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Abstract. It is well known that if p is a prime such that p ≡ 1 (mod 4), then p can be
expressed as a sum of two squares. Several proofs of this fact are known and one of them, due
to E. Jacobsthal, involves the identity p = x2

+ y2, with x and y expressed explicitly in terms
of sums involving the Legendre symbol. These sums are now known as the Jacobsthal sums.
In this short note, we prove that if p ≡ 1 (mod 6), then 3p = u2

+ uv + v2 for some integers
u and v using an analogue of Jacobsthal’s identity.

1. INTRODUCTION. The following theorem is well known:

Theorem 1.1. If p is a prime such that p ≡ 1 (mod 4) then

p = x2
+ y2 (1.1)

for some integers x and y.

Theorem 1.1 was first observed independently by A. Girard (1595–1632) and P.
de Fermat (1601–1665) (see [5, p. 14]). A complete proof of Theorem 1.1 appears
to have been first obtained by L. Euler (1707–1783) (see [3, pp. 7–12]). Since then,
many different proofs of this result have been discovered, one of which is due to E.
Jacobsthal.

To describe Jacobsthal’s proof, we introduce the Legendre symbol. Let p be an odd
prime. An integer a relatively prime to p is said to be a quadratic residue modulo
p if the congruence x2

≡ a (mod p) is solvable in integers; otherwise, it is called a
quadratic nonresidue. The Legendre symbol is defined by

(
a

p

)
=


0 if p | a,
1 if a is a quadratic residue modulo p,
−1 if a is a quadratic nonresidue modulo p.

Around 1907, E. Jacobsthal (see [8]) proved Theorem 1.1 using the identity [1]:

p =

{
1

2

p−1∑
α=1

(
α3
+ α

p

)}2

+

{
1

2

p−1∑
α=1

(
α3
+ aα

p

)}2

, (1.2)

where the integer a is any quadratic nonresidue modulo p.
The relation (1.1) can be interpreted as the factorization of the number p as a prod-

uct of elements (x + iy) and (x − iy) in Z[i], where i =
√
−1. If we replace i and

p ≡ 1 (mod 4) by ω = eπ i/3 and p ≡ 1 (mod 6) respectively, then it is known that
p is a product of (x + ωy) and (x + ωy), where x, y ∈ Z and ω denotes the complex
conjugate of ω. Equivalently, we have the following theorem.
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Theorem 1.2. If p is a prime such that p ≡ 1 (mod 6) then

p = x2
+ xy + y2 (1.3)

for some integers x and y.

Theorem 1.2 is clearly a cubic analogue1 of Theorem 1.1 and it can be proved using
Euler’s ideas in his proof of Theorem 1.1. A natural question is to ask for a cubic
analogue of (1.2). After several attempts, we were led to a possible generalization of
(1.2), which we now describe.

Let 1(A, B,C) = B2
− 4AC be the discriminant of the binary quadratic form

f (x, y) = Ax2
+ Bxy + Cy2.

We first observe that (1.2) can be expressed as

|1(1, 0, 1)|p = 4p =

{
p∑

α=1

(
α3
+ α

p

)}2

+

{
p∑

α=1

(
α3
+ aα

p

)}2

. (1.4)

With this interpretation of (1.2), we have the following analogue:

Theorem 1.3. Let p ≡ 1 (mod 6). Suppose that a is any integer such that x3
≡ a

(mod p) is not solvable. Then

|1(1, 1, 1)|p = 3p = x2
+ xy + y2, (1.5)

with

x =
p∑

α=1

(
α3
+ 1

p

)
and y =

(
a

p

) p∑
α=1

(
α3
+ a

p

)
.

2. THE GAUSS SUMS. Let p be a prime number and Fp = Z/pZ be the finite field
of p elements. In particular, F∗p, the set of invertible elements in Fp, is a cyclic group
of order p − 1 under multiplication. An integer g is a primitive root modulo p if g
generates the cyclic group F∗p. A (multiplicative) character χ of F∗p (or modulo p) is a
group homomorphism from F∗p to C∗, the set of nonzero complex numbers. Namely,
for any nonzero elements α, β ∈ Fp, χ(αβ) = χ(α)χ(β). The image χ(F∗p) is a finite
cyclic subgroup of C∗ whose cardinality is called the order of the character χ . By
convention, χ(0) = 0.

Example 2.1. The assignment χ(α) = 1 for all α ∈ F∗p is an order-1 character, called
the principal character modulo p.

Example 2.2. The Legendre symbol defined on Z in Section 1 is periodic with period
p and can be viewed as an order-2 character (or a quadratic character) on F∗p when p
is an odd prime. Note that this character is the only character of order 2 on F∗p because
a character of order 2 must take value −1 at a primitive root g, and the assigment
g 7→ −1 completely determines this character.

1The word “cubic” refers to the fact that the binary quadratic form x2
+ xy + y2 factors over the field

generated by the cube root of unity.
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For convenience, we shall adopt the following notation.

Notation 2.1. When we write (α−1/p), we view α−1 as the inverse of α in F∗p. Fur-
thermore, we will replace

p−1∑
α=1

by
∑
α∈F∗p

(
or simply

∑∗

α

)

and

p∑
α=1

by
∑
α∈Fp

(
or simply

∑
α

)
.

The following well-known lemma about characters will be used later in this article.

Lemma 2.3. If χ is a nonprincipal character of F∗p, then∑
α

χ(α) = 0.

Proof. As the character χ is nonprincipal, there exists β ∈ F∗p such that χ(β) 6= 1.
Also, the map that sends α 7→ αβ is one-to-one on Fp, and is therefore a bijection
since Fp is finite. Consequently,

∑
α

χ(α) =
∑
α

χ(αβ) =

(∑
α

χ(α)

)
χ(β).

This implies
(∑

α χ(α)
)
(1− χ(β)) = 0. By our choice of β, (1− χ(β)) 6= 0. Hence,∑

α χ(α) = 0.

For any character χ on F∗p and β ∈ Fp, we define the Gauss sum

G(β, χ) =
∑
α

χ(α)e2π iαβ/p.

When β = 1, we write

G(χ) = G(1, χ).

Note that for β 6= 0,

G(β, χ) =
∑
α

χ(α)e2π iαβ/p
= χ−1(β)

∑
α

χ(αβ)e2π iαβ/p
= χ(β−1)G(χ). (2.1)

Another basic property of Gauss sums that we need is the following:

Lemma 2.4 ([2, Theorem 1.1.4(c)]). Let χ be a nonprincipal character of F∗p. Then,
for β 6= 0,

|G(β, χ)|2 = G(β, χ)G(β, χ) = p.

318 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118



Proof. By (2.1), we have for β 6= 0,

χ(β−1)G(χ) = G(β, χ) =
∑
α

χ(α)e2π iαβ/p. (2.2)

Notice that in the case β = 0, (2.2) still holds in view of Lemma 2.3. Multiplying the
two sides of (2.2) by e−2π iβ/p and summing over all β in Fp, we get

G(χ)G(χ) =
∑
α

χ(α)
∑
β

e2π iβ(α−1)/p.

The inner sum is nonzero only when α = 1, in which case the inner sum is equal to p.
This implies that G(χ)G(χ) = p. Hence, we conclude that

|G(β, χ)|2 =
∣∣χ(β−1)

∣∣2 · |G(χ)|2 = 1 · p = p.

3. THE JACOBI SUMS. Let χ and ξ be characters of F∗p. The Jacobi sum is defined
as

J (χ, ξ) =
∑
α

χ(α)ξ(1− α).

The following lemma gives a relation between the Gauss sum and the Jacobi sum.

Lemma 3.1 ([2, Theorem 2.1.3]). Let χ and ξ be two characters of F∗p such that χξ
is nonprincipal. Then

J (χ, ξ) =
G(χ)G(ξ)

G(χξ)
.

Proof. We observe that

G(χ)G(ξ) =
∑
α

∑
β

χ(α)ξ(β)e2π i(α+β)/p
=

∑
γ

∑
α+β=γ

χ(α)ξ(β)e2π iγ /p

=

∑
α+β=0

χ(α)ξ(β)+
∑
γ 6=0

e2π iγ /p
∑
α

χ(α)ξ(γ − α)

= ξ(−1)
∑
α

χξ(α)+
∑
γ 6=0

e2π iγ /p
∑
α

χ(γ α)ξ(γ − γα)

= 0+
∑
γ 6=0

χξ(γ )e2π iγ /p J (χ, ξ) = G(χξ)J (χ, ξ),

where we have used Lemma 2.3 in the second-to-last equality.

The next lemma is useful in computing Jacobi sums of the type J (χ, ρ) where ρ is
the quadratic character of F∗p.

Lemma 3.2 ([2, Theorem 2.1.4]). Let χ be a character of F∗p, where p is an odd
prime, and ρ be the quadratic character of F∗p. Then

J (χ, ρ) = χ(4)J (χ, χ).
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Proof. Let β be a fixed element of Fp. Consider the number of solutions to the equation

α(1− α) = β.

Since 2 is invertible in Fp, the above equation is equivalent to

(2α − 1)2 = 1− 4β,

whose number of solutions is given by

1+ ρ(1− 4β).

Therefore

J (χ, χ) =
∑
α

χ(α(1− α)) =
∑
β

χ(β)(1+ ρ(1− 4β))

=
1

χ(4)

∑
β

χ(4β)ρ(1− 4β) =
1

χ(4)
J (χ, ρ).

Lemma 3.3. Let p ≡ 1 (mod 6) and χ be a character of order 6 of Fp. Then

J (χ, ρ) = c + d
√
−3,

where c, d ∈ Z such that

c2
+ 3d2

= p.

Proof. Pairing α with 1− α and noting that 4α(1− α) = 1 when α = (p + 1)/2, we
find that

J (χ, ρ) = χ(4)J (χ, χ) =
∑
α

χ(4α(1− α))

= 1+ 2
(p−1)/2∑

m=2

χ(4m(1− m)).

Note that χ(w) is a 6th root of unity since χ has order 6. Therefore,

χ(w) ∈ Z

[
1+
√
−3

2

]
,

and we conclude that J (χ, ρ) = c+ d
√
−3,with c, d ∈ Z. Now, by Lemmas 2.4, 3.1,

and 3.2,

|J (χ, ρ)|2 = |J (χ, χ)|2 =
|G2(χ)|2

|G(χ 2)|2
= p.

Therefore, the integers c and d satisfy

c2
+ 3d2

= |J (χ, ρ)|2 = p.

320 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118



4. THE JACOBSTHAL SUMS. Let p be a prime. Let a be an integer not divisible
by p and k be a positive integer. The Jacobsthal sums φk(a) and ψk(a) are defined by

φk(a) =
∑
α

(
α

p

)(
αk
+ a

p

)
and

ψk(a) =
∑∗

α

(
αk
+ a

p

)
=

∑
α

(
αk
+ a

p

)
−

(
a

p

)
.

In this note, we will concentrate on evaluating φk(a) and ψk(a) when k = 3. To
shorten our notation, we let φ = φ3 and ψ = ψ3.

Lemma 4.1 ([2, Proposition 6.1.5]). Let g be a primitive root modulo p. Let n and j
be integers. Then

φ(g3n+ j ) = φ(g j ).

Proof. We observe that

φ(g3n+ j ) =
∑
α

(
α

p

)(
α3
+ g3n+ j

p

)

=

∑
α

(
α

p

)(
g3n

p

)(
(αg−n)3 + g j

p

)

=

∑
α

(
α

p

)(
g−3n

p

)(
(αg−n)3 + g j

p

)

=

∑
α

(
(αg−n)3

p

)(
(αg−n)3 + g j

p

)
= φ(g j ),

where we have used (g3n/p) = (g−3n/p) in the third equality and (α/p) = (α3/p) in
the fourth equality.

Lemma 4.2 ([2, Proposition 6.1.7]). Let p be an odd prime and a be an integer not
divisible by p. Then

φ(a) =

(
a

p

)
ψ(a−1).

Proof.

φ(a) =
∑
α

(
α

p

)(
α3
+ a

p

)
=

∑∗

α

(
α

p

)(
α3a

p

)(
α−3
+ a−1

p

)

=

(
a

p

) ∑∗

α

(
α−3
+ a−1

p

)
=

(
a

p

)
ψ(a−1).
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5. THE MAIN LEMMA.

Lemma 5.1 ([2, Proposition 6.2.2]). Let p be a prime such that p ≡ 1 (mod 6), g be
a primitive root (mod p), and a be an integer such that p - a. Let χ be the character
of order 6 on F∗p such that χ(g) = e2π i/6. If a ≡ gN (mod p), then

φ(a) =



−1+ 2

(
−1

p

)
c if N ≡ 0 (mod 3)

−1−

(
−1

p

)
(c − 3d) if N ≡ 1 (mod 3)

−1−

(
−1

p

)
(c + 3d) if N ≡ 2 (mod 3),

where c and d are the integers in Lemma 3.3 such that J (χ, ρ) = c + d
√
−3 with the

property c2
+ 3d2

= p.

Proof. By our assumption, the Legendre symbol can be identified with χ3. Hence,

φ(a) =
∑
α

(
α

p

)(
α3
+ a

p

)
=

∑
α

χ(α3)χ 3(α3
+ a).

Now, observe that

1+ χ2(gs)+ χ4(gs) =

{
0 if 3 - s,
3 otherwise.

Therefore, we may write

φ(a) =
p−1∑
m=0

χ(g3m)χ 3(g3m
+ a)

=

3p−1∑
n=0

χ(gn)χ 3(gn
+ a)

1

3

2∑
j=0

χ2 j (gn)

=

p−1∑
n=0

χ(gn)χ 3(gn
+ a)

2∑
j=0

χ2 j (gn).

The last equality follows from the fact that if

F(k) =
kp−1∑

n=(k−1)p

χ(gn)χ 3(gn
+ a)

2∑
j=0

χ2 j (gn),

then for any integer k,

F(k + 1) = F(k).
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Therefore, we may rewrite

φ(a) =
∑
α

χ(α)χ3(α + a)
2∑

j=0

χ2 j (α)

= χ(−1)
∑
α

χ(−α)χ 3((−α)(−1)+ a)
2∑

j=0

χ2 j (−α)

= χ(−1)
∑
α

χ(α)χ3(a − α)
2∑

j=0

χ2 j (α)

= χ(−1)
∑
α

χ(aα)χ3(a − aα)
2∑

j=0

χ2 j (aα)

= χ(−1)χ 4(a)
2∑

j=0

χ2 j (a)J (χ 2 j+1, χ3).

Simplifying the above, we conclude that

φ(a) =

(
−1

p

)
χ−2(a)J (χ, χ3)+

(
−1

p

)
J (χ3, χ3)+

(
−1

p

)
χ2(a)J (χ 5, χ3).

(5.1)

The middle term of (5.1) is(
−1

p

)
J (χ 3, χ3) =

(
−1

p

)∑
α

(
α(1− α)

p

)
.

Note that ∑
α

(
α(1− α)

p

)
=

∑∗

α

(
α(1− α)

p

)

=

∑∗

α

(
α

p

)(
α

p

)(
α−1
− 1

p

)

=

∑∗

α

(
α − 1

p

)
= −

(
−1

p

)
by Lemma 2.3. Hence, the middle term of (5.1) is −1.

Therefore, if we write J (χ, χ3) = c +
√
−3d with c, d ∈ Z as in Lemma 3.3, then

φ(a) = −1+

(
−1

p

)(
2 Re(χ−2(a))c − 2 Im(χ−2(a))

√
3d
)
.

Now, if N ≡ 1 (mod 3), then by Lemma 4.1, we may set a = g and observe that

2 Re(χ−2(g)) = −1 and 2 Im(χ−2(g)) = −
√

3.
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If N ≡ 2 (mod 3), then by Lemma 4.1, we may set a = g2 and observe that

2 Re(χ−2(g2)) = −1 and 2 Im(χ−2(g2)) =
√

3.

Finally, when N ≡ 0 (mod 3) then we only need to compute

φ(1) = −1+ 2

(
−1

p

)
c.

This completes the proof of the lemma.

Completion of the proof of Theorem 1.3. If a is a quadratic residue modulo p and a ≡
gN (mod p) with N ≡ 1 (mod 3), then

∑
α

(
α3
+ a

p

)
− 1 = ψ(a) = φ(a−1) = −1−

(
−1

p

)
(c + 3d),

since a−1
≡ g−N (mod 3) and −N ≡ 2 (mod 3). This shows that

y =
∑
α

(
α3
+ a

p

)
= −

(
−1

p

)
(c + 3d).

Now,

x =
∑
α

(
α3
+ 1

p

)
= 2

(
−1

p

)
c.

Hence,

x2
+ xy + y2

= 3p.

Similarly, we conclude the identity in the case when a is a quadratic residue modulo p
such that the integer N in a ≡ gN (mod p) satisfies N ≡ 2 (mod 3).

The case when a is not a quadratic residue can be treated in a similar way.

6. CONCLUDING REMARKS.

1. The proof of Theorem 1.3 given here is a slight modification of the proof due to
R. Evans. This result can also be obtained by counting points on elliptic curves
over finite fields. For more details, see [7, p. 305, Theorem 4].

2. Evans informed us that using the same idea illustrated here, one can obtain sim-
ilar results for other quadratic forms. For example, from [2, Theorem 6.2.3], one
can obtain (

1

4

∑
α

(
α5
+ α

p

))2

+ 2

(
1

4

∑
α

(
α5
+ gα

p

))2

= p

where p ≡ 1 (mod 8) and g is a primitive root modulo p.
3. There are other proofs of Theorem 1.3 using eigenforms associated with Hecke

Grössencharacters. A subset of the authors are working in this direction and they
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succeeded in deriving solutions to equations such as

|1(1, 0, 2)|p = 8p = A2
+ 2B2

in terms of analogues of Jacobsthal sums. See [6] for more details.
4. Another cubic generalization of the Jacobsthal identity (1.2) was given by D.

Zagier in [4, p. 92]. There, a solution was given to

4p = A2
+ 3B2

when p ≡ 1 (mod 6) as follows: Let χ be an order-6 character of F∗p such that
χ(a) is a primitive cubic root of unity and χ(b) = χ(a)−1. Then one can take

A =
p−1∑
x=0

(
x3
+ 1

p

)
, B =

1

3

p−1∑
x=0

(
x3
+ a

p

)
−

1

3

p−1∑
x=0

(
x3
+ b

p

)
.

Zagier mentioned a septic analogue for

4p = A2
+ 7B2

and encouraged readers to investigate the solutions of

4p = A2
+ d B2

whenever Q(
√
−d) has class number 1.
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A Calculus Proof for the Pythagorean Theorem

Consider a right triangle with legs of length a and b and hypotenuse of length c.
Construct a rectangular coordinate system so that the vertices of the triangle have
coordinates (0, 0), (a, 0), and (a, b). Draw the semicircle in the upper half-plane
centered at the origin with radius c. This semicircle passes through the points
(a, b) and (0, c).

(a, b)
(0, c)

c

a

P
b

Euclid showed in Book III, Proposition 16 that if P is any point on the semi-
circle, then the line through P that is perpendicular to the radius from the origin
to P is tangent to the semicircle, in the sense that it does not intersect the semi-
circle at any point other than P . We leave it as an exercise for the reader to verify
that this line also satisfies the calculus definition of the tangent line to the semi-
circle at P . It follows that the semicircle must be the graph of a solution to the
differential equation dy/dx = −x/y. Solving this differential equation, we find
that

∫
y dy = −

∫
x dx , and therefore x2

+ y2
= C for some constant C . Since

the circle passes through the point (0, c), we must have C = c2. But then since
the circle also passes through (a, b), we can conclude that a2

+ b2
= c2.

—Submitted by John Molokach, North Carolina Virtual Public School
Smithfield-Selma High School, Smithfield, NC
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