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Abstract

A general theorem is stated that unifies 93 rational Ramanujan-type series for 1/π , 40 of
which are believed to be new. Moreover, each series is shown to have a companion identity,
thereby giving another 93 series, the majority of which are new.

1. Introduction

In 1914, Ramanujan [39] gave 17 series for 1/π . One of his best known examples (see, e.g.,
[3], [17], [27]) is

1

π
= 2

√
2

9801

∞∑
k=0

(
4k

2k

)(
2k

k

)2
(1103 + 26390k)

3964k
. (1)

It was used by R. W. Gosper in 1985 to compute 17,526,100 digits of π , then a world record.
Ramanujan’s formulas were not all proved until 1987 [14].

In [23] some new analogues of Ramanujan’s series for 1/π were discovered, for example

1

π
= 3

√
6

1225

∞∑
k=0

(
2k

k

)⎧⎨
⎩

k∑
j=0

(
k

j

)3
⎫⎬
⎭ (53 + 561k)

39200k
. (2)

The series (1) and (2) are each of the form

1

π
=

∞∑
k=0

(
2k

k

)
s(k)(A + Bk)xk

where s(k) satisfies a recurrence relation of the type

(k + 1)2s(k + 1) = (ak2 + ak + b)s(k) + ck2s(k − 1). (3)

† This work is supported by National University of Singapore Academic Research Fund R-146-000-
103-112.
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For Ramanujan’s series (1) it is easy to check that (a, b, c) = (64, 12, 0), so (3) is simply
a two-term recurrence relation in this case. It is a classical result, but not obvious, that
(a, b, c) = (7, 2, 8) for the series (2).

The aim of this paper is to give a systematic classification of series such as (1) and (2). In
the process, several new series will be given, for example

1

π
= 5

√
47

7614

∞∑
k=0

(
2k

k

)⎧⎨
⎩

k∑
j=0

(
k

j

)2(k + j

j

)⎫⎬
⎭ (−1)k (71 + 682k)

15228k
, (4)

where the corresponding sequence (3) has parameters (a, b, c) = (11, 3, 1).
There are 10 known instances of the parameters (a, b, c) for which the sequence s(k)

defined by (3) can be parameterized by modular forms. This includes the three examples
discussed above, and all 10 cases are listed in Table 1. For these values, if

x = w(1 − aw − cw2)

(1 + cw2)2

where w is a hauptmodul given in Table 1, then x satisfies an involution of the form

x
(

e−2π
√

t/�
)

= x
(

e−2π/
√

t�
)

, t > 0.

In this paper, the positive integer � coincides with the level of the modular function x . As
such, we will refer to � as the level. All of Ramanujan’s examples in [39] correspond to
� = 1, 2, 3 or 4 and in particular the series (1) belongs to the theory of level 2. The series
(2) and (4) correspond to the levels 6 and 5, respectively. We will present some new series
for level 6 and develop corresponding theories for levels 5, 8 and 9 which are new.

A further key to classifying identities such as (1), (2) and (4) is that the function z given
by

z =
∞∑

k=0

s(k)wk (5)

turns out to be a weight one modular form that satisfies the Clausen-type identity

(1 + cw2)

( ∞∑
k=0

s(k)wk

)2

=
∞∑

k=0

(
2k

k

)
s(k)

(
w(1 − aw − cw2)

(1 + cw2)2

)k

.

When c = 0 this reduces to a special case of Clausen’s identity for the hypergeometric
function. We will show further that each series such as (1), (2) and (4) has a companion
series that can be deduced from the identity

(1 − aw − cw2)

( ∞∑
k=0

s(k)wk

)2

=
∞∑

k=0

t (k)

(
w

1 − aw − cw2

)k

where t (k) satisfies the recurrence relation

(k + 1)3t (k + 1) = −(2k + 1)(ak2 + ak + a − 2b)t (k) − (4c + a2)k3t (k − 1)

and initial conditions t (−1) = 0, t (0) = 1. For example, the companion identity for (4) is
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Takeshi Sato’s example (we have corrected some misprints) [42]:

1

π
= 846√

5

∞∑
k=0

t (k)

(
k + 1

2
− 25

√
5

141

)
(−1)k

⎧⎨
⎩ 1

5
√

5

(√
5 − 1

2

)15
⎫⎬
⎭

k+1/2

(6)

where, as for (4), (a, b, c) = (11, 3, 1).
The study of series for 1/π has a long and distinguished history, and the reader is referred

to [3] or [17]. However it would be remiss not to mention [4, 9, 11, 13–15, 21, 22, 26, 39] in
connection with levels 1–4; [30] and [42] for levels 5 and 6; and [19, 23, 24, 41] for level 6.

We end this introduction by mentioning that there are some series for 1/π that do not
involve a weight one modular form such as (5) but are instead deduced directly from weight
two modular forms without the use of a Clausen-type identity. See [23], [31] and [46] for
some series for level 10 that were inspired by an example of Y. Yang, and see [32] for some
series for levels 7 and 18.

2. Statement of results

Following [23], we shall say a series is a “rational series for 1/π” if C/π can be expressed
as a series of rational numbers for some algebraic number C . The next result gives 93 rational
series for 1/π of 10 different types given by (13). Moreover, each series of type (13) has a
companion series (which generally is not a rational series) given by (14).

THEOREM 2·1. Let � ∈ {1, 2, 3, 4, 5, 6, 8, 9}. Let w = w(q) and (a, b, c) ∈ Z3 be as in
Table 1, and note that there are three different examples that correspond to the level � = 6.
Let s(k) and t (k) be the sequences defined by the recurrence relations

(k + 1)2s(k + 1) = (ak2 + ak + b)s(k) + ck2s(k − 1) (7)

and

(k + 1)3t (k + 1) = −(2k + 1)(ak2 + ak + a − 2b)t (k) − (4c + a2)k3t (k − 1) (8)

and initial conditions

s(−1) = t (−1) = 0, s(0) = t (0) = 1. (9)

Let

x = x(q) = w(1 − aw − cw2)

(1 + cw2)2
(10)

and

y = y(q) = w

1 − aw − cw2
. (11)

Let N be a positive integer.
Either: let ρ and q take the particular values

ρ = 2π
√

N/� and q = exp(−ρ); (12)

or: let ρ and q take the values

ρ =
⎧⎨
⎩

2π
√

N/4� if � ≡ 1 (mod 2),

2π
√

N/2� if � ≡ 2 (mod 4),

2π
√

N/� if � ≡ 0 (mod 4)

and q = − exp(−ρ).
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Then the identity

√
1 − 4ax − 16cx2

∞∑
k=0

(
2k

k

)
s(k) (k + λ) xk = 1

ρ
(13)

holds for the 93 sets of values of �, N , x and λ given in Tables 3–12. Moreover, for each
series identity of the type (13), the companion identity

√
1 + 2ay + (4c + a2)y2

∞∑
k=0

t (k) (k + 1
2 + µ) yk = 1

ρ
(14)

holds, where y and µ are given in terms of x and λ by

y = 1 − 2ax − √
1 − 4ax − 16cx2

2x(4c + a2)

and

µ = (λ − 1
2 )

√
1 − 4ax − 16cx2.

The examples listed in the introduction are located in the tables as follows. Ramanujan’s
series (1) occurs in Table 4 with level � = 2, degree N = 29 and q = exp(−2π

√
29/2).

The series (2) occurs in Table 10 with level � = 6, degree N = 17 and q =
exp(−2π

√
17/6). The series (4) occurs in Table 7 with level � = 5, degree N = 47 and

q = − exp(−π
√

47/5). Sato’s series (6) is the companion identity to (4).
As part of Tables 3–12, we have included the earliest known reference to the given series

of types (13) and (14). Of the 93 × 2 = 186 series represented by Tables 3–12, a total of 71
references are given. One of the series in Table 6 that corresponds to � = 4, N = 4 ought
to be known, but we do not have a reference. The other 114 series, for which references are
not given, are believed to be new.

In order to determine the convergence of (13) and (14), note that the characteristic equa-
tions for the recurrence relations (7) and (8) are

m2 − am − c = 0 and m2 + 2am + (a2 + 4c) = 0,

respectively. Therefore, by Poincaré’s theorem on difference equations [35, p. 343]

lim
k→∞

|s(k)|1/k � Mx := max

∣∣∣∣∣a ± √
a2 + 4c

2

∣∣∣∣∣
and

lim
k→∞

|t (k)|1/k � My := max
∣∣a ± 2

√−c
∣∣ .

Hence, the series (13) and (14) converge for |x | < Rx := 1/(4Mx) and |y| < Ry := 1/My ,
respectively. For reference, the values of Rx and Ry are given in Table 13.

3. Background theory

In this section and the next, we sketch a proof of Theorem 2·1. The theory for levels 1, 2,
3 and 4 has been analyzed in detail by by Chan, Chan and Liu [19], and theories for level
6 have been described in [19, 23, 24, 41]. Our goal is to outline a single, systematic theory
that applies to each level � = 1, 2, 3, 4, 5, 6 (3 cases), 8 and 9. The emphasis will be on the
commonality of the 10 cases. The theories for levels 5, 8 and 9 are new.
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Ramanujan’s Eisenstein series are defined by

P = P(q) = 1 − 24
∞∑
j=1

jq j

1 − q j
, Q = Q(q) = 1 + 240

∞∑
j=1

j3q j

1 − q j

and

R = R(q) = 1 − 504
∞∑
j=1

j5q j

1 − q j
.

For any positive integer n let Pn and ηn be defined by

Pn = P(qn) and ηn = qn/24
∞∏
j=1

(1 − qnj ).

The first result we will need involves eta-quotients.

THEOREM 3·1. For � ∈ {2, 3, 4, 5, 6, 8, 9} and with w and (a, b, c) as given in Table 1,
the function

1

w
− a − cw

is expressible as an eta-quotient as given by Table 1. For the level � = 1, the corresponding
result is not an eta-quotient but simply

1

w
− 432 = 432

(
Q3/2 + R

Q3/2 − R

)
.

Proof. Identities such as the ones above for levels 5, 6, 8 and 9 hold because of proper-
ties of hauptmoduls associated with groups of genus 0. For more information, the reader is
referred to [20] where many examples of such identities are given.

The identity for level 5,

1

w
− 11 − w = 1

q

∞∏
j=1

(1 − q j )6

(1 − q5 j )6

where

w = q
∞∏
j=1

(1 − q5 j−4)5(1 − q5 j−1)5

(1 − q5 j−3)5(1 − q5 j−2)5
,

is classical and goes back at least to Ramanujan. See [7, pp. 161–164], [10], [38] and [44]
for proofs that rely only on simple series manipulations. A different proof is outlined in the
expository article by W. Duke [34]. Proofs of the identities for level 6 in cases B and C that
use series manipulations have been given in [30]. The other identities can be proved in the
same way, or by using the ideas in [20] or [34].

The next result gives formulas for the derivatives of the modular functions w.

THEOREM 3·2. Let � ∈ {1, 2, 3, 4, 5, 6, 8, 9} and let w, z and (a, b, c) be as given in
Table 1, and note that there are three different examples that correspond to the level � = 6.
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Let

x = w(1 − aw − cw2)

(1 + cw2)2
. (15)

Then

q
d

dq
log w = (1 − aw − cw2)z2 (16)

and

q
d

dq
log x =

√
1 − 4ax − 16cx2 (1 + cw2)z2. (17)

Proof. The identity (17) follows from (16) by using (15) and the chain rule. Therefore, it
suffices to prove (16) and this may be achieved on a case by case basis. For levels 1, 2, 3 and
4, the results are equivalent to

q
dx

dq
= z2x(1 − x) (18)

where x and z are parameters from Ramanujan’s theories of elliptic functions to alternative
bases for signatures 6, 4, 3 and 2, respectively; see [5, p. 124], [6, pp. 104, 148, 164] and [7,
theorem 5·4·8]. In [29], the equation (18) was used as a starting point to develop the theories
of elliptic functions for levels 1, 2, 3 and 4.

The result (16) for level 5 was given by Ramanujan [40, chapter 19, entry 9 (v)]. Explicitly,
the identity is equivalent to

1 − 5
∞∑
j=1

(
j

5

)
jq j

1 − q j
=

∞∏
j=1

(1 − q j )5

(1 − q5 j )

where ( j/5) is the Legendre symbol. For simple proofs, see [33] or [37]; for more informa-
tion and references to other proofs, see [5, pp. 257–262]. For proofs of the result for level 6
in cases B and C see [30]. For proofs of the result for level 9, see [12], [16], [25, Corollary
3.3], [28] or [36, p. 307]. Similar proofs may be given for the identities for level 6 in case A
and level 8.

The next result shows that each modular function z satisfies a second order linear differ-
ential equation in terms of w.

THEOREM 3·3. Let � ∈ {1, 2, 3, 4, 5, 6, 8, 9}. Let w = w(q), z = z(q) and (a, b, c) ∈ Z3

be as in Table 1, and note that there are three different examples that correspond to the level
� = 6. Then z satisfies the following second order linear differential equation with respect
to w:

d

dw

(
w(1 − aw − cw2)

dz

dw

)
= (b + cw)z.

Proof. For � = 1, 2, 3 or 4, the purported differential equation reduces to the special case
of the hypergeometric differential equation given by

d

dw

(
w(1 − aw)

dz

dw

)
= bz.

The result for level � = 4 is classical, while the results for levels 1, 2 and 3 were known to
Ramanujan—see [6, chapter 33], [8] or [29, theorem 4·6].
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A detailed analysis for the level � = 5 has been given by F. Beukers [18]; see also [30]. A
proof for case C of level 6 has been given by Chan and Loo [22] and a proof for case B of
level 6 has been given by Cooper [30].

The differential equations for all 6 sporadic cases, together with their modular parameter-
izations, were given by Zagier [45]. For more information, see the work of Verrill [43].

The differential equation in Theorem 3·3 has a regular singular point at w = 0, and hence
there exists a solution in powers of w near w = 0. This is summarized in the next theorem.

THEOREM 3·4. Let � ∈ {1, 2, 3, 4, 5, 6, 8, 9}. Let w = w(q), z = z(q) and (a, b, c) ∈ Z3

be as in Table 1, and note that there are three different examples that correspond to the level
� = 6. Let s(k) be the sequence defined by the recurrence relation

(k + 1)2s(k + 1) = (ak2 + ak + b)s(k) + ck2s(k − 1) (19)

and initial conditions s(−1) = 0, s(0) = 1. Then

z =
∞∑

k=0

s(k)wk .

Proof. This is an immediate consequence of the theory of series solutions for differential
equations.

The next result contains two recent and exciting analogues of Clausen’s formula given in
[23] and [1], respectively.

THEOREM 3·5. For any constants a, b and c let s(k) and t (k) be the sequences defined
by the recurrence relations and initial conditions (7), (8) and (9). Then in a neighbourhood
of w = 0 we have

(1 + cw2)

( ∞∑
k=0

s(k)wk

)2

=
∞∑

k=0

(
2k

k

)
s(k)

(
w(1 − aw − cw2)

(1 + cw2)2

)k

(20)

and

(1 − aw − cw2)

( ∞∑
k=0

s(k)wk

)2

=
∞∑

k=0

t (k)

(
w

1 − aw − cw2

)k

. (21)

Proof. These may be proved by showing that both sides satisfy the same third order linear
differential equation and have the same initial conditions at w = 0. This is a routine but
tedious exercise.

When c = 0, each of the identities (20) and (21) reduces to a special case of Clausen’s
identity for the square of a 2 F1 hypergeometric function [2, p. 116].

COROLLARY 3·6. For any constants a, b and c let t (k) and s(k) be the sequences defined
by the recurrence relations and initial conditions (7), (8) and (9). For any variable w in a
neighbourhood of 0 let x and y be defined by

x = w(1 − aw − cw2)

(1 + cw2)2
and y = w

1 − aw − cw2
. (22)
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Then in a neighbourhood of w = 0 we have
∞∑

k=0

(
2k

k

)
s(k)xk =

√
(1 + ay)2 + 4cy2

∞∑
k=0

t (k)yk, (23)

∞∑
k=0

(
2k

k

)
s(k)xk+1/2 =

∞∑
k=0

t (k)yk+1/2 (24)

and √
1 − 4ax − 16cx2

∞∑
k=0

(
2k

k

)
(k + 1/2)s(k)xk

=
√

(1 + ay)2 + 4cy2

∞∑
k=0

(k + 1/2)t (k)yk . (25)

Proof. The identity (23) is an immediate consequence of (20) and (21) and the definition
(22). The identity (24) follows from (23) by a simple rearrangement using (22). Finally, (25)
follows from (24) by differentiation and the fact that

x = y

(1 + ay)2 + 4cy2
.

LEMMA 3·7. Let � ∈ {1, 2, 3, 4, 5, 6, 8, 9}. Let w = w(q), z = z(q) and (a, b, c) ∈ Z3

be as in Table 1, and note that there are three different examples that correspond to the level
� = 6. Let x = x(q) be as defined by (22). Let

Z = Z(q) = (
1 + cw2(q)

)
z2(q). (26)

Suppose Re(t) > 0. Then

x
(

e−2π
√

t/�
)

= x
(

e−2π/
√

�t
)

(27)

and

t Z
(

e−2π
√

t/�
)

= ±Z
(

e−2π/
√

�t
)

, (28)

where the plus sign is used, unless r = 9 in which case the minus sign is used.

Proof. For � ∈ {1, 2, 3, 4}, these are the well-known transformation formulas satisfied by
Eisenstein series and Dedekind’s eta function, so it remains to prove the result for the six
sporadic cases.

We will prove the result for � = 5 in detail. Suppose Re(t) > 0 and define Dedekind’s eta
function by

η(i t) = q1/24
∞∏
j=1

(1 − q j ) where q = e−2π t .

It satisfies the transformation formula

η(i t) = 1√
t
η

(
i

t

)
. (29)

Let w = w(q) and z = z(q) be as in Table 1 for level � = 5 and let Z = Z(q) be given by
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(26). Let

ω = w
(

exp
(
−2π

√
t/5

))
and ω∗ = w

(
exp

(
− 2π√

5t

))
.

It is well–known, e.g., see [34, (7·3)], that

ω = γ 5 − ω∗
1 + γ 5ω∗

where γ =
√

5 − 1

2
. (30)

It follows that
ω

1 + ω2
= 1

53/2

(
1 − 11ω∗ − ω2

∗
1 + ω2∗

)
(31)

and
1 − 11ω − ω2

1 + ω2
= 53/2

(
ω∗

1 + ω2∗

)
. (32)

If we multiply (31) and (32) and apply the definition (22), then we obtain (27).
Next, from the definitions of w, z and Z , we have

Z = (1 + w2)z2 =
(

1 + w2

w

)
wz2 =

(
1 + w2

w

)
η5(5i t)

η(i t)
. (33)

Therefore, by (29), (31) and (33) we have

Z(e−2π
√

t/5) =
(

1 + ω2

ω

)
× η5(i

√
5t)

η(i
√

t/5)

= 53/2

(
1 + ω2

∗
1 − 11ω∗ − ω2∗

)
× 1

53/2t

η5(i/
√

5t)

η(i
√

5/t)

= 1

t

(
1 + ω2

∗
ω∗

)
×

(
ω∗

1 − 11ω∗ − ω2∗

)
× η5(i/

√
5t)

η(i
√

5/t)
. (34)

Now apply Theorem 3·1 and (33) to (34) to finally obtain

Z(e−2π
√

t/5) = 1

t

(
1 + ω2

∗
ω∗

)
× η6(i

√
5/t)

η6(i/
√

5t)
× η5(i/

√
5t)

η(i
√

5/t)
= 1

t
Z(e−2π/

√
5t).

This completes the proof for the level � = 5.
The results for � = 6 in cases B and C can be proved in the same way. The analogues

of (30) for � = 6 in cases B and C are given, for example, in [30, theorem 3·2], and the
analogue of (30) for � = 8 is given by

w(e−2π
√

t/8) =
1
8 − w(e−2π/

√
8t)

1 − 4w(e−2π/
√

8t)
.

The proofs for � = 6 in case A, and for � = 9, are simpler and can be achieved by just
using the transformation formula for Dedekind’s eta function, (29).

4. Proof of Theorem 2·1
In this section we shall indicate how to complete the proof of Theorem 2·1. The identity

(14) follows immediately from (13) by using (23) and (25). It remains to prove (13), and this
can be accomplished by using the following result of Chan, Chan and Liu [19, theorem 2·1]:
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THEOREM 4·1 (H. H. Chan, S. H. Chan and Z.-G. Liu). Suppose t > 0. Suppose x =
x(q), Z = Z(q) and u = u(q) satisfy the properties:

t Z
(

e−2π
√

t/�
)

= Z
(

e−2π/
√

t�
)
; (35)

Z(q) =
∞∑

k=0

h(k)xk(q); (36)

and

q
d

dq
log x(q) = u(q)Z(q). (37)

For any integer N � 2, let

M(q) = Z(q)

Z(q N )
. (38)

Let λ, X and U be defined by

λ = x

2N

d M

dx

∣∣∣∣
q=e−2π/

√
N�

, (39)

X = x(e−2π
√

N/�), (40)

U = u(e−2π
√

N/�). (41)

Then √
�

N

1

2π
= U

∞∑
k=0

h(k) (k + λ) Xk . (42)

We are now ready for

Proof of Theorem 2·1. We begin by assuming q > 0. With (a, b, c), w, z and s(k) as given
in Tables 1 and 2, let Z , x , u and h(k) be defined by

Z = Z(q) = (1 + cw2)z2,

x = x(q) = w(1 − aw − cw2)

(1 + cw2)2
,

u = u(q) =
√

1 − 4ax − 16cx2 (43)

and

h(k) =
(

2k

k

)
s(k).

The hypotheses (35), (36) and (37) of Theorem 4·1 are satisfied because of Lemma 3·7 and
Theorems 3·5 and 3·2, respectively. Thus, a series of the form (42) exists, and it remains to
determine the values of X and λ. For this, we may use the modular equation of degree N that
is satisfied by x . To illustrate, consider the level � = 5 and degree N = 2. Then x = x(q)

and v = x(q2) satisfy the modular equation

x3 + v3 − 36(x3v + xv3) + 324(x3v2 + x2v3) + 32(x2v + xv2) + 495x2v2 − xv = 0. (44)
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For the value q = exp(−2π/
√

10) we have by (27) with � = 5 and N = 2

v = x(q2) = x(exp(−2π
√

2/5)) = x(exp(−2π/
√

10)) = x,

so (44) simplifies to

x2(72x − 1)(1 + 3x2) = 0.

On comparing numerical values we deduce that

x(e−2π
√

2/5) = x(e−2π/
√

10) = 1

72
.

Next, by (37), (38) and (43) we have

M2(q) = Z(q)

Z(q2)
= u(q2)

u(q)

q d
dq log x(q)

q2 d
dq log x(q2)

= 2

√
1 − 44v − 16v2

√
1 − 44x − 16x2

v

x

dx

dv
.

The derivative dx/dv may be computed from (44) by implicit differentiation. Thus, we
obtain M2(q) as an algebraic function of x and v. Then, taking the derivative with respect to
x we find, after a computation, that

d M2

dx

∣∣∣∣
q=exp(−2π/

√
10)

= 288

5

and then from (39) we may deduce that λ = 1/5.
If q < 0 we use the fact

∞∏
j=1

(1 − (−q) j ) =
∞∏
j=1

(1 − q2 j )3

(1 − q j )2(1 − q4 j )2
.

If

z(q) =
∞∑

n=0

s(n)(w(q))n

where z(q) and w(q) are modular forms of level �, then

z(−q) =
∞∑

n=0

(−1)ns(n)(−w(−q))n

where z(−q) and −w(−q) are modular forms of level �, 2� or 4�, depending on whether
� ≡ 0 (mod 4), � ≡ 0 (mod 2) or � is odd, respectively. Then Theorem 4·1 can be used to
complete the proof.

In principle, all of the 93 series given by (13) and represented by Tables 3–12 can be
proved in the same way. In practice, the results in the tables were discovered experimentally
by searching for rational values of 1/X in (40) for various � and N and then using the series
(42) to numerically determine the value of λ. We conjecture that the tables are complete,
that is, there are no other rational series for 1/π of these types.

5. Tables

This section contains tables of values of values of parameters. Tables 1 and 2 contain the
definitions of the modular forms for each level as well as the recurrence relations and their
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Table 1. Modular forms

Level � (a, b, c) w
1

w
− a − cw z q

d

dq
log w

1 (432, 60, 0) 1
864

(
1 − R

Q3/2

)
432

(
Q3/2+R
Q3/2−R

)
Q1/4 Q3/2+R

2Q

2 (64, 12, 0)
η24

2

η24
1 + 64η24

2

η24
1

η24
2

(
η16

1

η8
2

+ 64η16
2

η8
1

)1/4
η8

1

η4
2

(
1 + 64η24

2

η24
1

)−1/2

3 (27, 6, 0)
η12

3

η12
1 + 27η12

3

η12
1

η12
3

(
η9

1

η3
3

+ 27η9
3

η3
1

)1/3
η6

1

η2
3

(
1 + 27η12

3

η12
1

)−1/3

4 (16, 4, 0)
η8

1η16
4

η24
2

η8
1

η8
4

η10
2

η4
1η4

4

η8
1

η4
2

5 (11, 3, 1) q
(q, q4; q5)5∞
(q2, q3; q5)5∞

η6
1

η6
5

(q; q)2∞
(q, q4; q5)5∞

η5
1

η5

6 (A) (−17, −6, −72)
η2η5

6

η5
1η3

η12
2 η12

3

η12
1 η12

6

η6
1η6

η3
2η2

3

η7
2η7

3

η5
1η5

6

6 (B) (10, 3, −9)
η4

1η8
6

η8
2η4

3

η6
1η6

3

η6
2η6

6

η6
2η3

η3
1η2

6

η4
1η4

3

η2
2η2

6

6 (C) (7, 2, 8)
η3

1η9
6

η3
2η9

3

η4
1η4

2

η4
3η4

6

η2η6
3

η2
1η3

6

η3
1η3

2
η3η6

8 (12, 4, −32)
η4

1η2
4η4

8

η10
2

η8
1η16

4

η16
2 η8

8

η10
2

η4
1η4

4

η4
1η10

4

η6
2η4

8

9 (−9, −3, −27)
η3

9

η3
1

η12
3

η6
1η6

9

η3
1

η3

η10
3

η3
1η3

9

solutions in terms of binomial coefficients. Tables 3–12 contain the parameter values for
the series for 1/π . The tables are organized according to the level and include the earliest
reference to each series. In the cases where no reference is included, the series is believed to
be new.

Notation:

ηn = qn/24
∞∏
j=1

(1 − qnj ), Q = 1 + 240
∞∑
j=1

j3q j

1 − q j
, R = 1 − 504

∞∑
j=1

j5q j

1 − q j
,

(x; q)∞ =
∞∏
j=0

(1 − xq j ), (x, y; q)∞ = (x; q)∞(y; q)∞.
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Table 2. Solutions to recurrence relations

Level � (a, b, c) s(k) t (k)

1 (432, 60, 0)

(
6k

3k

)(
3k

k

) ∑
j

s( j)

(
2 j

j

)(
k + j

k − j

)
(−a)k− j

2 (64, 12, 0)

(
4k

2k

)(
2k

k

) ∑
j

s( j)

(
2 j

j

)(
k + j

k − j

)
(−a)k− j

3 (27, 6, 0)

(
3k

k

)(
2k

k

) ∑
j

s( j)

(
2 j

j

)(
k + j

k − j

)
(−a)k− j

4 (16, 4, 0)

(
2k

k

)2
(−1)k

∑
j

(
2k − 2 j

k − j

)2(
2 j

j

)2

5 (11, 3, 1)
∑

j

(
k

j

)2(
k + j

j

) ∑
j

(−1) j+k
(

k

j

)3(
4k − 5 j

3k

)

6 (A) (−17, −6, −72)
∑
j,�

(−8)k− j
(

k

j

)(
j

�

)3 ∑
j

(
k

j

)2(
k + j

j

)2

6 (B) (10, 3, −9)
∑

j

(
k

j

)2(
2 j

j

)
(−1)k

∑
j

(
k

j

)2(
2 j

j

)(
2k − 2 j

k − j

)

6 (C) (7, 2, 8)
∑

j

(
k

j

)3 ∑
j

(−3)k−3 j (k+ j
k

)( k
3 j

)(3 j
2 j

)(2 j
j

)

8 (12, 4, −32)
∑

j

4k−2 j
(

k

2 j

)(
2 j

j

)2
(−1)k

∑
j

(
k

j

)2(
2 j

k

)2

9 (−9, −3, −27)
∑

j

(−3)k−3 j (k
j
)(k− j

j

)(k−2 j
j

) ∑
j,�

(
k

j

)2(
k

�

)(
j

�

)(
j + �

k

)

Notation:

(k + 1)2s(k + 1) = (ak2 + ak + b)s(k) + ck2s(k − 1),

(k + 1)3t (k + 1) = −(2k + 1)(ak2 + ak + a − 2b)t (k) − (4c + a2)k3t (k − 1);

s(−1) = t (−1) = 0, s(0) = t (0) = 1.
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Table 3. Series for level � = 1, (a, b, c) = (432, 60, 0)

q N x λ Reference for (13)

2
1

203

3

28
[14, p. 187]

e−2π
√

N 3
4

603

1

11
[39, (33)]

4
1

663

5

63
[14, p. 187]

7
1

2553

8

133
[39, (34)]

7
−1

153

8

63
[26, (1·4)]

11
−1

323

15

154
[26, (1·4)]

19
−1

963

25

342
[26, (1·4)]

−e−π
√

N 27
−9

4803

31

506
[13, p. 371]

43
−1

9603

263

5418
[26, (1·4)]

67
−1

52803

10177

261702
[26, (1·4)]

163
−1

6403203

13591409

545140134
[26, (1·4)]
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Table 4. Series for level � = 2, (a, b, c) = (64, 12, 0)

q N x λ Reference for (13)

2
2

64

1

7
[11, (4·6)]

3
1

482

1

8
[39, (40)]

e−2π
√

N/2 5
1

124

1

10
[39, (41)]

9
1

284

3

40
[39, (42)]

11
1

15842

19

280
[39, (43)]

29
1

3964

1103

26390
[39, (44)]

5
−1

210

3

20
[39, (35)]

7
−1

632

8

65
[11, (4·8)]

−e−π
√

N 9
−3

1922

3

28
[39, (36)]

13
−1

2882

23

260
[39, (37)]

25
−5

57602

41

644
[39, (38)]

37
−1

141122

1123

21460
[39, (39)]
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Table 5. Series for level � = 3, (a, b, c) = (27, 6, 0)

q N x λ Reference for (13)

2
1

63

1

6
[14, p. 190]

e−2π
√

N/3 4
4

183

2

15
[39, (31)]

5
1

153

4

33
[39, (32)]

9
−1

192

1

5
[21, (1·14)]

17
−1

123

7

51
[21, (1·15)]

−e−π
√

N/3 25
−25

603

1

9
[21, (1·16)]

41
−1

483

53

615
[21, (1·17)]

49
−49

2523

13

165
[21, (1·18)]

89
−1

3003

827

14151
[21, (1·19)]

Table 6. Series for level � = 4, (a, b, c) = (16, 4, 0)

q N x λ Reference for (13)

3
1

256

1

6
[39, (28)]

e−π
√

N

7
1

4096

5

42
[39, (29)]

2
−1

64

1

4
[4]

−e−π
√

N

4
−1

512

1

6
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Table 7. Series for level � = 5, (a, b, c) = (11, 3, 1)

q N x λ Reference for (14)

2
1

72

1

5
e−2π

√
N/5

3
1

147

2

11

23
−1

828

29

190
−e−π

√
N/5

47
−1

15228

71

682
[42]

Table 8. Series for level � = 6; Case A, (a, b, c) = (−17, −6, −72)

q N x λ Reference for (13) Reference for (14)

3
1

64

3

10
[23] [24]

5
1

288

1

5
[23] [42]

e−2π
√

N/6 7
1

864

11

70
[23] [42]

13
1

10368

241

2210
[23] [42]

17
1

39168

73

770
[23] [42]

3
−1

48
0

5
−1

81

4

35

7
−1

144

1

7

−e−π
√

N/3 11
−1

432

8

55

19
−1

2736

8

65

31
−1

24336

107

1085

59
−1

1123632

25808

359605
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Table 9. Series for level � = 6; Case B, (a, b, c) = (10, 3, −9)

q N x λ Reference for (13) Reference for (14)

2
1

54

1

5
[23] [41]

3
1

100

3

16
[23] [24]

e−2π
√

N/6 5
1

324

13

80
[23] [24]

7
1

900

1

7
[23] [24]

13
1

10404

7

65
[23] [24]

17
1

39204

899

9520
[23] [24]

5
−1

45

2

7
[19]

7
−1

108

13

56

−e−π
√

N/3 11
−1

396

7

40

19
−1

2700

253

1976

31
−1

24300

2239

22568

59
−1

1123596

2587

36040
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Table 10. Series for level � = 6; Case C, (a, b, c) = (7, 2, 8)

q N x λ Reference for (13) Reference for (14)

2
1

50

2

9
[23] [24]

3
1

96

1

5
[23] [24]

e−2π
√

N/6 5
1

320

1

6
[23] [24]

7
1

896

13

90
[23] [24]

13
1

10400

11

102
[23] [24]

17
1

39200

53

561
[23] [24]

5
−1

49

4

15

7
−1

112

2

9

−e−π
√

N/3 11
−1

400

17

99

19
−1

2704

109

855

31
−1

24304

58

585

59
−1

1123600

14903

207621



20 HENG HUAT CHAN AND SHAUN COOPER

Table 11. Series for level � = 8, (a, b, c) = (12, 4, −32)

q N x λ

3
1

64

1

6

5
1

160

1

6

e−2π
√

N/8 9
1

800

1

7

11
1

1600

61

462

29
1

156832

193

2310

5
−1

128

7

30

−e−2π
√

N/8 9
−1

768

11

70

11
−1

1568

23

165

29
−1

156800

2081

24882
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Table 12. Series for level � = 9, (a, b, c) = (−9, −3, −27)

q N x λ

4
1

54

2

7
e−2π

√
N/9

7
1

243

26

133

7
−1

27

2

7

11
−1

44

3

14

−e−π
√

N/9 19
−1

108

7

38

43
−1

972

85

602

67
−1

5292

481

4154

163
−1

640332

58831

786638

Table 13. Radii of convergence. The series (13) and (14) converge for |x | < Rx and
|y| < Ry, respectively

� 1 2 3 4 5 6A 6B 6C 8 9

Rx
1

1728
1

256
1

108
1
64

5
√

5−11
8

1
36

1
36

1
32

1
32

√
3

36

Ry
1

432
1

64
1
27

1
16

√
5

25 17 − 12
√

2 1
16

1
9

3−2
√

2
4

2
√

3−3
9
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