
Math. Proc. Camb. Phil. Soc.: page 1 of 20 c© Cambridge Philosophical Society 2012

doi:10.1017/S0305004112000151
1

Two Dirichlet series evaluations found on page 196 of Ramanujan’s
Lost Notebook

BY BRUCE C. BERNDT

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL
61801, U.S.A.

e-mail: berndt@illinois.edu

HENG HUAT CHAN

Department of Mathematics, National University of Singapore, 2 Science Drive 2,
Singapore 117543, Republic of Singapore.

e-mail: matchh@nus.edu.sg

AND YOSHIO TANIGAWA

Graduate School of Mathematics, Nagoya University, Chikusa-ku,
Nagoya 464-8602, Japan.

e-mail: tanigawa@math.nagoya-u.ac.jp

(Received 4 October 2011; revised 26 December 2011)

Abstract

On page 196 in his lost notebook, S. Ramanujan offers evaluations of two particular Di-
richlet series. In this paper, we establish Ramanujan’s evaluations and more general results
by various approaches. The different evaluations arising from different methods yield in-
triguing, unsuspecting identities.

1. Introduction

On page 196 in his lost notebook [8, p. 196, equations (i), (ii)], Ramanujan recorded the
identities

∞∑
n=1

cos(πn2/a)

n2
= π2

6
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√
a

a∑
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r
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(
1 − r

a

)
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a
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(1·1)

and
∞∑
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a

)
, (1·2)

where a is an even positive integer. Note that when a = 2, (1·1) is equivalent to Euler’s
evaluation
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We also note that (1·1) and (1·2) are equivalent to the identity

∞∑
n=1

eπ in2/a

n2
= π2

6
− π2

√
a

a∑
r=1

r

a

(
1 − r

a

)
ei(π/4−πr2/a). (1·3)

Motivated by the left-hand side of (1·3), we let

Rk(s) :=
∞∑

n=1

e2π in2/k

ns
, Re s > 1, (1·4)

where k is a positive integer. In this paper, we derive several identities, or evaluations, for
Rk(2m), when m is a positive integer.

To illustrate our work, we provide here three of our evaluations. The first identity ex-
presses Rk(2m), for k ≡ 0(mod 4), in terms of the Bernoulli polynomials Bn(t), n � 0,
which are defined by

xetx

ex − 1
=

∞∑
n=0

Bn(t)

n! xn, |x | < 2π, (1·5)

and the Bernoulli numbers Bn := Bn(0), n � 0.

THEOREM 1·1. Let a be an even positive integer. Then

R2a(2m) = (−1)m+1π2m22m−1

(2m)!
×

(
B2m + 1√

a

a∑
ν=1

(
B2m

(ν

a

)
− B2m

)
eπ i/4−π iν2/a

)
. (1·6)

When m = 1, (1·6) reduces to (1·3).
To describe the second and third identities associated with Rk(s), we recall the definitions

of the Stirling numbers of the second kind S(n, h) [9, p. 91] and the ballot numbers cn,h [10,
p. 130]. For nonnegative integers n and h, they are defined by

S(n, h) = 1

h!
h∑

j=0

(−1) j

(
h
j

)
(h − j)n

and

cn,h = n − h + 1

n + 1

(
n + h

n

)
, (1·7)

respectively, where in the last definition we also require that h � n. When h = n, the
definition (1·7) reduces to the definition of the nth Catalan number [10, p. 101]. For a fixed
positive integer k and for nonnegative integers u and v, let

Tu,v =
k−1∑
r=1

e2π ir2/k ωv
r

(ωr − 1)u
, (1·8)

where ωr = e2π ir/k .
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THEOREM 1·2. Let Tu,v be given by (1·8). Then

Rk(2m) = (−1)m+1

2(2m)!
(

2π

k

)2m
(

B2m − 2m
2m−1∑
s=1

σ2m−1,s Ts+1,1

)
, (1·9)

where

σn,h = h!S(n, h).

THEOREM 1·3. Let k be a positive integer. Then

Rk(2m) = (−1)m+1

2 · (2m)!
(

2π

k

)2m
⎛⎝B2m − 2m

m∑
j=1

α2m, j T2 j, j

⎞⎠ , (1·10)

where

α2m,1 = 1 (1·11)

and, for j � 2,

α2m, j =
j−2∑
s=0

(−1)sc j−2,s ( j − s)!S(2m − 1, j − s). (1·12)

We should note that the coefficients α2m, j in the right-hand side of (1·10) are independent
of k.

We see from either Theorem 1·2 or Theorem 1·3 that we can represent R2a(2m) in terms
of e2π ir2/k csc2 j (πr/k). More precisely, by Theorem 1·3,

Rk(2m) = (−1)m+1

2 · (2m)!
(

2π

k

)2m

×
⎛⎝B2m − 2m

m∑
j=1

(−1) jα2m, j

22 j

k−1∑
r=1

e2π ir2/k csc2 j
(πr

k

)⎞⎠ . (1·13)

In Section 4, we obtain a further representation for Rk(2m) in terms of derivatives of odd
order of the cotangent function. Such a formula inspires us to establish an explicit formula
for odd-order derivatives of the cotangent, and we do so in Proposition 4·2. We are not
aware of such a representation in the literature, and so we think that the formula (4·14) of
Proposition 4·2 is of independent interest.

Lastly, in Section 5, we approach our original problem through the theory of periodic zeta
functions.

2. Representations in terms of Bernoulli polynomials

In this section, we give a proof of Theorem 1·1. This proof is motivated by the observation
that (1·6) is similar to Dirichlet’s class number formula, which expresses a special value of a
certain Dirichlet L-series as a finite sum of terms involving the Legendre symbol [6, p. 51].
In our considerations, values of the Hurwitz zeta function

ζ(s, x) =
∞∑

n=0

1

(x + n)s
, Re s > 1,

take the place of values of the Legendre symbol.
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Proof of Theorem 1·1. We begin by writing Rk(s), for Re s > 1, as

Rk(s) =
k∑

r=1

∞∑
n=0

e2π i(r+kn)2/k

(r + kn)s
= 1

ks

k∑
r=1

e2π ir2/kζ
(

s,
r

k

)
. (2·1)

Since ζ(s, x) has an analytic continuation into the entire complex s-plane, the right-hand
side of (2·1) gives the analytic continuation of Rk(s) to the whole complex s-plane.

Using the functional equation of the Hurwitz zeta function [1, p. 261, theorem 12·8], we
deduce that

k∑
r=1

e2π ir2/kζ
(

1 − s,
r

k

)
= �(s)

(2πk)s

k∑
r=1

e2π ir2/k
k∑

�=1

(
e−π is/2e2π ir�/k + eπ is/2e−2π ir�/k

)
ζ

(
s,

�

k

)
. (2·2)

Interchanging the summations on the right-hand side of (2·2), we deduce that

k∑
r=1

e2π ir2/kζ
(

1 − s,
r

k

)
= �(s)

(2πk)s

k∑
�=1

ζ

(
s,

�

k

){
e−π is/2

k∑
r=1

e2π i(r2+r�)/k + eπ is/2
k∑

r=1

e2π i(r2−r�)/k

}

= 2�(s)

(2πk)s
cos

(πs

2

) k∑
�=1

ζ

(
s,

�

k

)(
k∑

r=1

e2π i(r2+r�)/k

)
. (2·3)

Letting s tend to 1 − 2m, where m is a positive integer, we find, using the residue of �(s) at
s = 1 − 2m [1, p. 250], that

lim
s→1−2m

�(s) cos
(πs

2

)
= lim

s→1−2m
(s − (1 − 2m))�(s)

cos
(

πs
2

)
s − (1 − 2m)

= (−1)mπ

2(2m − 1)! . (2·4)

From [1, p. 264, theorem 12·13], we find that

ζ

(
1 − 2m,

�

k

)
= − 1

2m
B2m

(
�

k

)
. (2·5)

Using (2·4) and (2·5) in (2·3), and then (2·3) in (2·1), with s replaced by 1 − 2m, we deduce
that

Rk(2m) = π(−1)m+1

(2π)1−2mk · (2m)! S2m, (2·6)

where

Sn =
k∑

�=1

Bn

(
�

k

) k∑
r=1

e2π i(r2+r�)/k . (2·7)
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Next, let k = 2a, where a is even. Then
2a∑

r=1

e2π i(r2+r�)/(2a) =
a∑

r=1

e2π i(r2+r�)/(2a) +
a∑

r=1

e2π i((a+r)2+(a+r)�)/(2a)

= (1 + (−1)�)

a∑
r=1

eπ i(r2+r�)/a. (2·8)

Hence, the left-hand side of (2·8) vanishes when � is odd. Let � = 2ν. Then, we may write
(2·8) as

2a∑
r=1

e2π i(r2+r�)/(2a) = 2
a∑

r=1

eπ i((r+ν)2−ν2)/a

= 2e−π iν2/a
a∑

s=1

eπ is2/a

= √
2a(1 + i)e−π iν2/a

= 2
√

aeπ i/4−π iν2/a, (2·9)

where we have used the fact (see [1, p. 195, equation (30)] or [4, p. 15, corollary 1·2·3])

4c∑
r=1

e2π ir2/(4c) = (1 + i)
√

4c,

where c is any positive integer. By (2·7)–(2·9), we deduce that

S2m = B2m

2a∑
r=1

2a∑
�=1

e2π i(r2+r�)/(2a)

+
2a∑

�=1

(
B2m

(
�

2a

)
− B2m

) 2a∑
r=1

e2π i(r2+r�)/(2a)

= 2a · B2m + 2
√

a
a∑

ν=1

(
B2m

(ν

a

)
− B2m

)
eπ i/4−π iν2/a.

Substituting the last equality into (2·6), we conclude the proof of (1·6).

3. Representations in terms of cosecant functions

In this section, we give proofs of Theorems 1·2 and 1·3. We first establish a lemma.
The polynomials Un in Lemma 3·1 below are related to the Eulerian polynomials [3, equa-
tion (0·1)].

LEMMA 3·1. Suppose α � 1 and

xex

ex − α
=:

∞∑
n=1

Un

n! xn. (3·1)

Then

U1 = u and Un = n(1 − u)

n−1∑
h=1

σn−1,huh(−1)h−1, n � 2,
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where

u = 1

1 − α
and σn,h = h!S(n, h). (3·2)

Proof. From (3·1), we find that

xex = (ex − α)

( ∞∑
n=1

Un

n! xn

)

=
(

1 − α +
∞∑

n=1

xn

n!

) ( ∞∑
n=1

Un

n! xn

)
.

Comparing the coefficients of xn for n � 1, we find that

U1 = 1

1 − α
= u

and

n = (1 − α)Un +
n−1∑
j=1

(
n
j

)
Un− j , n � 2.

Using the value U1 = u, we see that Un , n � 2, must satisfy the recurrence relation

Un = nu(1 − u) − u
n−1∑
j=2

(
n
j

)
U j . (3·3)

Let

U j = ju(1 − u)Vj .

Note that V1 = 1/(1 − u) and V2 = 1. By (3·3), Vj , j � 2, satisfies the recurrence relation

Vn = 1 − u
n−1∑
j=2

(
n − 1
j − 1

)
Vj .

Define

W1 = 1

1 − u

and

Wn =
n−1∑
h=1

σn−1,huh−1(−1)h−1, n � 2.

Clearly,

W1 = V1 and W2 = S(1, 1) = 1 = V2.

Thus, in order to prove Lemma 3·1, it suffices to show that Wn satisfies the same recurrence
relation as Vn , namely,

Wn = 1 − u
n−1∑
j=2

(
n − 1
j − 1

)
W j , n � 2. (3·4)
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Now, we observe that

1 − u
n−1∑
j=2

(
n − 1
j − 1

)
W j = 1 +

n−1∑
j=2

(
n − 1
j − 1

) j−1∑
h=1

σ j−1,huh(−1)h

= 1 +
n−2∑
h=1

uh(−1)h
n−1∑

j=h+1

(
n − 1
j − 1

)
σ j−1,h .

In order to show that Wn satisfies (3·4), it suffices to prove that

σn−1,h+1 =
n−1∑

j=h+1

(
n − 1
j − 1

)
σ j−1,h, (3·5)

because S(n − 1, 1) = 1.
Now, using (3·2), we may rewrite (3·5) as

(h + 1)S(n − 1, h + 1) =
n−2∑
j=h

(
n − 1

j

)
S( j, h),

or, with n replaced by n + 1,

(h + 1)S(n, h + 1) =
n−1∑
j=h

(
n
j

)
S( j, h), (3·6)

where h � n − 1. Adding the term S(n, h) to both sides of (3·6), we conclude that

S(n, h) + (h + 1)S(n, h + 1) =
n∑

j=h

(
n
j

)
S( j, h). (3·7)

It is known that [9, p. 43, equation 14(b)] the right-hand side of (3·7) equals S(n +1, h +1).
Hence, (3·7) is equivalent to

S(n + 1, h + 1) = S(n, h) + (h + 1)S(n, h + 1). (3·8)

Since (3·8) is a well-known property of S(n, h) [9, p. 33, equation (37)], this completes the
proof of Lemma 3·1.

Recall from (2·6) that we can express Rk(2m) in terms of S2m , where Sn is given by (2·7).
Note that (2·6) and (2·7) hold for any positive integer k. We now examine Sn .

Separating the term with r = k in (2·7) and using the multiplication formula for Bernoulli
polynomials [7, p. 590, equation (24·4·18)]

Bn(kx) = kn−1
k−1∑
�=1

Bn

(
x + �

k

)
with x = 0, we deduce that

Sn = k1−n Bn +
k−1∑
r=1

e2π ir2/k An(r), (3·9)

where

An(r) =
k∑

�=1

Bn

(
�

k

)
ω�

r , ωr = e2π ir/k . (3·10)



8 BRUCE C. BERNDT, HENG HUAT CHAN AND YOSHIO TANIGAWA

Substituting t = �/k in (1·5), multiplying by ω�
r , and summing over �, 1 � � � k, we

deduce that
∞∑

n=0

1

n!

(
k∑

�=1

Bn

(
�

k

)
ω�

r

)
xn = x

ex − 1

k∑
�=1

ex�/kω�
r . (3·11)

Since
k∑

�=1

(
ex/kωr

)� = 1 − ex

1 − ex/kωr
ex/kωr ,

we find, from (3·10) and (3·11), that
∞∑

n=0

1

n! An(r)xn = xex/k

ex/k − ω−1
r

.

Replacing x by kx (with |x | sufficiently small), we have
∞∑

n=0

1

n!k
n−1 An(r)xn = xex

ex − α
, (3·12)

where α = ω−1
r � 1.

We are now ready to prove Theorem 1·2.

Proof of Theorem 1·2. Lemma 3·1 and (3·12) give a representation of An(r) in terms of
Stirling numbers of the second kind, namely,

kn−1 An(r) = n(1 − u)

n−1∑
h=1

σn−1,huh(−1)h−1, (3·13)

where u = 1/(1 −ω−1
r ). Set n = 2m in (3·13) and then substitute (3·13) in (3·9). Using also

(2·6), we then find that

Rk(2m) =
∞∑

n=1

e2π in2/k

n2m
= (−1)m+1π(2π)2m−1

k(2m)! S2m

= (−1)m+1π(2π)2m−1

k(2m)!

{
B2m

k2m−1
+ 1

k2m−1

k−1∑
r=1

e2π ir2/k

× 2m
2m−1∑
h=1

(−1)hσ2m−1,h
ωh

r

(ωr − 1)h+1

}

= (−1)m+1

2(2m)!
(

2π

k

)2m
{

B2m + 2m
k−1∑
r=1

e2π ir2/k

×
2m−1∑
h=1

(−1)hσ2m−1,h
ωh

r

(ωr − 1)h+1

}
.

Now replace r by k −r in the summation over r on the far right-hand side above. Employing
(1·8), we then obtain the assertion (1·9).

In order to prove Theorem 1·3, we need to replace the terms

Ts+1,1, 1 � s � 2m − 1,
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in Theorem 1·2 by

T2 j, j , 1 � j � m.

To effect such a change, we need two lemmas.

LEMMA 3·2. Let j be a positive integer. Then

T2 j, j =
j−1∑
ν=0

(
j − 1

ν

)
Tj+ν+1,1. (3·14)

Proof. From the definition (1·8),

T2 j, j =
k−1∑
r=1

e2π ir2/k ω j
r

(ωr − 1)2 j

=
k−1∑
r=1

e2π ir2/k ωr (ωr )
j−1

(ωr − 1)2 j

=
k−1∑
r=1

e2π ir2/k ωr

(ωr − 1)2 j

(
j−1∑
ν=0

(
j − 1

ν

)
(ωr − 1)ν

)

=
j−1∑
ν=0

(
j − 1

ν

)
Tj+ν+1,1,

where in the penultimate line we replaced ν by j − 1 − ν.

LEMMA 3·3. Let j be a positive integer. Then

T2 j+1,1 = −1

2

2 j−2∑
h=0

(
2 j − 1

h

)
Th+2,1. (3·15)

Proof. Replacing r by k − r and then introducing the notation v = ωr − 1, we find that

T2 j+1,1 = 1

2

k−1∑
r=1

e2π ir2/k

(
ωr

(ωr − 1)2 j+1
+ ω−1

r

(ω−1
r − 1)2 j+1

)

= −1

2

k−1∑
r=1

e2π ir2/k ωr (ω
2 j−1
r − 1)

(ωr − 1)2 j+1

= −1

2

k−1∑
r=1

e2π ir2/k ωr ((v + 1)2 j−1 − 1)

v2 j+1

= −1

2

k−1∑
r=1

e2π ir2/k ωr

v2 j+1

(
2 j−2∑
h=0

(
2 j − 1

h

)
v2 j−1−h

)

= −1

2

2 j−2∑
h=0

(
2 j − 1

h

)
Th+2,1.

Proof of Theorem 1·3. Let

Ms = {Tj,1|2 � j � s}
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and

Ns = {T2 j, j |1 � j � s}.
We claim that for fixed t , every term in M2t is a linear combination of elements in Nt .

We prove this by induction on t � 1. Keeping in mind that M2 = {T2,1}, we can easily
see that the case t = 1 is trivial. By induction, it suffices to show that both T2t−1,1 and
T2t,1 can be expressed as linear combinations of elements in Nt . Now, by (3·15), T2t−1,1 is a
linear combination of elements in M2(t−1), and by induction, each term in M2(t−1) is a linear
combination of elements in Nt−1. Next, by (3·14), T2t,1 is a linear combination of elements
in M2(t−1) � {T2t,t}. By induction again, we conclude that T2t,1 is a linear combination of
elements in Nt .

Let S̃2m denote the sum on the right-hand side of (1·9), namely, with s replaced by j + 1,

S̃2m =
2m−2∑

j=0

σ2m−1, j+1Tj+2,1. (3·16)

From the argument above, we can conclude that

S̃2m =
m∑

j=1

α2m, j T2 j, j =
m−1∑
j=0

α2m, j+1T2 j+2, j+1, (3·17)

for certain rational numbers α2m, j+1.

We substitute (3·14) into (3·17) and obtain

S̃2m =
m−1∑
j=0

α2m, j+1

j∑
h=0

(
j
h

)
Tj+h+2,1

=
2m−2∑
�=0

T�+2,1

⎛⎝m−1∑
j=0

α2m, j+1

(
j

� − j

)⎞⎠ . (3·18)

Note that in (3·18) the binomial coefficient
( j
�− j

)
vanishes when � − j < 0 and j < � − j.

Comparing (3·18) and (3·16), we conclude that if α2m, j+1 can be chosen so as to satisfy the
relations

m−1∑
j=0

α2m, j+1

(
j

� − j

)
= σ2m−1,�+1, 0 � � � 2m − 2, (3·19)

then (3·17) holds with these α2m, j+1.

Our next task is to invert the relations (3·19). Replacing j by r = � − j in (3·19), we find
that ∑

0�r��/2

α2m,�+1−r

(
� − r

r

)
= σ2m−1,�+1. (3·20)

If we set bn = α2m,n+1 and an = σ2m−1,n+1, then (3·20) becomes∑
0�r��/2

(
� − r

r

)
b�−r = a�.
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Hence, by the inversion formula [10, p. 62, formula 5, table 2·3], we find that

b� =
∑
h�0

(−1)h

{(
� + h − 1

h

)
−

(
� + h − 1

h − 1

)}
a�−h. (3·21)

Note that, by (1·7),(
� + h − 1

h

)
−

(
� + h − 1

h − 1

)
= � − h

�

(
� + h − 1

h

)
= c�−1,h .

From (3·21), the formula above, and our auxiliary notation, we obtain the explicit
formula

α2m,�+1 =
∑
h�0

(−1)hc�−1,hσ2m−1,�−h+1. (3·22)

If we now return to Theorem 1·2 and then use (3·16), (3·17), (3·19) and (3·2), we see that
(3·22) enables us to complete the proof of Theorem 1·3.

We conclude this section with one further observation. Let s tend to −2m, m � 1, in
(2·3). The limit of the left-hand side is Rk(2m + 1). Since lims→−2m cos(πs/2) = (−1)m , it
follows, from the obvious analogue of (2·6) and (2·7), that

S2m+1(k) =
k∑

�=1

B2m+1

(
�

k

) k∑
r=1

e2π i(r2+r�)/k = 0, m � 1. (3·23)

However, we can show (3·23) directly. First, recalling that B2m+1 = 0, m � 1, and secondly
replacing r by k − r , we find that

S2m+1 =
k−1∑
r=1

e2π ir2/k
k−1∑
�=1

B2m+1

(
�

k

)
e2π ir�/k

=
k−1∑
r=1

e2π ir2/k
k−1∑
�=1

B2m+1

(
�

k

)
e−2π ir�/k .

Next replace � by k − � in the inner sum and use the property Bn(1 − x) = (−1)n Bn(x),
n � 2 [7, p. 589, equation (24·4·3)], to conclude that

S2m+1 =
k−1∑
r=1

e2π ir2/k
k−1∑
�=1

B2m+1

(
1 − �

k

)
e2π ir�/k = −S2m+1.

Hence, (3·23) follows.

4. Further representations in terms of cotangent function and its derivatives

Toward the end of Section 1, we mentioned that Rk(2m) could be represented in terms
of certain cosecant sums (1·13). In this section, we shall provide another representation of
Rk(2m) in terms of the cotangent function and its derivatives.



12 BRUCE C. BERNDT, HENG HUAT CHAN AND YOSHIO TANIGAWA

THEOREM 4·1. (i) Let k be a positive integer. Then

Rk(2m) = (−1)m+1(2π)2m

2(2m)! k2m
B2m

− π2m

2(2m − 1)! k2m

k−1∑
r=1

e2π ir2/k cot(2m−1)
(πr

k

)
. (4·1)

(ii) Assume that k = 2a, where a is an even positive integer. Then

R2a(2m) = (−1)m+1(2π)2m

2(2m)! a2m

(
1 + eπ ia/4(22m − 1)

)
B2m

− π2m

(2m − 1)! a2m

1
2 a−1∑
r=1

eπ ir2/a cot(2m−1)
(πr

a

)
. (4·2)

Proof. Returning to (2·1) and singling out the term r = k, we find that

Rk(2m) = 1

k2m
ζ(2m) + 1

k2m

k−1∑
r=1

e2π ir2/k
∞∑

n=0

1

(n + r/k)2m
. (4·3)

Note that the sum with index r is identical to the sum with index k − r . Thus,

Rk(2m) = 1

k2m
ζ(2m) + 1

2k2m

k−1∑
r=1

e2π ir2/kU (r, k; 2m), (4·4)

where we put

U (r, k; 2m) =
∞∑

n=0

(
1

(n + r/k)2m
+ 1

(n + (k − r)/k)2m

)
.

We observe that

U (r, k; 2m) =
∞∑

n=0

(
1

(n + r/k)2m
+ 1

(−n − 1 + r/k)2m

)

=
∞∑

n=−∞

1

(n + r/k)2m
. (4·5)

It therefore suffices to evaluate the bilateral sum in (4·5).
To evaluate U (r, k; 2m), recall the partial fraction decomposition

π cot(π z) = 1

z
+

∞∑
n=1

(
1

z + n
+ 1

z − n

)
.

Differentiating � − 1 times above, we find that

π� cot(�−1)(π z) = (−1)�−1(� − 1)!
∞∑

n=−∞

1

(z + n)�
(4·6)

for any positive integer � � 2. Putting � = 2m and z = r/k in (4·6), we deduce that

U (r, k; 2m) = − π2m

(2m − 1)! cot(2m−1)(πr/k). (4·7)
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Putting (4·7) in (4·4) and using Euler’s formula for ζ(2m), we complete the proof of
(4·1).

For (4·2), it is best to return to the definition (1·4). Since a is even, we can divide the sum
over n into residue classes modulo a to deduce that

R2a(2m) =
a∑

r=1

eπ ir2/a
∞∑

n=0

1

(an + r)2m

= 1

a2m
ζ(2m) + 1

a2m

a−1∑
r=1

eπ ir2/a
∞∑

n=0

1

(n + r/a)2m
.

Singling out the term for r = a/2 in the sum over r in the right-hand side above, noting that
the terms in the outer sum with indices r and a − r are identical since a is even, and using
the identity

∞∑
n=0

1

(2n + 1)2m
= (1 − 2−2m)ζ(2m),

we find that

R2a(2m) = 1

a2m
ζ(2m) + eπ ia/4

a2m

(
22m − 1

)
ζ(2m)

+ 1

a2m

a/2−1∑
r=1

eπ ir2/a
∞∑

n=0

(
1

(n + r/a)2m
+ 1

(n + (a − r)/a)2m

)
. (4·8)

Note that the innermost sum in the right-hand side of (4·8) is U (r, a; 2m). Hence, using
Euler’s formula for ζ(2m), we have

R2a(2m) = (−1)m+1(2π)2m

2(2m)! a2m

(
1 + eπ ia/4(22m − 1)

)
B2m

+ 1

a2m

a/2−1∑
r=1

eπ ir2/aU (r, a; 2m).

An application of (4·7) to the right-hand side above then completes the proof of (4·2).

If we take real and imaginary parts in (4·2), we deduce the formulas
∞∑

n=1

cos(πn2/a)

n2m
= (−1)m−1(2π)2m

2 (2m)! a2m

(
1 + cos

(πa

4

)
(22m − 1)

)
B2m

− π2m

a2m(2m − 1)!

1
2 a−1∑
r=1

cos

(
πr 2

a

)
cot(2m−1)

(πr

a

)
(4·9)

and
∞∑

n=1

sin(πn2/a)

n2m
= (−1)m−1(2π)2m

2 (2m)!a2m
sin

(πa

4

)
(22m − 1)B2m

− π2m

a2m(2m − 1)!

1
2 a−1∑
r=1

sin

(
πr 2

a

)
cot(2m−1)

(πr

a

)
. (4·10)
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Hence, setting m = 1 in (4·9) and (4·10), we deduce that, respectively,

∞∑
n=1

cos
(
πn2/a

)
n2

= π2

6a2
+ π2 cos(πa/4)

2a2
+ π2

a2

1
2 a−1∑
r=1

cos

(
πr 2

a

)
csc2

(πr

a

)
(4·11)

and

∞∑
n=1

sin
(
πn2/a

)
n2

= π2 sin(πa/4)

2a2
+ π2

a2

1
2 a−1∑
r=1

sin

(
πr 2

a

)
csc2

(πr

a

)
. (4·12)

Recall that, at the end of the Introduction, we mentioned the formula (1·13) which
provides a way to evaluate the series Rk(2m) in terms of cosecant functions. For example,
when m = 1 and k = 2a, where a is an even positive integer, formula (1·13) reads

∞∑
n=1

eπ in2/a

n2
= π2

24a2
+ π2

8a2

2a−1∑
r=1

eπ ir2/a csc2
(πr

2a

)
. (4·13)

Comparing (4·13) with (4·11) and (4·12), we see that the range of summation over r on the
right-hand sides can be shortened in the case that a is even.

In Theorem 4·1, we find that Rk(2m) is represented as a linear combination of the values
of higher derivatives of the cotangent function. We are therefore motivated to find a more
explicit representation for these derivatives. Comparing the expressions (1·13) and (4·1), we
are led to the explicit representation of cot(2m−1) x in terms of the cosecant function. Since it
is interesting in itself, we shall describe such a formula below.

PROPOSITION 4·2. Let α2m, j be defined by (1·11) and (1·12). Then

cot(2m−1) x = (−1)m+1
m∑

j=1

(−1) j 22(m− j)α2m, j csc2 j x . (4·14)

Proof. Since

cot′ x = − csc2 x

and

(cscn x)
′′ = −n2 cscn x + n(n + 1) cscn+2 x, (4·15)

it is easily seen that cot(2m−1) x can be written as a linear combination of csc2 j x , 1 � j � m.
To that end, define pm( j) by

cot(2m−1) x =
m∑

j=1

pm( j) csc2 j x . (4·16)

For example, p1(1) = −1, p2(1) = 4, p2(2) = −6, p3(1) = −16, p3(2) = 120, and
p3(3) = −120. In particular, pn(1) = (−1)n4n−1 and pn(n) = −(2n − 1)!. We shall show
that

pm( j) = (−1)m+ j+122(m− j)α2m, j . (4·17)

Differentiating both sides of (4·16) twice and using (4·15), we find that

pm+1( j + 1) = 2 j (2 j + 1)pm( j) − 4( j + 1)2 pm( j + 1). (4·18)
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Define pm(0) = 0 and pm( j) = 0 for j > m, and observe that pm( j) is uniquely determined
by the initial condition p1(1) = −1 and (4·18). Therefore to establish (4·17), it is sufficient
to prove the following lemma.

LEMMA 4·3. Let α2m, j be defined by (1·11) and (1·12). Then

α2m+2, j+1 = 2 j (2 j + 1)α2m, j + ( j + 1)2α2m, j+1. (4·19)

Proof. Using (3·8) twice, we find that

S(n, h) = S(n − 2, h − 2) + (2h − 1)S(n − 2, h − 1) + h2S(n − 2, h) (4·20)

(see [10, p. 227]). Substituting (4·20) in the definition (3·22) of α2m+2, j+1 and rearranging
the terms, we find that

α2m+2, j+1

= c j−1,0( j + 1)! ( j + 1)2S(2m − 1, j + 1)

+ {
c j−1,0( j + 1)!(2 j + 1) − c j−1,1 j ! j2

}
S(2m − 1, j)

+
j−3∑
s=0

(−1)s
{
c j−1,s( j + 1 − s)! − c j−1,s+1( j − s)! (2 j − 2s − 1)

+ c j−1,s+2( j − 1 − s)! ( j − 1 − s)2
}

S(2m − 1, j − 1 − s)

+ (−1) j−2
{
c j−1, j−23! − c j−1, j−12! · 3

}
S(2m − 1, 1)

+ (−1) j−1c j−1, j−12! S(2m − 1, 0). (4·21)

On the other hand, from the definition (3·22) of α2m, j , the right-hand side of (4·19) can be
transformed into

2 j (2 j + 1)α2m, j + ( j + 1)2α2m, j+1

= ( j + 1)2( j + 1)! S(2m − 1, j + 1)

+
j−2∑
s=0

(−1)s
{
2 j (2 j + 1)c j−2,s − ( j + 1)2c j−1,s+1

}
× ( j − s)! S(2m − 1, j − s). (4·22)

We shall show that the coefficients of S(2m − 1, s) in (4·21) and (4·22) are identical.
First, observe that on the right-hand side of (4·22), the terms S(2m−1, 0) and S(2m−1, 1)

are absent. On the right-hand side of (4·21), S(2m − 1, 0) appears, but we recall that
S(2m − 1, 0) = 0. Second, using the definition (1·7), we find that the coefficient of
S(2m − 1, 1) on the right-hand side of (4·21) equals 0. Since c j−1,0 = 1, the coefficients of
S(2m −1, j +1) in (4·21) and (4·22) are also the same. Furthermore, both of the coefficients
of S(2m − 1, j) reduce to

j ! (− j3 + 3 j2 + 3 j + 1).

Therefore it remains to show that

( j + 1 − s)( j − s)c j−1,s − ( j − s)(2 j − 2s − 1)c j−1,s+1 + ( j − 1 − s)2c j−1,s+2

= −2 j (2 j + 1)c j−2,s+1 + ( j + 1)2c j−1,s+2 (4·23)
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for 0 � s � j − 3. Substituting the easily proved identity c j−2,s+1 = c j−1,s+1 − c j−1,s into
the first term on the right-hand side of (4·23) and dividing both sides by c j−1,s+1, we find
that (4·23) reduces to (

( j + 1 − s)( j − s) − 2 j (2 j + 1)
) c j−1,s

c j−1,s+1

+ (
( j − 1 − s)2 − ( j + 1)2

)c j−1,s+2

c j−1,s+1

= ( j − s)(2 j − 2s − 1) − 2 j (2 j + 1). (4·24)

Now, by (1·7),
c j,h

c j,h−1
= ( j − h + 1)( j + h)

( j − h + 2)h
.

Thus, the left-hand side of (4·24) can be written in the form(
( j + 1 − s)( j − s) − 2 j (2 j + 1)

) ( j − s)(s + 1)

( j − s − 1)( j + s)

+ (
( j − 1 − s)2 − ( j + 1)2

) ( j − s − 2)( j + s + 1)

( j − s − 1)(s + 2)

= −2 j2 − (3 + 4s) j + 2s2 + s

= ( j − s)(2 j − 2s − 1) − 2 j (2 j + 1),

which establishes (4·24). Hence, the identity (4·23) has been proved for 0 � s � j − 3, and
so the proof of (4·19) is complete.

With this lemma, we also complete the proof of Proposition 4·2.

5. Evaluations using the theory of periodic zeta functions

We now offer another approach to (1·1), (1·2), and their generalizations through the theory
of periodic zeta functions developed in [5]. For the sake of completeness, we review the
necessary terminology from [5].

First, write

R2a(r) =
∞∑

n=1

cos(πn2/a)

nr
+ i

∞∑
n=1

sin(πn2/a)

nr
=: Sa(r) + iTa(r), (5·1)

where r and a are even positive integers. In order to effect these evaluations, we need to
introduce periodic Bernoulli numbers.

DEFINITION 5·1. Let A = {an}, −∞ < n < ∞, denote a sequence of numbers with
period k. Then the periodic Bernoulli numbers Bn(A), n � 0, can be defined by [5, p. 55,
proposition 9·1], for |z| < 2π/k,

z
∑k−1

n=0 anenz

ekz − 1
=

∞∑
n=0

Bn(A)

n! zn.

Furthermore [5, p. 56, equation (9·5)], for each positive integer n,

Bn(A) = kn−1
k−1∑
j=0

a− j Bn

(
j

k

)
, (5·2)
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where Bn(x), n � 0, denotes the nth Bernoulli polynomial. We say that A is even if an = a−n

for every integer n. The complementary sequence B = {bn}, −∞ < n < ∞, is defined by
[5, p. 32]

bn = 1

k

k−1∑
j=0

a j e
−2π i jn/k . (5·3)

It is easily checked that if A is even, then B is even, and that (5·3) holds if and only if

an =
k−1∑
j=0

b j e
2π i jn/k, −∞ < n < ∞. (5·4)

Now set

ζ(s; A) :=
∞∑

n=1

an

ns
, Re s > 1.

If A and r are even and if r � 2, then [5, p. 49, equation (6·25)]

ζ(r; B) = (−1)r+1 Br (A)

2 r !
(

2π i

k

)r

.

From (5·3) and (5·4), we see that the sequences A and B are not symmetric. Thus, we note
from above that, since A is even,

ζ(r; A) = (−1)r+1 Br (B)k

2 r !
(

2π i

k

)r

. (5·5)

We are now ready to state general evaluations in closed form for Sa(r) and Ta(r).

THEOREM 5·1. If Sa(r) and Ta(r) are defined by (5·1) and if r and a are even positive
integers, then

Sa(r) = (−1)1+r/22r−1π r

r !√a

a−1∑
m=0

Br

(m

a

)
sin

(
πm2

a
+ π

4

)
(5·6)

and

Ta(r) = (−1)1+r/22r−1π r

r !√a

a−1∑
m=0

Br

(m

a

)
cos

(
πm2

a
+ π

4

)
. (5·7)

In our work below, we need the value of the Gauss sum [4, p. 43, exercise 5; p. 15,
corollary 1·2·3]

c−1∑
n=0

eπ in2/c = eπ i/4√c, (5·8)

where c is an even positive integer.
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Before proceeding further, we show that (1·1) and (1·2) are special cases of (5·6) and
(5·7), respectively. Let r = 2 in Theorem 5·1, and recall that B2(x) = x2 − x + 1/6. Then

Sa(2) = π2

√
a

a−1∑
m=0

{(m

a

)2 − m

a
+ 1

6

}
sin

(
πm2

a
+ π

4

)

= π2

6
√

a

a−1∑
m=0

sin

(
πm2

a
+ π

4

)
+ π2

√
a

a−1∑
m=0

{(m

a

)2 − m

a

}
sin

(
πm2

a
+ π

4

)

= π2

6
+ π2

√
a

a−1∑
m=0

{(m

a

)2 − m

a

}
sin

(
πm2

a
+ π

4

)
,

upon the use of (5·8) twice.
The proof of (1·2) follows along the same lines, but note that in this case, by (5·8),

a−1∑
m=0

cos

(
πm2

a
+ π

4

)
= 0.

Proof of Theorem 5·1. Let

an = cos

(
πn2

a

)
, −∞ < n < ∞,

which is an even periodic sequence with period a, since a is even. Then, from (5·3) and
(5·8),

b−m = 1

a

a−1∑
j=0

cos

(
π j2

a

)
e2π i jm/a

= 1

2a
e−π im2/a

a−1∑
j=0

eπ i( j+m)2/a + 1

2a
eπ im2/a

a−1∑
j=0

e−π i( j+m)2/a

= 1

2a
e−π im2/a

a−1∑
j=0

eπ i j2/a + 1

2a
eπ im2/a

a−1∑
j=0

e−π i j2/a

= 1

2a
e−π im2/a+π i/4√a + 1

2a
eπ im2/a−π i/4√a

= 1√
a

cos

(
πm2

a
− π

4

)
= 1√

a
sin

(
πm2

a
+ π

4

)
.

Therefore, by (5·2), with B in place of A,

Bn(B) = an−3/2
a−1∑
m=0

sin

(
πm2

a
+ π

4

)
Bn

(m

a

)
. (5·9)

If we substitute (5·9) into (5·5) and simplify, we deduce (5·6).
The proof of (5·7) is analogous to that for (5·6). In this case we set

an = sin

(
πn2

a

)
, −∞ < n < ∞,
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which of course is even, and repeat the same kind of argument that we gave
above.

In conclusion, our attempts to establish Ramanujan’s original evaluations (1·1) and (1·2)
and their generalizations in Theorems 1·1, 1·2, 1·3, 4·1 and 5·1 have given us various rep-
resentations for these sums in terms of ballot numbers, Stirling numbers of the second kind,
Bernoulli numbers and polynomials, and trigonometric functions. Equating different evalu-
ations provide identities that would be surprising if we had not known of their origins. For
example, let us return to the case R2a(2). Combining (1·1) and (1·2) with (4·11) and (4·12)
or (4·9) and (4·10) with m = 1, respectively, we deduce the identities

π2

6a2
+ π2 cos(πa/4)

2a2
+ π2

a2

1
2 a−1∑
j=1

cos

(
π j2

a

)
csc2

(
π j

a

)

= π2

6
− π2

√
a

a∑
r=1

r

a

(
1 − r

a

)
sin

(
π

4
+ πr 2

a

)
and

π2 sin(πa/4)

2a2
+ π2

a2

1
2 a−1∑
j=1

sin

(
π j2

a

)
csc2

(
π j

a

)

= − π2

√
a

a∑
r=1

r

a

(
1 − r

a

)
cos

(
π

4
+ πr 2

a

)
.

Note that on the left-hand sides above, the sums contain only trigonometric functions, while
on the right-hand sides the sums contain both polynomials and trigonometric functions.
Trigonometric identities involving polynomials in the summands appear to be rare. The sums
on both sides of the identities may be regarded as new analogues of Gauss sums.

We record a few examples to illustrate our evaluations, namely,

S2(2) = π2

24
, S4(2) = − π2

48
+ π2

√
2

16
, S6(2) = −π2

72
+ π2

√
3

18
,

T2(2) = π2

8
, T4(2) = π2

√
2

16
, T6(2) = π2

24
+ π2

√
3

54
.

Lastly, we remark that (1·1) and (1·2) are discussed in [2], but considerably less thor-
oughly than in this paper. Related results are also examined in [2].

The authors are pleased to thank S. H. Chan, P. C. Toh and the referee for helpful sugges-
tions and corrections.
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