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Explicit evaluations of the
Rogers-Ramanujan continued fraction

By Bruce C. Berndt at Urbana, Heng Huat Chan at Princeton
and Liang-Cheng Zhang at Springfield

§ 1. Introduction

Let, for |g| <1,

W=

7
1+

—_

2 3
_ 9 9
F(q) = 1 1

+ 1+ 1+

denote the famous Rogers-Ramanujan continued fraction, and let S(q) = — F(—g). In his
first letter to G.H. Hardy, Ramanujan asserted that

(1.1) F(e™?") = l/5+2ﬁ—ﬁ2+1,
I/s— 5 1/5-1
1.2) Se™™) = 2‘/_—1[2 :

(1.3) F (e"‘V’T) can be exactly found if n be any positive rational quantity .

and

Identities (1.1) and (1.2) were first proved by G.N. Watson [15]. Watson vaguely discussed
(1.3) and merely claimed that F (e"'V'T) is an algebraic number.

The first attempt to find a “uniform” method to evaluate F(q) was made by K.G.
Ramanathan [9]. By studying the ideal class groups of imaginary quadratic fields with
the property that each genus contains a single class, Ramanathan was able to compute

F(e™™V") and S(e""") for several rational numbers  using Kronecker’s limit formula. In
particular, he showed that

Fe "V = (—(18 + 5)/5) + [/ 90(5 + 21/3))”5
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and

S(e-rVT) ( —(3+51/§)4;|/30(5+1/§)>”5.

Unfortunately, his method did not apply to the following continued fraction stated by
Ramanujan [12], vol.1, p.311:

(1.4) Fe ™ =)c*+1—c,
where

60'/* +2—1/3+]/5
2¢= 5+1.
‘ 60““—2+1/§—[/§I/_+

Identity (1.4) was first proved by B.C. Berndt and H.H. Chan [2], but their proof is
somewhat complicated. In an attempt to simplify the proof of (1.4), we discovered two

theorems for evaluating F (e‘z"V'T) and S (e"'V';) in terms of Ramanujan-Weber class in-
variants defined at the end of this introduction. These results will be proved in Section 2.

In Section 3, we will present a new proof of (1.4) and establish its companion con-
tinued fraction

(1.5) Se 3 =)/cE+1—c,,

where

604 +2+1/3—1/5
2¢, = 5—1.
“ 60”“—2—[/§+[/§‘/_

In Section 4, we will discuss page 210 of Ramanujan’s Lost Notebook, which contains

evidence that Ramanujan had attempted to evaluate S(e™™ l/57) and S (e"‘V"/_s) for odd
numbers between 1 and 15. In Section 5, we state a result which will give evaluations
associated with imaginary quadratic fields that are not discussed in Ramanathan’s work [9].

In the final section, we use a result in Stark’s paper [14] to show that F (e””V;) is
a unit when » is rational. This is clearly a stronger statement than that of Watson.

We complete this introduction with definitions of certain functions which will be used
in the sequel. For |g| <1, let

@@= 1 (1 —ag*™),
k=1

(1.6) f(=)=(49w

o 2 _(=q,—9
1.7 = k2 __._.__.93,
an e@= 2 =T,
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(1.8) 1=9) =497, ,

1.9 G,,==2_1/4e"w’24x(e'"w'),
and

(110) g":=2—1/4e”‘/’_‘/24x(_e—nl/'_l).

We shall refer to G, and g, as the Ramanujan-Weber class invariants. We also use modular
equations in the sequel, and refer to [1], pp. 213, 214, for this terminology.

§ 2. Explicit formulas for F(q) and S(q)

It was stated by Ramanujan [1], p. 85, and proved by Watson [15] that

—1/5f(_q1/5)

2.1 F Y q—1-F(q) = .
21 @ (9 =9 T
Replacing ¢ by —g¢q, we have
; —ys f@'®)
1 _ S VE A S

Consequently, in order to compute F (e"“v;) and S(e‘"w), it suffices to evaluate

- e pebis L)
f( —e” 10n Vi—l)
and
—nVn
(2.4) A, = eV fle V) |
fle™3Vmy
respectively.
Theorem 2.1. Let
GZSn
Vi=
(2.5) =
and

gZSn
U:=|———.
2.6) l/ 8n/25

() If A is defined by (2.3), then

-1
@.7) l_/fi__l%C(V—V'l)Z(V A 5-1)
5V

5 V-V
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and

A 5U e (U U /5
28 A VsU_ _
@9 1/§U+ a -wrv 1)2< /s U+U">'

(i) If A, is defined by (2.4), then

@9 AV _ IS =(V_V-92(V‘””1+ Vs ).

/5 AV /5 7
Proof. Let
FGil1—o
‘1”5-_—6’(13<_"2 : 2121. 3
2F1(-2',7,1,d)
and

F@LH—&)
5 271\2525 %>
qg>=exp| —m ,
( FGETH)

so that f is of degree 25 over «. Then ([1], p.291, Entry 15(), (ii))

BYYS (1= B\ (BU—B\ (BA—p\IE
(Zm)(&> +< ) _(aa—@> (aa~m) = V/mm

1—o

and
S g\ (a(t—a)\'* _(a(l—a)\''2 S
2 (5)+(55) - Gien) 2 Gap) =7
(@11) (ﬂ 125 BA=P) BA=P) e

1/5
where |/mm’ = (pq)(?qf‘))' From (2.10) and (2.11), we deduce that, respectively,

(A=) + @@= _ —  (BA=P\' (BA=B\"
(2.12) (1 — )8 +(a(1—cx)) +2(a(1——a)>

and

(BA=—w)'*+ (@1 =p)"® 5 +(oc(l—oc)>1/3+2<oc(1—a))‘“z.

(213) (BA— B VT \BA=P) BA=P)
Eliminating (8(1 — @))'/® + («(1 — $))/® from (2.12) and (2.13), we have
BU—B\YE (B — B\
@14) ym +<aa—@> +2<u1—@>

_<l3(1—ﬂ))”8< 5 +(cx(l—a))1/8+2(a(1_a)>1/12>
\e(t—o) |/ mm’ B(1—p) B —Pp) :

From [1], p.124, Entry 12(v), we have
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(215) q—lllzox(q1/5)=21/6{a(1_a)}—1/24

and

(216) 97 (g% = 20 (B~ B}
Hence, we can rewrite (2.14) as

2.17 s 2 ( de ] )2 s 1(g"%)

( ) q (P(‘]S) X(q”s) __x(qs)

—ys 2(@°) @) (x(@'>\ (¢°
—4 l/Sx(q”s) <5 Z/540(61”5)<x(qq§)> * 1/5)<x(61‘{’5))+2)'

+2

From the product representations of f(—g), ¢(g), and x(q) given in (1.6), (1.7), and (1.8),
we have

(2.18) q—lew _259(q'") ( 1(¢°) )2.

7= T 0@ k@™

Substituting (2.18) into (2.17), and setting g = e ™V we deduce that
(2.19) A+V242=54""V24V442V2,

by (1.9), (2.3) and (2.5). Rearranging (2.19), we obtain (2.7).

To show (2.8), we first replace ¢ by —q in (2.17) and (2.18). Next, set g = e "V,
By (1.10) and (2.3), we have

(2.20) A—U"24+2=-54"'U*+U*-2U2.
Rearranging (2.20), we deduce (2.8).

In order to show (2.9), we first observe that from (2.3)-(2.5),

-nVn/s _ - 2n Va5
@2.21) Alzem/sf(e ) _ evis (=€ ) -2

[V f(—e1onVn)
= AV "2,

Substituting (2.21) into (2.7), we arrive at (2.9). This completes the proof of Theorem 2.1.

Proposition 2.2. Let A and A, be defined by (2.3) and (2.4), respectively. Then
() if2c=A+1, thn Fle" V") =)/c?+1—¢,
(ii) if 2¢c = A, — 1, then S(e""V'_’) =)ct+1—c

Proof. Solve the quadratic equations (2.1) and (2.2). This proves the proposition.
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We next turn to the following relation discovered by Ramanujan [1], p. 267, and
proved by Watson [15], namely,

_ (=9
2.22 F3(@—11—-F3(q) = ——%.
Again, replacing g by —gq, we have
_ /@
2.23 S~ 11-83(@) = .

Hence, in order to compute F (e‘Z“V’T) and S (e""V;), it suffices to evaluate

- IV;
(2.24) 4’z g2nVal6 f(—e™2mVm)
f(_e— 10n Vr—n)
and
_,,V,;
(2.25) Al erViis L€ )
fem*Vn)
respectively.
Theorem 2.3. Let
G
2.26 /! = 25n
(2.26) 14 G
and
(2.27) U= 825n
&n
(i) If A’ is defined by (2.24), then
’2 ’
(228) 4 —_ ﬂ — _I_(VIS _ V/—3)
Vsv. A% /s
and
12 ’
(2.29) A @ — L(UIS + UI—3) .

—— + -
5ot AT T
(ii) If A is defined by (2.25), then

A4V Y51

VE AT

(2.30) w3 -v'3).

Proof. Let

F,¢ l-1-1—a))
241\252> %>

= €X -7

1 p( FiG 3 10)

and
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2F1(%,%;1§1"5))
2F1(%,%;1;ﬂ) ’

so that f is of degree 5 over a. Then ([1], pp. 281, 282, Entry 13 (xii))

q° =exp(—n

_ E 1/4 1—ﬁ 1/4 ﬂ(l—ﬂ) 1/4
e m=(5)7 (20) - (525
and
5 a\1/4 1—a\l/4 a(l——a))”“
2.32 2-(2 _(d-9
@3 m (ﬂ) +<1—ﬂ> (ﬂ(l—ﬁ) :
where m = f%%- From (2.31) and (2.32), we find that
— )l M)U4>_ _ 14<£ <4(1—a) He
233)  (a(—w) <m+<a(1_a) ~a-pye( 2+ (2=2)7),

Using (2.15) (with ¢'/* replaced by ¢), (2.16), and the equality

f(=4") _ 0@ ()c(q’)>2
f(=4") 0@\ 1@/’

we can rewrite (2.33) in the form

f(—=4¢% >2< x(q) )“ (f(—q‘°)>2< 2(q) >2 ( x(9) )"
2.34 — =1 .
(234) <f(—q‘°) @) N7 ) \wed) TG

Next, set ¢ =e """ By (2.34), (1.9), (2.24), and (2.26), we have

A'? 4
L s =yB3_p-3,
VI AIZ

Rearranging, we deduce (2.28).

To show (2.29), we simply replace g by —gq in (2.34) and set ¢ = e "V, By (1.10),
(2.24), and (2.27), we have
A? U’
— +5—=U" -3,
T + 17 +U

which gives (2.29) after rearrangement.
Finally, we observe that by (2.24), (2.25), (2.26), and (1.9),

AI

(2.35) 4=
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Substituting (2.35) into (2.28), we deduce (2.30). This completes the proof of Theorem 2.3.
Proposition 2.4. Let A’ and A; be defined by (2.24) and (2.25) respectively. Then
() if 2c=A'S+11, then F3(e >V =)/cT ¥ 1—¢,

(i) if 2c= A =11, then S5 """ =1/c2 +1 —c.
1

Proof. Solve the quadratic equations (2.22) and (2.23).

§ 3. Evaluations of F(e %™) and S(e 3%)
We first restate and prove (1.4).
Corollary 3.1.  Let a=60""* and b=2—/3+|/5. If 2¢c= ‘Zf—il/“ 1, then
Fle ®)=1/c*+1—c.
Proof. We first recall that ([11])
(3.1) G, =Gy

By Theorem 2.1, it suffices to evaluate

From [3], Theorem 1, we have

(3.2) Gon = Go(p+/P7 =D
) sz 24/ D9 l/pz —4+ )@ -0 }”3

2 2

where
p=G!+G *.
Since ([17], p.722)

|{5+1
G,s =

==
we find that p = 7 and so deduce that

by (3.2).

-
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If we examine the proof of (3.2) carefully (see [3]), we can deduce a corresponding
relation between G, o and G,, namely,

(34) Guo = G +1/p7 =D "°
x {l/pz —2+)/(P* - D> -4 _ l/pz — 4+ D -4 }”3
2 2 '

Substituting n = 25 and p = 7 into (3.4) gives

1/3
16 (1/47+12)/15 | 1/45+ 12}/15
(3.5 Gysje = Gys(7+1/48) (\/ >+ 2I/—> :

Dividing (3.3) by (3.5) yields

o [V +12)/15+ )45+ 121/T§)”3
/47 +12)/15 - /45 + 12)/15

2/3
47 +12)/15 45 +12)/15

Hence,

pa_ |+ 12)/15 45 +12)/15
2 2
and

(3.6) V3—V3=]/90+24)/15 =15%* + 3 - 1514
Since V3—V 3=V -=V"H3 43 -V"1), we deduce from (3.6) that
(3.7) V_V-l=154,
Therefore,

1/4 4
(3.8) V= 152 + ’/‘/1—5: ‘

Substituting (3.7) and (3.8) into Theorem 2.1 (i) gives

A VSV _ysus
(3.9) VA 1594(/3+1/5).

Solving for A4, we find that
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Y 8)/15+34 _1/8)/15+30
A—2<15 + [/E+4)<|/ 7 +V 7 )1/3

To show Corollary 3.1, it suffices, by Proposition 2.2, to verify that

(3.10) %(151/4+ I/E+4><\/8 1i+34+V8 1i+30)

6014 +2—1/3+/5
6014241315

Before establishing (3.10), we first make a simple observation. When « is a unit, it
can be written in the form |/y +1 V Since ]/- is also a unit, it is of the form

l/m + ]/_ Therefore,
(3.11) a=(/a)? = (/5 +1]/8)

yo+1+)/8

- Ve

. . o ut+v
This observation allows us to express a unit in the form ——.

Now, let

1514+ /)/15 + 4

2

Then

ata t=]/)/15+4.

This implies that

(3.12) Voat+ a2 =) )/15+4+2

and

(3.13) Yoa—Ya D2 =))15+4-2.
Since

21/15+8 _ 1/_+[
e

we may simplify (3.12) and (3.13) to obtain

Va+ )T = /6 ]{10+4
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and 6+1/10 — 4

CRTSE

Hence

64110+ 4 6+]/10—4
o T

From the discussion leading to (3.11), we conclude that

(3.14) I/V_+l/_+4+]/1/-+|/—— 4
l/l[+ V10+4-/)/6+)/10-4
_V4/6+1/10)2 16 +/6+ /10— 4
V0641107 —16-1/6 - /10 + 4

_ 604 4+)/3+)/5-2)/2
R e

In a similar way, we find that

3.15) ‘/8 15+34+1/8 15+30 6014 +]/15—1/10+1]/6 —
. 4 4 —60114__1/B+I/F)_l/8+1.

Combining (3.14) and (3.15) and simplifying, we obtain (3.10), and the proof is complete.

Remark. The value V established in the proof of Corollary 3.1 can also be deduced
from the values of G,,s and G, found in [5], p.149.

b
Corollary 3.2. Let a=60"* and b= 2+[/- V1f2c~a+ ]/5—-1,then

b
Se 3=} +1—-c.

Proof. From Theorem 2.1 (i) and the right hand side of (3.9), we find that

Al/; JL =154()/3+)/5).

A1=%(VI/E+4—15”‘><V8 li+34+‘/8 1'1“0)‘/5
601/4+2+1/' l/l/_
6014 —2—1/3+)/5

by the same argument as in the previous proof. By Corollary 2.2 (ii), we complete the
proof of Corollary 3.2.

Thus,
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Remarks. Note that (1.4) and (1.5) are truly companions. In fact, from Theorem

2.1, we observe that the values of F(e™ 2™ V';) and S (e”’V") are similar since they both arise
from the solutions of the same quadratic equation. Identities (1.1) and (1.2) are further
examples of the observation above.

§ 4. Page 210 of Ramanujan’s Lost Notebook

On page 210 of his Lost Notebook [13], Ramanujan defined S(g) and constructed
a table of values for S (e"'m) and S(e™ ™ l/5—';) for odd integers »n between 1 and 15. The
table is incomplete and only three values are given, namely, S(e""/Vg), S ™ l/g), and

S(e”"V775). Our aim in this section is to complete the table using Theorem 2.3 and some
results proved in [4].

We first recall the relation [7]

(4.1) {([5{—1)5+Ss(e'"m)}{(£2_—1>5+Ss(e"‘/Vﬂ)}
- 5l/§<lﬁ2_1>5-

In view of (4.1), it suffices to evaluate either S(e"‘m) or S(e"'/m). We choose
to compute the former.

Corollary 4.1.

$5(e=V5) — 1/(5]{5—11>2+1_ sY5-11
2 2

Proof. Letn=1/5 in (2.26). Then

By Theorem 2.3 (ii), we have
4.2 AP =1/5.

We complete the proof upon substituting (4.2) into Proposition 2.4 (ii).
Remark. Corollary 4.1 was first proved by Ramanathan [8].

Corollary 4.2.

e —5)/5-3+ )30 +)/5)
4

Proof. Letn=3/S in Theorem 2.3 (ii). From Weber’s table [17], p.721, we have
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Gys=2"112(1 4+ 1/5)1/3 )
Using a modular equation of degree 5 ([1], p.282, Entry 13 (xiv)), we deduce that

Gys = 2-1/12(1/5 — i3,

Hence,

4.3) = (@>“3
/51

and
(4.4) vi_yiTi=1.

Substituting (4.3) and (4.4) into (2.30) and solving for 4], we deduce that

o 254515
A .

2
We may now complete the proof using Proposition 2.4 (ii).

Remarks. Corollary 4.2 was first proved by Ramanathan [9]. For a proof of this
corollary using modular equations, see [2].

Theorem 4.3.

S35y = —5)/5-7+]/35(5 +2)/5).

Theorem 4.3 does not follow from Theorem 2.3 since we do not have a simple ex-
pression for G,5/G,s. This result is stated here for completeness. For the proofs of
Theorem 4.3, see [2] or [9].

b
Corollary 44. Let a=2)/15 and b=3)/5—1.If 2¢ = S22 5)/5— 11, then

§5(e"Vor5) =)et+1-c.

Proof. Let n=9/5 in Theorem 2.3 (ii). From [3], Theorem 1, we deduce that

4.5) V' = (us ! 3)”3
' [/g—]/_j '
Hence,

o s VB3 Y5
(4.6) vi—v =i Vae

Substituting (4.5) and (4.6) into Theorem 2.3 (ii), we find that

£=Zl/ﬁ.
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6 5+31/_
A=) 5—3)/5+1 Vs

after some simplification. Thus, by Proposition 2.4 (ii), we deduce Corollary 4.4.

Corollary 4.5. If

1/31/5+7-1/3)/5-1
A Yoy —)oys 119

and 2¢ = A'® — 11, then
S3(e~"V11/5) = /2 +1—c.

Proof. It is known that ([16], [17])

Gys = 214()/5 +2)1/° <\/7 +81/§ + ‘/1/58— 1>

Using a modular equation of degree 5 ([1], p. 282, Entry 13 (xiv)), we find that

7+V5 5—-1
G11/5 — 21/4(l/§+2)1/6 <‘/ 81/_ B ‘/Vg >
Hence,

VB
" reVi- A

=lﬁl/‘5£;+7+\/31/§-1

-1

2

and

Now, by (4.8), we have

49) —l/l—g(V’-"—V"3)=l/i§(V’—V"‘)((V’—V"‘)2+3)
L( 31f—1)31/'+5
Tal)

19+ 9)/5

2

Substituting (4.7) and (4.9) into Theorem 2.3 (ii) and simplifying, we deduce Corollary 4.5.
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Corollary 4.6. If

T
Wes+9-1)fes+1 2

S VBB = )/ 4 1—c.
1/[/_5+7 l/[—1

and 2¢ = A'® — 11, then

Proof. From [4],

(4.10)

Gl 3/5
Using calculations similar to those in the proof of Corollary 4.5, we deduce Corollary 4.6.
In [4], where (4.10) was proved, the values

G145/Grg)ss Gzos/G41/5, G65/Gs3s, Gu4s5/Ggoss and GSOS/GIOI/S

were also established. Using these values and Theorem 2.3 (ii), we can prove the following
corollaries.

Corollary 4.7. If
4 /17 +1/145 — /9 + /145 lf
W2 +2)/5+1- )y +2)/5-1)* 2

and 2¢ = A'® — 11, then

SS(e VPP = /T 1 —c.

/25 +3)/41 —)/17+3)/41
(1/23+31/_ 1/19+31/_)2

S5 (e~ V418 = Jet+1—c.
Corollary 4.9. If

) /16 +1/265 — /12 + /265
47 = 2)/s
(/5)/53+17)/5+2 ~)/5)/53 +17)/5-2)?

and 2¢ = A}® — 11, then

Corollary 4.8. If

and 2¢ = A\ — 11, then

SHe V) =/ +1—c.

/85 +91/89 — /77 +9]/89
([/85+9[/_ [/83+9\/_)2

Corollary 4.10. If
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and 2c¢ = A8 — 11, then
S5 (e V895 = /e +1—c.
Corollary 4.11. If

e /113 + 51/505 — /105 + 5]/505 1/;
L (/13101 +58)/5+1 - )/13)/101 + 58)/5—1)? | 2

and 2¢ = A'8 — 11, then

SS(e—nVIOI/S) — l/c2 +1—c.

To complete Ramanujan’s table mentioned in the beginning of this section, it
remains to evaluate S(e"'VS).

Theorem 4.12.

Sy = =2 —1/§+4]/6(5+[/§) '

Theorem 4.12 does not follow from Theorem 2.3 (ii) for the same reason as given in
the discussion of Theorem 4.3. This result was first stated by Ramanujan on page 46 of
his Lost Notebook. It was first proved by Ramanathan [10] using Kronecker’s limit
formula. A more natural proof of Theorem 4.12 using modular equations can be found
in [6].

§ 5. An application of Kronecker’s limit formula

We have seen in Sections 2—4 that the determinations of F (e‘z"w) and S (e"‘V;)
depend upon our ability to evaluate ¥V’ (or V). In this section, we will show that, in some
cases, we can express V' in terms of fundamental units of certain real quadratic fields.

First, we need some notation. Let K= Q(]/—d), where d is a positive squarefree
integer. Set

]/—d, if —d=2,3(mod4),

Q= -
Ltlé/_z, if —d=1(mod 4).

The ring of integers in K is Z[Q2]. It is well known that any ideal of K can be expressed
as a Z-module of the form I:=[b + cQ,a], with a> 0, ¢ > 0, ¢|b, c|a, and a|N(b + cQ),
where N(y) denotes the norm of an algebraic integer 7.

Theorem 5.1. Let n=m/5, where Sm is a squarefree positive integer with
Sm=1(mod4). Let K= Q(|/—5m) be a complex quadratic field with the property that
each genus contains exactly two classes and that [10, 5 + Q] is in the principal genus. Let
—20m=d,d,, where d, > 1. Then

(Vr)h/Z — 1_[ 8\10"1'!2/‘*‘2 ,

22,1+ Q) =-1
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where h, hy, and h, are the class numbers of K, Q()/d,), and @(]/cZ), respectively, w and
w, are the numbers of roots of unity in K and Q()/d,), respectively, ¢, is the fundamental
unit in Q([/Z), and the product is over all the characters y (with x([2,1+ Q] = —1)),
associated with the decomposition d =d,d,, and therefore d,, d,, h,, h,, w,, and &, are
dependent on y.

Remarks. 1. The proof of Theorem 5.1, which depends on Kronecker’s limit for-
mula, is a special case (p = 5) of Theorem 3.1 in [4], and so we omit it. Theorem 5.1 may
be viewed as an extension of Ramanathan’s result [9], Theorem 4.

2. Since h, and ¢, are not defined for d, =1, we omit the decomposition
—20m =1-d,. In fact, if d, =1, then the corresponding character associated with such
a decomposition is the trivial character. This character does not occur in the product of
Theorem 5.1 since the product is taken over all characters for which x([2,1 + Q])= —1.

Example. Let n=13/5. Then K= Q(|/—65), which has class number 8, and the

principal genus contains [10, 5 + Q], where Q = ]/—65. The genus characters which satisfy
1([2,1+ Q]) = —1 are the characters corresponding to the decompositions —260 = —52 - §
and —260= —20-13. In each of the decompositions above, wh, h,/w, = 2. Since the

5+1 /13 +3
fundamental units of @([/g) and Q(]/13) are V—; and 2+ , respectively, we con-
clude from Theorem 5.1 that

" G _ (V5H1Y (1T302)

Gias 2 2

A simple calculation shows that (5.1) is equivalent to (4.10).

§6. F (e"'v;) is a unit for rational n

Let S,(f) be the collection of 2 by 2 integral matrices of determinant f with rela-
tively prime entries and let

A()=qf*(—q),

where g = e?™* and f(—q) is defined by (1.6). If 7= j—l with Imt > 0, we set
2

A<21> =z;'2A(7)
%)
a(4(2))
)
A

=11 =2 desi(f).
1
22>

and

11 Journal fiir Mathematik. Band 480
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Lemma 6.1. If t is in a complex quadratic field, Imt > 0, and A€ S,(f), then g ,(1)
is an algebraic integer which divides f12.

Proof. See [14], Lemma 15.

Theorem 6.2. If t is in a complex quadratic field, then F(e?™) is a unit.

10

Proof. letz, =5t,z,=1,and 4= . Clearly, 4 € S,(25). By Lemma 6.1,
025

we find that

«(¥)

IACHES

W a
N———

~ A(57)
is an algebraic integer dividing 25'2. Hence

e—zm/s f(_e,Znit/S)

f( _ elOnir)
is an algebraic integer. In view of the identity (2.1), namely,

—2mie)s f( _eZRir/S)

F—l(eZnit) -1 - F(ez"it) =e f(_elonit) >

we conclude that F(e?™) is a unit if 7 is in a complex quadratic field.

Corollary 6.3. For any rational number n, F (e""W) and S(e"‘V';) are units.

Corollary 6.3 follows from Theorem 6.2 by setting

‘t=£—¥ and r=1L2i@

b

respectively.

The authors extend their thanks to David Masser who uncovered some flaws in the
original manuscript and contributed some very helpful suggestions.
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