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1. Introduction

Let p(n) denote the number of unrestricted partitions of the non-negative integer n, then

p
(
5 jn + δ5, j

) ≡ 0
(
mod 5 j), (1.1)

p
(
7 jn + δ7, j

) ≡ 0
(
mod 7� j/2�+1), (1.2)

p
(
11 jn + δ11, j

) ≡ 0
(
mod 11 j), (1.3)

where δ�, j = 1/24 (mod � j). These are commonly known as the Ramanujan congruences. The con-
gruence (1.3) was proved by A.O.L. Atkin [1] while the proofs of (1.1) and (1.2) have traditionally
been attributed to G.N. Watson [18], although Ramanujan had already outlined the proofs in an un-
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published manuscript [4]. More details about this and other results concerning p(n) can be found in
[13, Chapter 5].

In [15], Ramanujan proved (1.1) and (1.2) for j = 1 and 2 using the following two identities

∞∑
n=0

p(5n + 4)qn = 5
∞∏

n=1

(1 − q5n)5

(1 − qn)6
, (1.4)

and

∞∑
n=0

p(7n + 5)qn = 7
∞∏

n=1

(1 − q7n)3

(1 − qn)4
+ 49q

∞∏
n=1

(1 − q7n)7

(1 − qn)8
. (1.5)

Identity (1.4) was described by G.H. Hardy as Ramanujan’s most beautiful identity [16, p. xxxv] and
Ramanujan [15] provided an elegant proof using the following identity,

q−1/5
∞∏

n=1

(1 − qn/5)

(1 − q5n)
= 1

R(q)
− 1 − R(q), (1.6)

where R(q) is the Rogers–Ramanujan continued fraction given by

R(q) = q1/5

1 +
q

1 +
q2

1 + · · · .

Recently, H.-C. Chan [5, Theorem 2] proved an analogue of (1.6) involving Ramanujan’s cubic con-
tinued fraction and obtained an analogue of (1.4). He showed that if

∞∑
n=0

a(n)qn =
∞∏

n=1

1

(1 − qn)(1 − q2n)
,

then

∞∑
n=0

a(3n + 2)qn = 3
∞∏

n=1

(1 − q3n)3(1 − q6n)3

(1 − qn)4(1 − q2n)4
. (1.7)

H.-C. Chan and S. Cooper [7] subsequently obtained another analogue of (1.4), namely,

∞∑
n=0

c(2n + 1)qn = 2
∞∏

n=1

(1 − q2n)4(1 − q6n)4

(1 − qn)6(1 − q3n)6
, (1.8)

where the generating function of c(n) is given by

∞∑
n=0

c(n)qn =
∞∏

n=1

1

(1 − qn)2(1 − q3n)2
.

Again (1.8) was derived via an identity analogous to (1.6). (See also [10].)
The existence of identities (1.4), (1.5), (1.7) and (1.8) can all be explained by the theory of modular

functions. Furthermore, they can be established without first proving identities similar to (1.6). The
first author and R.P. Lewis [9] used Hecke operators to provide a uniform proof of (1.4), (1.5), as well
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as an identity due to H.S. Zuckerman [19] involving the coefficients p(13n + 6). In the next section,
we extend their technique to prove (1.7), (1.8) and several new identities. To state these identities, let
t be a positive integer and define the infinite product

E(t) =
∞∏

n=1

(
1 − qtn)

. (1.9)

A generalized partition π is an expression of the form

π =
[ ∏

t

trt

]
, (1.10)

where rt are integers and only finitely many rt are nonzero. For a fixed partition π , we define the
associated infinite product

Aπ ( j) =
∏

t

∞∏
n=1

(
1 − q jtn)rt =

∏
t

E( jt)rt , (1.11)

and the coefficients pπ (n) by

∞∑
n=0

pπ (n)qn = 1

Aπ (1)
. (1.12)

In this notation, a(n) = p[1121](n) and c(n) = p[1232](n). We also adopt the convention that pπ (n) = 0
whenever n is negative.

Theorem 1. The following identities hold.

∞∑
n=0

p[1171](2n − 1)qn = q
E(2)2 E(14)2

E(1)3 E(7)3
, (1.13)

∞∑
n=0

p[1454](2n − 3)qn = 4q2 E(2)4 E(10)4

E(1)8 E(5)8
+ 8q3 E(2)8 E(10)8

E(1)12 E(5)12
, (1.14)

∞∑
n=0

p[12112](2n − 3)qn = 2q2 E(2)2 E(22)2

E(1)4 E(11)4
+ 2q3 E(2)4 E(22)4

E(1)6 E(11)6
, (1.15)

∞∑
n=0

p[1151](3n − 2)qn = q
E(3)E(15)

E(1)2 E(5)2
+ 3q2 E(3)3 E(15)3

E(1)4 E(5)4
, (1.16)

∞∑
n=0

p[11231](2n − 3)qn = q2 E(2)E(46)

E(1)2 E(23)2
+ q3 E(2)2 E(46)2

E(1)3 E(23)3
, (1.17)

∞∑
n=0

p[1121](5n − 3)qn = 3q
E(5)E(10)

E(1)2 E(2)2
+ 25q2 E(5)3 E(10)3

E(1)4 E(2)4
+ 125q3 E(5)5 E(10)5

E(1)6 E(2)6
, (1.18)

∞∑
p[11111](3n − 4)qn = 2q2 E(3)E(33)

E(1)2 E(11)2
+ 3q3 E(3)2 E(33)2

E(1)3 E(11)3
+ 3q4 E(3)3 E(33)3

E(1)4 E(11)4
, (1.19)
n=0
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∞∑
n=0

p[1131](7n − 8)qn = 16q2 E(7)E(21)

E(1)2 E(3)2
+ 161q3 E(7)2 E(21)2

E(1)3 E(3)3
+ 980q4 E(7)3 E(21)3

E(1)4 E(3)4

+ 3773q5 E(7)4 E(21)4

E(1)5 E(3)5
+ 9604q6 E(7)5 E(21)5

E(1)6 E(3)6

+ 16 807q7 E(7)6 E(21)6

E(1)7 E(3)7
+ 16 807q8 E(7)7 E(21)7

E(1)8 E(3)8
. (1.20)

Besides proving (1.7) Chan [6] proved a higher power analogue of the Ramanujan congruence
for a(n). The corresponding analogue for c(n) was subsequently established by Chan and Cooper [7].
The result for a(n) is

Corollary 2. (See H.-C. Chan [6].)

a
(
3 jn + c j

) ≡ 0
(
mod 32� j/2�+1),

where c j = 1/8 (mod 3 j).

In Section 3, we shall prove a different higher power congruence for a(n), involving the prime 5,
which leads to the following.

Corollary 3.

a
(
5 jn + d j

) ≡ 0
(
mod 5� j

2 �),
where d j = 1/8 (mod 5 j).

Both Corollaries 2 and 3 were first discovered implicitly by P.C. Eggan [11].1

2. Proof of Theorem 1 and consequences

In this section, we shall illustrate how the identities in Theorem 1 may be constructed via the
theory of modular functions. Most of the results that we need can be found in [2].

Let H = {τ ∈ C: Imτ > 0} be the complex upper half plane and Γ be any subgroup of SL2(Z).
Elements of Γ act on H as linear fractional transformations and Γ has a connected fundamental
domain. The points of compactification of the fundamental domain on the boundary of H are called
cusps. Fix an integer k for a function f (τ ) on H. k is usually called the weight of f (τ ), although

in our treatment we are mainly interested in the case k = 0. For any matrix L =
(

a b
c d

)
∈ GL+

2 (R), we

define the slash operator by

f | L = (ad − bc)k/2(cτ + d)−k f

(
aτ + b

cτ + d

)
. (2.1)

We say that f (τ ) is a modular function (of weight 0) on Γ , if f (τ ) is analytic in the interior of H,
meromorphic at each cusp of Γ and satisfies

f | V = f , for every V ∈ Γ.

1 We thank F.G. Garvan for this reference.
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We define

Γ0(m) =
{(

a b
c d

)
∈ SL2(Z): c ≡ 0 (mod m)

}
,

and

An =
(

n 0
0 1

)
, S =

(
1 1
0 1

)
, We =

(
ex y
mz ew

)
,

where We is known as an Atkin–Lehner involution and satisfies det We = e, e ‖m. The action of We

is independent of x, y, z and w in the definition and W 2
e = I modulo Γ0(m). We is in the normalizer

of Γ0(m) and we denote the group generated by Γ0(m) and We by Γ0(m) + We . Finally, we define
the Hecke operator U∗

� for some prime � by

f
∣∣ U∗

� =
�−1∑
j=0

f
∣∣ A−1

� S j. (2.2)

Lemma 4. Let � be prime, � | m. If f (τ ) is a modular function on Γ0(m) then f | U∗
� is a modular function

on Γ0(m). Furthermore, if �2 | m then f | U∗
� is a modular function on Γ0(m/�).

Proof. [2, Lemma 7]. �
Lemma 5. Let e ‖m. If f (τ ) is a modular function on Γ0(m) then f | We is a modular function on Γ0(m).

Proof. [2, Lemma 10]. �
Lemma 6. Let � be prime, � | m, e ‖m and (�, e) = 1. If f (τ ) is a modular function on Γ0(m) then

(
f

∣∣ U∗
�

) ∣∣ We = ( f | We)
∣∣ U∗

� .

Proof. Following the proof of [2, Lemma 11], since (�, e) = 1, we can choose

We ≡
(

1 0
0 1

)
(mod �) and M j =

(
� − j
0 1

)
.

By the definition (2.2), we have

f
∣∣ U∗

� =
∑

f
∣∣ M−1

j ,

thus it suffices to prove that each M−1
j commutes with We . A straightforward computation reveals

that M−1
j We M j is a matrix with integral entries and is equal to some W ′

e . Since these are involutions,

f | M−1
j We M j W −1

e = f , hence f | M−1
j We = f | We M−1

j . �
Lemma 7. Let � be prime, �2 | m, e ‖m and (�, e) = 1. If f (τ ) is a modular function on Γ0(m) + We then
f | U∗

� is a modular function on Γ0(m/�) + We.
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Proof. By the hypothesis, f is also a modular function on Γ0(m), hence f (τ ) | U∗
� is a modular func-

tion on Γ0(m/�). Thus it suffices to show that f (τ ) | U∗
� is invariant under We which follows directly

from Lemma 6. �
From this point onwards, we only consider modular functions that vanish at all cusps. If we let

q = e2π iτ , the Fourier expansion of the modular function f (τ ) is given by

f (τ ) =
∞∑

n=1

a(n)qn.

For a prime �, the Hecke operator U� is defined by

f | U� =
∞∑

n=1

a(�n)qn. (2.3)

Lemma 8. Let � be prime, � | m. If f (τ ) is a modular function (of weight 0) on Γ0(m) that vanishes at all cusps,
then � f | U� = f | U∗

� .

Proof. [2, Lemma 14]. �
Lemma 9. For a product of two Fourier expansions, we have

( ∞∑
n=1

a(n)q�n
∞∑

n=1

b(n)qn

) ∣∣∣ U� =
( ∞∑

n=1

a(n)qn

)( ∞∑
n=1

b(�n)qn

)
.

This result was known to Atkin and O’Brien [3, Eq. (28)], [12, p. 126] and plays a crucial role in
our proof of the identities in Theorem 1. We have seen that the U� operator maps a modular function
to another modular function on some Γ . Let H

∗ be the union of H and the set of cusps of Γ , if the
genus of Γ \H

∗ is zero, then we know the function field of Γ \H
∗ over C is generated by a certain

modular function h, known also as a hauptmodul. For brevity we simply say Γ has genus zero.

Proof of Theorem 1. Fix a prime � and a partition π and define A( j) = Aπ ( j) according to (1.11).
� and π are chosen such that

φ = φ(τ ) = qα A(�2)

A(1)
with α = �2 − 1

24

∑
t

trt, (2.4)

is a modular function on Γ0(�
2e) + We , where (�, e) = 1. In addition, Γ0(�e) + We should have genus

zero, with hauptmodul defined by

h = h(τ ) = qβ A(�)γ

A(1)γ
where β = (� − 1)γ

24

∑
t

trt . (2.5)

In the above, α, β and γ are all positive integers.
From Lemma 9,

φ | U� =
(

qα A
(
�2) ∞∑

pπ (n)qn

) ∣∣∣ U� = A(�)

∞∑
pπ (�n − α)qn. (2.6)
n=0 n=0
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On the other hand, by Lemma 7, φ | U� is a modular function on Γ0(�e) + We which has genus
zero. Thus, it must be generated by the hauptmodul h. For each of the identities in Theorem 1, as well
as (1.7) and (1.8), a computation reveals that φ | U� are all polynomials in h with integral coefficients,
i.e.

∞∑
n=0

pπ (�n − α)qn = 1

A(�)

N∑
j=1

a jh
j, a j ∈ Z. � (2.7)

We shall illustrate by proving identity (1.20) in detail. The Dedekind eta function is defined as

η(τ ) = q1/24
∞∏

n=1

(
1 − qn) = q1/24 E(1), where q = e2π iτ . (2.8)

For a generalized partition π , we define the eta-quotient associated with π by

ηπ (τ ) =
∏

t

η(tτ )rt . (2.9)

Many examples of modular functions of weight 0 on Γ0(m) + We can be given in terms of eta-
quotients. In particular, Γ0(21) + W3 has genus zero, and is generated by the hauptmodul

h = η(7τ )η(21τ )

η(τ )η(3τ )
= q

A(7)

A(1)
,

where A( j) = E( j)E(3 j) and π = [1131]. Now using the results in [8], we can check that

φ = η(49τ )η(147τ )

η(τ )η(3τ )
= q8 A(72)

A(1)
= A

(
72) ∞∑

n=0

p[11,31](n − 8)qn

is a modular function on Γ0(147) + W3. Thus

φ | U7 = A(7)

∞∑
n=0

p[11,31](7n − 8)qn

is a modular function on Γ0(21) + W3. A direct calculation shows that it is equal to the following
polynomial

p(h) = 16h2 + 161h3 + 980h4 + 3773h5 + 9604h6 + 16 807h7 + 16 807h8, (2.10)

which proves identity (1.20). The proofs of the other identities are similar, and can be deduced from
Table 1.

The list of identities given in Theorem 1 is by no means exhaustive. In theory, there should be
many modular functions where one can apply the U� operator to lower the level by �. If the resulting
congruence subgroup has genus zero, an identity in terms of the hauptmodul exists and can be easily
calculated. But having genus zero is not a necessary condition. M.L. Lang has classified all congruence
subgroups of level less than 300 that have genus zero and a list of these groups is given as an
appendix in [8]. There are a total of 15 groups that explicitly meet the conditions set out in the proof
of Theorem 1. The remaining 5 groups share the property that e in Γ0(m) + We is composite. Their
associated identities can be deduced from Table 2.
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Table 1

Identity Γ0(�2e) + We � φ(τ ) = ηπ π h = ηπ P (h)

(1.7) Γ0(18) + W2 3 [ 91181

1121 ] [1121] [ 3464

1424 ] 3h

(1.8) Γ0(12) + W3 2 [ 42122

1232 ] [1232] [ 2666

1636 ] 2h

(1.13) Γ0(28) + W7 2 [ 41281

1171 ] [1171] [ 23143

1373 ] h

(1.14) Γ0(20) + W5 2 [ 44204

1454 ] [1454] [ 24104

1454 ] 4h2 + 8h3

(1.15) Γ0(44) + W11 2 [ 42442

12112 ] [12112] [ 22222

12112 ] 2h2 + 2h3

(1.16) Γ0(45) + W5 3 [ 91451

1151 ] [1151] [ 32152

1252 ] h + 3h2

(1.17) Γ0(92) + W23 2 [ 41921

11231 ] [11231] [ 21461

11231 ] h2 + h3

(1.18) Γ0(50) + W2 5 [ 251501

1121 ] [1121] [ 52102

1222 ] 3h + 25h2 + 125h3

(1.19) Γ0(99) + W11 3 [ 91991

11111 ] [11111] [ 31331

11111 ] 2h2 + 3h3 + 3h4

(1.20) Γ0(147) + W3 7 [ 4911471

1131 ] [1131] [ 71211

1131 ] p(h) defined in (2.10)

Table 2

Γ0(�2e) + We � φ(τ ) = ηπ π h = ηπ P (h)

Γ0(36) + W4 3 [ 2191361

1141181 ] [112−141] [ 2434124

144464 ] h

Γ0(36) + W9 2 [ 3243363

1393122 ] [133−293] [ 2332183

136293 ] 3h2 + 2h3

Γ0(60) + W15 2 [ 314251602

12121152201 ] [123−15−1152] [ 223151302

1261101152 ] 2h2 + h3

Γ0(72) + W8 3 [ 214192722

1282181361 ] [122−14−182] [ 213241242

126182121 ] 4h2 + 6h3 + 3h4

Γ0(100) + W4 5 [ 222521002

1242502 ] [122−242] [ 2252202

1242102 ] 11h2 + 60h3 + 175h4 + 250h5 + 125h6

From the above identities, we see that only a(n), c(n), p[1454](n) and p[12112](n) satisfy

pπ (�n − α) ≡ 0 (mod �). (2.11)

J. Sinick [17] has obtained some necessary conditions for such congruences.
We further note that identities (1.13), (1.16), (1.18), (1.19) and (1.20) can be written as the following

congruences:

E(2)E(14)

∞∑
n=0

p[1171](2n − 1)qn ≡ η3(τ )η3(7τ ) (mod 2), (2.12)

E(3)E(15)

∞∑
n=0

p[1151](3n − 2)qn ≡ η4(τ )η4(5τ ) (mod 3), (2.13)

E(5)E(10)

∞∑
n=0

p[1121](5n − 3)qn ≡ 3η8(τ )η8(2τ ) (mod 5), (2.14)

E(3)E(33)

∞∑
n=0

p[11111](3n − 4)qn ≡ 2η4(τ )η4(11τ ) (mod 3), (2.15)

E(7)E(21)

∞∑
p[1131](7n − 8)qn ≡ 2η12(τ )η12(3τ ) (mod 7). (2.16)
n=0
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Recall that in each of the above, the expression on the left-hand side is a modular function on
Γ0(�e) + We which is now congruent (modulo �) to a modular form on Γ0(e), where the weight
of this modular form is divisible by � − 1.

To state our results involving higher powers of the prime �, we fix a partition π = [∏t trt ], the
associated infinite product Aπ ( j), and the modular functions φ(τ ) and h(τ ). (See (1.11), (2.4) and (2.5)
for the respective definitions.) For positive integers j, define

L2 j−1 = Aπ (�)

∞∑
n=0

pπ

(
�2 j−1n − δ2 j−1

)
qn,

L2 j = Aπ (1)

∞∑
n=0

pπ

(
�2 jn − δ2 j

)
qn, (2.17)

where

δ2 j−1 = δ2 j = 1 − �2 j

1 − �2
α.

(See (2.4) for a definition of α.)

Theorem 10. In each of the fifteen cases listed in Tables 1 and 2, L j is a polynomial in h, the hauptmodul, with
integral coefficients.

In terms of L j , we can reformulate the results of [6] and [7] as the next two theorems.

Theorem 11. Let π = [1121], � = 3 and α = 1, then for each j,

L j ≡ c j3
2� j

2 �+1η8(τ )η8(2τ )
(
mod 32� j

2 �+2),
where c j is some integer relatively prime to 3.

Theorem 12. Let π = [1232], � = 2 and α = 1, then for each j,

L j ≡ d j2
� j

2 �+1η6(τ )η6(3τ )
(
mod 2� j

2 �+2),
where d j is some integer relatively prime to 2.

We also have the following result.

Theorem 13. Let π = [1121], � = 5 and α = 1, then for each j,

L j ≡ e j5
� j

2 �η8(τ )η8(2τ )
(
mod 5� j

2 �+1),
where e j is some integer relatively prime to 5.

Corollaries 2 and 3 in Section 1 are immediate consequences of Theorems 11 and 13.

Remark 1. Theorems 11–13 are motivated by an observation of the first author. He found that for
prime numbers �, if ln is the smallest positive integral solution to

24x ≡ 1
(
mod �n)
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and

Ln,� =
{∏∞

k=1(1 − q�k)
∑∞

k=0 p(�nk + ln)qk+1, if n is odd,∏∞
k=1(1 − qk)

∑∞
k=0 p(�nk + ln)qk+1, if n is even,

then

Ln,5 ≡ 5nan�
(
mod 5n+1), (2.18)

Ln,7 ≡ 7�n/2�+1bn�
(
mod 7�n/2�+2) (2.19)

and

Ln,11 ≡ 11ncn�E8
(
mod 11n+1), (2.20)

where (5,an) = (7,bn) = (11, cn) = 1,

� = q
∞∏

k=1

(
1 − qk)24

and

E8 = 1 + 480
∞∑

k=1

k7qk

1 − qk
.

Note that (2.18) and (2.19) follow immediately from Watson’s work (see [12]). The congruence (2.20),
on the other hand, does not follow immediately from existing methods. Y.F. Yang, at the request of the
first author, verified (2.20) for the first few values of n. It is very likely that one can obtain a rigorous
proof of (2.20) using Atkin’s method given in [1]. It is our hope that by writing the congruences in
the form as in (2.18)–(2.20), new proofs which are independent of Atkin’s identities and explicit use
of modular equations such as (3.6) can be found.

3. Identities involving higher prime powers

We shall illustrate how Theorem 10 may be proved by induction on j, with the identities of
Theorem 1 forming the respective base cases, L1. This method is due to Atkin [1], [12, Chapters 7
and 8]. We first establish the following general lemmas.

Lemma 14. For a positive integer j, we have

L2 j−1 | U� = L2 j,

(φL2 j) | U� = L2 j+1.

Proof. We shall only prove the second equation.
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φL2 j = qα A(�2)

A(1)
· A(1)

∞∑
n=0

pπ

(
�2 jn − δ2 j

)
qn

= A
(
�2) ∞∑

n=0

pπ

(
�2 j(n − α) − (

1 + �2 + · · · + �2 j−2)α)
qn

= A
(
�2) ∞∑

n=0

pπ

(
�2 jn − δ2 j+1

)
qn.

The result then follows from Lemma 9. �
We need to study the effect of applying the Hecke operator U� , on the modular functions φ and h.

For a positive integer r, define

Sr =
�−1∑
j=0

φr
(

τ + j

�

)

=
�−1∑
j=0

φr(τ )
∣∣ A−1

� S j

= φr(τ )
∣∣ U∗

�

= �φr(τ )
∣∣ U�. (3.1)

Lemma 15. For a positive integer p, we have

hp
∣∣ U� = S pγ

�hp
,

(
φhp) ∣∣ U� = S pγ +1

�hp
.

Proof.

hp = qpβ A(�)pγ

A(1)pγ

= qpβ

qpβ(�+1)

A(�)pγ

A(�2)pγ
· qαpγ A(�2)pγ

A(1)pγ

= 1

qpβ�

A(�)pγ

A(�2)pγ
φpγ . (3.2)

In the above, we used the fact that αγ = β(� + 1). By applying U� and Lemma 9,

hp
∣∣ U� = 1

qpβ

A(1)pγ

A(�)pγ

(
φpγ

) ∣∣ U� (3.3)

= 1

hp
· 1

�
S pγ .

The proof of the second equation is similar. �
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Next, we have to show that φ(
τ+ j

�
) are distinct roots of a polynomial with coefficients in terms

of h. By Newton’s formula for symmetric power sum of roots [12, p. 118], each Sr satisfies a recur-
rence relation and can be written as a polynomial in terms of h. Thus if L j is a polynomial in h,
multiplying L j by φ if necessary and applying U� , we see that L j+1 can be written in terms of a sum
of Sr which in turn can be written as a polynomial in h.

At this stage, the proof depends crucially on a modular equation satisfied by the corresponding φ

and h and we shall provide the details for � = 5 and the partition π = [1121]. Hence Aπ ( j) = A( j) =
E( j)E(2 j) and pπ (n) = a(n). We have

φ(τ ) = η(25τ )η(50τ )

η(τ )η(2τ )
= q3 A(25)

A(1)
, (3.4)

and

h(τ ) = η2(5τ )η2(10τ )

η2(τ )η2(2τ )
= q

A(5)2

A(1)2
. (3.5)

φ(τ ) is a modular function on Γ0(50)+ W2 and h(τ ) is the hauptmodul of Γ0(10)+ W2. Furthermore
h(5τ ) is also a modular function on Γ0(50) + W2 and thus φ(τ ) and h5(τ ) = h(5τ ) belong to the
same congruence subgroup and as a result, satisfy a polynomial equation of degree 5 and degree 3
respectively [14, p. 110], i.e.

φ5(τ ) = (
15h5(τ ) + 53h2

5(τ ) + 54h3
5(τ )

)
φ4(τ ) − (

52h2
5(τ ) + 53h3

5(τ )
)
φ3(τ )

+ (
5h2

5(τ ) + 52h3
5(τ )

)
φ2(τ ) − 5h3

5(τ )φ(τ ) + h3
5(τ ). (3.6)

The above equation holds with h5(τ ) = h(5τ ) invariant when we replace τ by τ + j/5 for j from 1
to 4, thus we conclude that the following polynomial

Q (u) = u5 − (
15h + 53h2 + 54h3)u4 + (

52h2 + 53h3)u3

− (
5h2 + 52h3)u2 + 5h3u − h3 (3.7)

has five distinct roots φ(
τ+ j

5 ), for j from 0 to 4. Now by Newton’s theorem, Sr for r � 5, satisfies

Sr = (
15h + 53h2 + 54h3)Sr−1 − (

52h2 + 53h3)Sr−2

+ (
5h2 + 52h3)Sr−3 − 5h3 Sr−4 + h3 Sr−5. (3.8)

We also have

S1 = 15 h + 125 h2 + 625 h3,

S2 = 175 h2 + 3500 h3 + 34 375 h4 + 156 250 h5 + 390 625 h6,

S3 = 15 h2 + 2325 h3 + 69 375 h4 + 1 031 250 h5 + 8 750 000 h6 + 46 875 000 h7

+ 146 484 375 h8 + 244 140 625 h9,

S4 = 280 h3 + 33 375 h4 + 1 237 500h5 + 24 312 500 h6 + 295 312 500 h7 + 2 412 109 375 h8

+ 13 476 562 500 h9 + 51 269 531 250 h10 + 122 070 312 500 h11

+ 152 587 890 625 h12. (3.9)
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Hence if we write

Sr =
∑

ar,php, (3.10)

we obtain the recurrence relation

ar,p = 15ar−1,p−1 + 125ar−1,p−2 + 625ar−1,p−3 − 25ar−2,p−2 − 125ar−2,p−3

+ 5ar−3,p−2 + 25ar−3,p−3 − 5ar−4,p−3 + ar−5,p−3, (3.11)

for r � 5. Moreover, an induction argument shows that

ar,p 
= 0 if and only if

⌊
3r + 4

5

⌋
� p � 3r. (3.12)

If we now define ν(ar,p) as the highest power of 5 that divides ar,p and ν(0) = ∞, we can show by
induction that

ν(ar,p) �
⌊

5p − 3r + 4

4

⌋
. (3.13)

We are now ready to prove Theorem 10 for φ and h defined in (3.4) and (3.5). Eq. (1.18) is our base
case and can be rewritten as L1 = 3h + 25h2 + 125h3. Suppose that we have

L2 j−1 =
∑

b2 j−1,rhr, (3.14)

where only finitely many b2 j−1,r are nonzero and each is an integer. Applying U5,

L2 j−1 | U5 = L2 j =
∑

b2 j−1,rhr
∣∣ U5

=
∑

b2 j−1,r

6r∑
p=μ

a2r,php

5hr
. (3.15)

It follows from (3.12) that for every p in the second sum,

p � μ =
⌊

6r + 4

5

⌋
� r +

⌊
r + 4

5

⌋
� r + 1. (3.16)

Furthermore,

ν(a2r,p) �
⌊

5p − 6r + 4

4

⌋
�

⌊
6r + 4 − 1 − 6r + 4

4

⌋
� 1. (3.17)

Thus L2 j is also a polynomial in h with integral coefficients. The inductive case from L2 j to L2 j+1 is
similar. The other fourteen cases for Theorem 10 can be dealt with in the same way.

We will proceed to prove Theorem 13. We first note that

h(τ ) = η2(5τ )η2(10τ )

η2(τ )η2(2τ )
≡ η8(τ )η8(2τ ) (mod 5). (3.18)
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If we set

L j =
∑

b j,rhr, (3.19)

then Theorem 13 follows from the next lemma.

Lemma 16.

ν(b2 j−1,1) = j − 1,

ν(b2 j−1,r) � j − 1 +
⌊

5r − 4

4

⌋
, if r > 1,

ν(b2 j,1) = j,

ν(b2 j,r) � j +
⌊

5r − 5

4

⌋
, if r > 1.

Proof. We shall prove this by induction. Since L1 = 3h + 25h2 + 125h3, ν(b1,1) = 0, ν(b1,2) = 2 and
ν(b1,3) = 3.

Now from (3.15),

L2 j =
∑
s�1

b2 j,shs =
∑
r�1

b2 j−1,r

(
6r∑

p=μ

a2r,php−r

5

)
. (3.20)

Equating coefficients, we have

b2 j,s =
∑
r�1

b2 j−1,r

(
a2r,s+r

5

)
. (3.21)

Hence, for s > 1, we have

ν(b2 j,s) � −1 + min
r�1

{
j − 1 +

⌊
5r − 4

4

⌋
+

⌊
5(s + r) − 3(2r) + 4

4

⌋}

� j − 1 + min
r�1

{⌊
5r − 4

4

⌋
+

⌊
5s − r

4

⌋}

� j − 1 +
⌊

5s − 1

4

⌋

� j +
⌊

5s − 5

4

⌋
.

We made use of the fact that the minimum occurs at r = 1. Next for the case s = 1, we have

5b2 j,1 =
∑
r�1

b2 j−1,r(a2r,1+r)

= b2 j−1,1(a2,2) +
∑
r�2

b2 j−1,r(a2r,1+r)

= 175b2 j−1,1 +
∑
r�2

b2 j−1,r(a2r,1+r). (3.22)
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Thus,

ν(b2 j,1) = −1 + min

{
2 + j − 1,min

r�2

{
j − 1 +

⌊
5r − 4

4

⌋
+

⌊
5 − r + 4

4

⌋}}

= −1 + ( j + 1) = j.

Next, we have

L2 j+1 =
∑

b2 j+1,shs = (φL2 j) | U5

=
∑

b2 j,r

∑
p

a2r+1,php−r

5
. (3.23)

Equating coefficients, we have

b2 j+1,s =
∑
r�1

b2 j,r

(
a2r+1,s+r

5

)
. (3.24)

Thus, for s > 1, we have

ν(b2 j+1,s) � −1 + min
r�1

{
j +

⌊
5r − 5

4

⌋
+

⌊
5(s + r) − 3(2r + 1) + 4

4

⌋}

� j − 1 + min
r�1

{⌊
5r − 5

4

⌋
+

⌊
5s − r + 1

4

⌋}

� j − 1 +
⌊

5s

4

⌋

� j +
⌊

5s − 4

4

⌋
.

When s = 1,

5b2 j+1,1 = b2 j,1(a3,2) +
∑
r�2

b2 j,r(a2r+1,1+r)

= 15b2 j,1 +
∑
r�2

b2 j,r(a2r+1,1+r).

Finally,

ν(b2 j+1,1) = −1 + min

{
1 + j,min

r�2

{
j +

⌊
5r − 5

4

⌋
+

⌊
5 − r + 1

4

⌋}}

= −1 + (1 + j) = j,

which completes the proof of Lemma 16. �
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