula for
the Dedekind eta-function, which is used in our proofs of equivalence. Q 1996

Academic Press, Inc.

1. INTRODUCTION

Let

`
ny1 < <a; q [ 1 y aq , q - 1,Ž . Ž .Ł`

ns1

and

f yq [ q ; q .Ž . Ž .`

2p i z 1r24 Ž . Ž . Ž .Note that if q s e , Im z ) 0, then q f yq s h z , where h z is
the Dedekind eta-function.
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Ž .In a famous manuscript on the partition function p n and the tau-func-
Ž . w xtion t n , recently published with the lost notebook, Ramanujan 9, p. 139

recorded the identities

` n 5 5n q f yqŽ .
s q 1.1Ž .Ý 2ž / n5 f yqŽ .1 y qŽ .ns1

and

` n 5n nq f yqŽ .
1 y 5 s 1.2Ž .Ý n 5ž /5 1 y q f yqŽ .ns1

Ž . Ž .where nr5 is the Legendre symbol. There are several proofs of 1.1 and
Ž . w x1.2 , and references may be found in our paper 2 , where a new proof of
Ž .1.1 is given. In proving these two identities using modular forms of

w xNebentypus, Raghavan 8 remarked that his proofs ‘‘throw some light on
the pair of identities being ‘‘allied’’.’’ In this paper, we employ Hecke’s
theory of correspondence between Fourier series and Dirichlet series to

Ž . Ž .show that 1.1 and 1.2 are equivalent. Thus, as Ramanujan implicitly
Ž . Ž .implied, 1.1 and 1.2 are truly companion identities.

Ž . w xIdentity 1.1 was employed by Ramanujan 9, pp. 139]140 to give a
Ž . Ž .short proof of his famous congruence p 5n q 4 ' 0 mod 5 . See also our

w xpaper 2 . In Section 2, we show that a differential equation satisfied by the
Ž .Rogers]Ramanujan continued fraction follows easily from 1.2 . This

Ždifferential equation was stated by Ramanujan without proof and in a
. w xslightly different form in 9, p. 363 .

Our work is motivated by the transformation formula for the Dedekind
eta-function. In Section 3, we utilize the Weierstrass `-function to provide
a new, short proof of this transformation formula.

Ž . Ž .In Section 4, we prove the equivalence of 1.1 and 1.2 , and in Section
5 we prove the equivalence of Ramanujan’s famous partition identity

wconnected with partitions modulo 7 and a companion identity found in 9,
x w xp. 145 . These two identities were also discussed in Raghavan’s paper 8 .

Ž .2. IDENTITY 1.2 AND ROGERS]RAMANUJAN’S
CONTINUED FRACTION

Denote the Rogers]Ramanujan continued fraction by

q1r5 q q2 q3

< <F q s , q - 1.Ž .
1 1 1 1q q q q ???
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w xIt is well known that 13; 5, pp. 290]294

q ; q5 q4 ; q5Ž . Ž .` `1r5F q s q . 2.1Ž . Ž .2 5 3 5q ; q q ; qŽ . Ž .` `

w x Ž .On page 363 of his Lost Notebook 9 , Ramanujan claimed that F q
satisfies the differential equation

dF q f 5 yqŽ . Ž .
5q s F q . 2.2Ž . Ž .5dq f yqŽ .

Ž . Ž .We now give a proof of 2.2 . From 2.1 , we deduce that

` n
1r5 nlog F q s log q q log 1 y q . 2.3Ž . Ž . Ž .Ý ž /5ns1

Ž .Differentiating 2.3 with respect to q, we have

` n1 dF q 1 n ynqŽ .
s q .Ý nž /F q dq 5q 5 1 y qŽ . ns1

Therefore,

` ndF q n nqŽ .
5q s 1 y 5 F q .Ž .Ý nž /ž /dq 5 1 y qns1

Ž . Ž .Using 1.2 , we deduce 2.2 .

3. DEDEKIND h TRANSFORMATION FORMULA

Ž . Ž .We have already seen how 1.1 and 1.2 have connections with parti-
tion theory and the Rogers]Ramanujan continued fraction, respectively. It
is therefore interesting to see that they are in fact equivalent.

We first establish a clue which will lead to the result.

LEMMA 3.1. Let Im z ) 0. We ha¨e

1
2p i zr24 2p i z y2p i r24 z y2p i r z3.1 e f ye s e f ye .Ž . Ž . Ž .'y iz
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Lemma 3.1 gives the famous transformation formula for the Dedekind
w xh-function for which there are many proofs. For example, see 11 . Perhaps

the following proof is new.

w x p iv 2 rv 1Proof. We recall that 3, p. 69 if q s e , then

6p
12 216q f yq s e y e e y e e y e , 3.2Ž . Ž . Ž . Ž .Ž . 1 2 1 3 3 2ž /v1

Ž . Ž .where e s ` v , v ; v r2 , e s ` v , v ; v r2 , and e s1 1 2 1 2 1 2 2 3
Ž Ž . . Ž .` v , v ; v q v r2 . Here, ` v , v ; z is the Weierstrass elliptic1 2 1 2 1 2

Ž .function with periods v and v . Applying 3.2 with v s 1 and v s t ,1 2 1 2
we have

16ep itp 6 f 12 ye2p it s e y e e y e e y e , 3.3Ž . Ž . Ž . Ž . Ž .1 3 1 2 3 2

Ž . Ž . Ž Ž . .where e s ` 1, t ; 1r2 , e s ` 1, t ; tr2 and e s ` 1, t ; 1 q t r2 .1 2 3
Next, set v s t and v s y1, so that q s eyp i rt. Note that1 2

` t , y1; z s ` 1, t ; zŽ . Ž .

since the lattice generated by y1 and t is the same as the lattice
generated by 1 and t . Therefore,

t t
Xe s ` t , y1; s ` 1, t ; s e .1 2ž / ž /2 2

X X Ž . yp i rtSimilarly, e s e and e s e . Applying 3.2 with q s e , we obtain2 1 3 3

6p
X X X X X Xyp i rt 12 y2p i rt16e f ye s e y e e y e e y eŽ . Ž . Ž . Ž .1 2 1 3 3 2ž /t

s e y e e y e e y e . 3.4Ž . Ž . Ž . Ž .2 1 2 3 3 1

Ž . Ž .Dividing 3.3 by 3.4 and simplifying, we have

ep it f 12 ye2p it s yty6 eyp i rt f 12 yey2p i rt .Ž . Ž .

Taking the 12th root on both sides, we have

ep it r12 f ye2p it s ety1r2eyp i r12t f yey2p i rt ,Ž . Ž .

'where e is a 24th root of unity. Setting t s i, we deduce that e s i to
complete the proof.
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4. FUNCTIONAL EQUATIONS, HECKE’S THEORY, AND
Ž . Ž .THE EQUIVALENCE OF 1.1 AND 1.2

2p it Ž .Now, let q s e . By Lemma 3.1, the right hand side of 1.1 is

5 510p it r24 10p it y2p i r120t y2p i r5t'e f ye y it e f yeŽ . Ž .Ž . Ž .
s 52p it r24 2p it y2p i r24t y2p i rte f ye e f yeŽ . Ž .'y 5itŽ .

y1 f 5 yey2p i r5tŽ .
s .y2 p i rt2 2' f yeŽ .5 5 t

Setting q s ey2 p i r5t , we rewrite the equality above in the form1

f 5 yq5 y1 f 5 yqŽ .Ž . 1
q s .55 2'f yq f yqŽ . 5 5 t Ž .1

Ž .This shows that in some sense the right-hand side of 1.2 can be obtained
Ž .from the right-hand side of 1.1 and vice versa. This provides the motiva-

Ž . Ž .tion to show the equivalence of 1.1 and 1.2 . To achieve this aim, it
suffices to show that

` n ` nn q y1 n nq1s 1 y 5 . 4.1Ž .Ý Ý n2 2 2ž / ž /n ž /'5 5 1 y q5 5 t1 y qŽ . 1ns1 ns1

If we write

` 2p int ` 2p intn e n ne
g t s and h t s1 y 5 ,Ž . Ž .Ý Ý2 2p intž / ž /2p int5 5 1 y e1 y eŽ .ns1 ns1

Ž .then 4.1 may be written as

y1 y1
g t s h . 4.2Ž . Ž .2 2 ž /' 5t5 5 t

Before proceeding further, we state the following results.

Ž Ž ..LEMMA 4.1 Functional Equation for z s . For all complex numbers s,

sp
1ys ysz 1 y s s 2 p cos G s z s .Ž . Ž . Ž .

2

w xProof. See 1, p. 259, Theorem 12.7 .
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Ž Ž .LEMMA 4.2 Functional Equation for L s, x with x a Primitive Charac-
.ter mod k . For all complex numbers s,

ys sy1 yp i sr2 p i sr2L 1 y s, x s 2p G s k e q x y1 e G x L s, x ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .

Ž . ky1 Ž . 2p ih r kwhere G x s Ý x h e .hs1

w xProof. See 1, p. 263, Theorem 12.11 .

Ž c.LEMMA 4.3. Suppose that for some positï e constant c, a , b s O n .n n
For Im z ) 0, let

` `
2p int 2p intu t s a e , ¨ t s b e .Ž . Ž .Ý Ýn n

ns0 ns0

For s ) c q 1, set

` `
ys ysf s s a n , c s s b n .Ž . Ž .Ý Ýn n

ns1 ns1

Ž . Ž .Suppose f s and c s ha¨e analytic continuations into the entire complex
plane. For all s, define

ys ys
F s s 2p G s f s and C s s 2p G s c s .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Then the following are equï alent:

Ž .I For certain positï e numbers A and k and for some complex number
Ž . ys r2Ž Ž ..C, the function F s q A a rs q Cb r k y s is entire and bounded0 0

in e¨ery ¨ertical strip, and

F s s CAk r2ysC k y s .Ž . Ž .

Ž . Ž . k r2Ž .yk Ž .II u t s CA Atri ¨ y1rAt .

w xProof. See 7, V-6]V-7 .

Ž .We are now ready to prove 4.2 . The Dirichlet series associated to
Ž . Ž . Ž . Ž .g t is L s, x z s y 1 , and the Dirichlet series associated to h t is

Ž . Ž . Ž .y5L s y 1, x z s , where x s ?r5 . So we may let

f s s L s, x z s y 1 and c s s y5L s y 1, x z s .Ž . Ž . Ž . Ž . Ž . Ž .
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Therefore,
ys

F s s 2p G s L s, x z s y 1 andŽ . Ž . Ž . Ž . Ž .
ys

C s s y 2p G s 5L s y 1, x z s .Ž . Ž . Ž . Ž . Ž .
'Ž . Ž . w xApplying Lemma 4.2 with x s ?r5 , and G x s 5 6, pp. 197]201 , we

have

p sys sy1 'L 1 y s, x s 2p G s 5 2 cos 5 L s, x . 4.3Ž . Ž . Ž . Ž . Ž .
2

Ž .Now, by Lemma 4.1 and 4.3 ,

Ž .y 2ys
C 2 y s s y5 2p G 2 y s L 1 y s, x z 2 y sŽ . Ž . Ž . Ž . Ž .

p sysŽ .y 2ys sy1 's y5 2p G 2 y s 2p G s 5 2 cos 5 L s, xŽ . Ž . Ž . Ž . Ž .
2

s y 1 pŽ .
2ys 1ys= 2 p cos G s y 1 z sŽ . Ž .ž /2

s's 5 5 F s ,Ž .

Ž . Ž . w xsince G z G 1 y z s prsin p z 1, p. 250 .
Ž .Now, F s has a pole at s s 2 with residue

1y22p G 2 L 2, x s ,Ž . Ž . Ž . 2'5 5

w xsince 12, p. 31, Theorem 4.2

4p
L 2, x s .Ž . 2'5 5

ys r2 'Ž . Ž . Ž Ž ..Therefore, P s [ F s q 5 r 5 5 2 y s is entire. The fact that
Ž . Ž .P s is bounded in every vertical strip follows from the bounds of z s ,
Ž . w x Ž . w xL s, x 1, pp. 270]272 and G s 4, p. 223 in vertical strips. More

precisely, if we let s s s q it, then given a F s F b, there exist A , A ,1 2
< <A , a , b , and g depending on a and b such that for t G 1,3

< < < < az s y 1 F A t ,Ž . 1

< < < < bL s, x F A t ,Ž . 2

and

< < < <g yp < t < r2G s F A t e .Ž . 3
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Ž . < < Ž .Thus, P s is uniformly bounded for t G 1 and a F s F b. P s is clearly
< <bounded in the remaining region where t F 1 since it is an entire

Ž .function. Now, since condition I of Lemma 4.3 is satisfied with a s 0,0'b s 1, A s 5, k s 2, and C s 1r5 5 , we conclude that0

y21 5p y1
g t s 5 hŽ . ž / ž /' i 5t5 5

y1 y1
s h ,2 2 ž /' 5t5 5 t

Ž .which is 4.2 .

5. EQUIVALENCE OF TWO OTHER
RAMANUJAN IDENTITIES

w xIn the aforementioned manuscript, Ramanujan 9, p. 145 wrote down
the two identities

` n 7 7n 1 q q f yqŽ . Ž .
n 3 3 7 2q s qf yq f yq q 8q 5.1Ž . Ž .Ž .Ý 3ž / n7 f yqŽ .1 y qŽ .ns1

and

` 2 n 7n n q f yqŽ .
3 3 78 y 7 s 49qf yq f yq q 8 . 5.2Ž . Ž .Ž .Ý n 7ž /7 1 y q f yqŽ .ns1

We will apply the ideas illustrated in the previous two sections to show
Ž . Ž .the equivalence of 5.1 and 5.2 . By Lemma 3.1, we observe that

f 7 yq7Ž .
3 3 7 2qf yq f yq q 8qŽ . Ž .

f yqŽ .

f 3 yq f 3 yq7 f 7 yqŽ . Ž .Ž .1 1 1s yiq y 8 i ,1 3 3 3 7' '7 7 t 7 7 t f yqŽ .1

where q s ey2 p i r7t. Hence, to show the equivalence of these two identi-1
ties, it suffices to show that

` n ` 2 nn 1 q q yi n n qŽ . 1nq s 8 y 7 .Ý Ý n3 3 3ž / ž /n ' ž /7 7 1 y q7 7 t1 y qŽ . 1ns1 ns1
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If we write

` 2p intn 1 y eŽ .
2p intg t s eŽ . Ý1 3ž / 2p int7 1 y eŽ .ns1

and

` 2p intn e
2h t s 8 y 7 n ,Ž . Ý1 2p intž /7 1 y ens1

Ž .then, by 5.3 , we need to show that

yi y1
g t s h . 5.4Ž . Ž .1 13 3 ž /' 7t7 7 t

Ž . Ž . Ž . Ž .The associated Dirichlet series for g t is f s s L s, x z s y 2 , while1 1 1
Ž . Ž . Ž . Ž .the associated Dirichlet series for h t is c s s y7L s y 2, x z s ,1 1 1

Ž .where x is the Legendre symbol ?r7 . Therefore,1

ys
F s s 2p G s L s, x z s y 2Ž . Ž . Ž . Ž . Ž .1 1

and

ys
C s s 2p G s y7 L s y 2, x z s .Ž . Ž . Ž . Ž . Ž . Ž .1 1

'Ž . w xBy Lemmas 4.1 and 4.2 and the fact that G x s i 7 6, pp. 197]201 , we1
easily verify that

s'C 3 y s s 7 7 F s .Ž . Ž .1 1

Ž .Now, the function F s has a pole at s s 3, with residue1

y32p G 3 L 3, x .Ž . Ž . Ž .1

w xSince 12, p. 31, Theorem 4.2

32p 3

L 3, x s ,Ž .1 3'7 7

Ž . Ž . ys r2Ž 2Ž ..we see that P s [ F s q 7 8r7 3 y s is entire. The function1 1
Ž . ŽP s is also bounded in every vertical strip the argument is similar to that1
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. Ž .given in Section 5 . Thus, I of Lemma 4.3 is satisfied with a s 0, b s 8,0 0
k s 3, A s 7, and C s 1r72. Therefore, we conclude that

y31 7t y1
3r2g t s 7 hŽ .1 1ž / ž /7 i 7t

yi y1
s h ,13 3 ž /' 7t7 7 t

Ž .which is 5.4 .

Ž .REMARK. Garvan has recently given a short and elegant proof of 5.1 .
w xSee 2 .
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