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Abstract Many series for 1/π were discovered since the appearance of S. Ramanu-
jan’s famous paper “Modular equations and approximation to π” published in 1914.
Almost all these series involve only real numbers. Recently, in an attempt to prove a
series for 1/π discovered by Z.-W. Sun, the authors found that a series for 1/π in-
volving complex numbers is needed. In this article, we illustrate a method that would
allow us to prove series of this type.
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1 Introduction

G. Bauer [2] is likely to be the first mathematician to have discovered a series for 1/π

in the form
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∞∑

k=0

ak(A + Bk)Xk = C

π
, (1.1)

where {ak} is a sequence of rational numbers, and A, B , C and X are real algebraic
numbers. Bauer’s series is

2

π
=

∞∑

k=0

(−1)k
( 1

2 )3
k

k!3 (4k + 1),

where

(a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1) for k ≥ 1.

It was, however, the paper of S. Ramanujan [10] that popularize the study of series of
the type (1.1).

Many new series of the form (1.1) are found after Ramanujan’s work (see [4, 6, 8],
and [11]), with the most recent discovery being those found empirically by Z.-W. Sun
[12] and proved by these authors in [7]. All such series share one common property
that the coefficients are all real.

In [9], J. Guillera and W. Zudilin discovered the first series for 1/π with complex
coefficients, namely,

∞∑

k=0

( 1
2 )3

k

k!3
(

49 − 13
√−7

64
+ 105 − 21

√−7

32
k

)(
47 + 45

√−7

128

)k

=
√

7

π
. (1.2)

This series was shown to be equivalent to another series involving only real numbers
and the proof of the latter series follows from application of the Wilf–Zeilberger
method.

Let

pFp−1

(
a1, a2, . . . , ap

b2, . . . , bp

∣∣∣∣ z

)
=

∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b2)k · · · (bp)k

zk

k! , |z| < 1,

and let

Pk(x) = 2F1

(−k, k + 1
1

∣∣∣∣
1 − x

2

)
. (1.3)

Recently, Z.-W. Sun [12] discovered many new series for 1/π associated with
Tk(b, c), where

Tk(b, c) = (
b2 − 4c

)k/2
Pk

(
b

(b2 − 4c)1/2

)
.

Using (1.3), we [7] converted Sun’s series to series involving Pk(x), one of which is

∞∑

k=0

( 1
4 )k(

3
4 )k

k!2 Pk

( −7i

33
√

15

)
(13 + 80k)

(−11
√−15

147

)k

= 7
√

42(3 + 2
√

5)

8π
. (1.4)
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To prove (1.4), we need two series analogous to (1.2), namely,

∞∑

k=0

( 1
2 )k(

1
4 )k(

3
4 )k

k!3
(
52 ∓ 12

√−3 + (
320 ∓ 55

√−3
)
k
)

×
(

2(5 ± √−3)

7
√

3

)4k

= 98
√

3

π
. (1.5)

It suffices to prove any one of the above series since one is the conjugate of the other.
The proof of (1.5) were sketched briefly in [7]. In this note, we will discuss a

method to establish identities such as (1.5). Our proof is different from that given in
[7] and is applicable to a more general collection of series similar to (1.5).

2 Functions and forms associated with Γ0(2) and a transformation formula

Our main aim is to prove (1.5) and these series arise from the study of Ramanujan’s
quartic theory of elliptic functions [3]. We recall some of the facts from [3].

For |q| < 1, define

f (−q) =
∞∏

j=1

(
1 − qj

)
.

When q = e2πiτ with Im τ > 0, we find that

q1/24f (−q) = η(τ),

where η(τ) is the Dedekind η-function. It is well known that η(τ) [1, Theorem 3.1]
satisfies the transformation formula

η

(
− 1

τ

)
= √−iτ η(τ ). (2.1)

Let

Z(q) = f 8(−q) + 32qf 8(−q4)

f 4(−q2)

and

X(q) = 4x(q)
(
1 − x(q)

)
, (2.2)

where

1

x(q)
= 1 + f 24(−q)

64qf 24(−q2)
. (2.3)

From [3], we know that

Z(q) = 3F2

(
1
4 , 3

4 , 1
2

1, 1

∣∣∣∣ X(q)

)
.
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To extract the number π from these functions, we need the transformation formula
for A(q) and this follows immediately from (2.1). More precisely, we have

Z
(
e

2πi( −1√
2τ

)
)

= −τ 2Z
(
e2πiτ/

√
2
)
.

Differentiating the above with respect to τ , we deduce that

1

τ
· q

Z

dZ

dq

∣∣∣∣
q=e−2πi/(

√
2τ )

=
√

2

πi
+ τ · q

Z

dZ

dq

∣∣∣∣
q=e2πiτ/

√
2
.

To simplify notation, let

G(τ) = q

Z

dZ

dq

∣∣∣∣
q=e2πiτ/

√
2
.

Then the transformation can be rewritten as

1

τ
G

(
− 1

τ

)
=

√
2

πi
+ τG(τ). (2.4)

In the next section, we will express G(τ) and G(−1/τ) in terms of hypergeometric
function and its derivative.

3 Some intermediate identities

Set

τ1 =
√−15 − 1

2
√

2
, τ2 =

√−5/3 − 1

2
√

2
, and τ3 =

√−15 + 1

2
√

2
.

From (2.4), we deduce that

G

(
− 1

τ1

)
= τ1

√
2

πi
−

(
7

4
+

√−15

4

)
G(τ1)

and

G(τ2) =
(

1

τ2

)2

G(τ1) + 1

τ2

√
2

πi
,

where we have used −1/τ2 = τ1 + √
2, which implies that

G

(
− 1

τ2

)
= G(τ1).

Hence, we find that

G

(
− 1

τ1

)
=

√−15 − 1

2πi
−

(
7

4
+

√−15

4

)
G(τ1) (3.1)
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and

G(τ2) =
(

−3

4
+ 3

4

√−15

)
G(τ1) +

(
−3

2
− 1

2

√−15

)
1

πi
. (3.2)

Now, let

MN(q) = Z(q)

Z(qN)
. (3.3)

Then we find that

q

MN(q)

dMN(q)

dq
= Z̃(q) − NZ̃

(
qN

)
,

where

Z̃(q) = q

Z(q)

dZ(q)

dq
.

Letting q = e2πiτ/
√

2, we deduce that

G(τ) − NG(Nτ) = M̃N(τ),

where

M̃N(τ) = q

MN(q)

dMN(q)

dq
. (3.4)

When N = 2, we have

G

(
− 1

τ1

)
− 2G(τ3) = M̃2

(
− 1

τ1

)
(3.5)

and when N = 3,

G(τ2) − 3G(τ3) = M̃3 (τ2) . (3.6)

Using (3.1) and (3.2), we would have two identities relating G(τ1) and G(τ3) (see
(4.5) and (4.6) below).

4 Modular equations of degree 2 and 3 in the theory of signature 4 and explicit
evaluations

A modular equation of degree N in the theory of signature 4 is a relation between
x(q) and x(qN), where x(q) is given by (2.3). The modular equation of degree N

is not unique. In order to establish the two series for 1/π in (1.5), we will need the
following modular equations:

Theorem 4.1 Let α = x(q) and γ = x(q2). Then

64γ − 80γ α + 18γ α2 − 81γ 2α2 + 144γ 2α − 64γ 2 − α2 = 0. (4.1)
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Theorem 4.2 Let α = x(q) and β = x(q3). Then

α4 + β4 + 141056β3α3 + 19206β2α2 − 4096αβ + 36864β4α4

− 3972
(
β3α + α3β

) + 36480
(
α4β2 + β4α2) − 73728

(
β4α3 + α4β3)

+ 384
(
α4β + β4α

) + 7680
(
α2β + β2α

) − 63360
(
α3β2 + β3α2) = 0. (4.2)

Let F(τ) = x(q), with q = e2πiτ/
√

2. Since

3τ2 = τ3 − √
2,

we find that F(τ2) and F(τ3) satisfies (4.2). In a similar way, we conclude that
F(−1/τ1) and F(τ3) satisfies (4.1). Now, using (2.1), we find that

F

(
− 1

τ1

)
= 1 − F(τ1).

Hence, we deduce that

F(τ2) = 1 − F

(
− 1

τ2

)
= 1 − F(τ1), (4.3)

where we have used

− 1

τ2
= τ1 + √

2.

Hence, the two relations we obtained reduced to two equations involving F(τ1) and
F(τ3). Solving these equations, we conclude that

F(τ1) = 1

2
− 32

147

√
5 − 11

294

√−15.

By taking conjugation, we find that

F(τ3) = 1

2
− 32

147

√
5 + 11

294

√−15.

By (4.3), we deduce that

F(τ2) = 1

2
+ 32

147

√
5 + 11

294

√−15.

We next describe how we obtain an expression for MN defined by (3.3). It is
known [3] that if x = x(q), then

q
dx

dq
= Zx(1 − x) = Z

4
X,

where X is defined by (2.2). If N is a positive integer greater than 1, then

qN dx(qN)

d(qN)
= Z(qN)

4
X

(
qN

)
.
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This yields

MN = 1

N

dx(q)

dx(qN)

X(qN)

X(q)
. (4.4)

But if we are given a modular equation of degree N , then the right-hand side can
be expressed explicitly in terms of X(q) and X(qN) and hence we have an expres-
sion of MN in terms of X(q) and X(qN). From (4.4), we can then derive an explicit
expression of dMN/dX(q) in terms of X(q) and X(qN) and this in turn yields the
expression for M̃N defined by (3.4). We will carry out these computations and deter-
mine the right-hand side of (3.5).

Differentiating (4.1) with respect to α, we conclude that

dγ

dα
= 80γ − 36γ α + 162γ 2α − 144γ 2 + 2α

64 − 80α + 18α2 − 162γ α2 + 288γ α − 128γ
.

Hence,

M2 = 1

2

64 − 80α + 18α2 − 162γ α2 + 288γ α − 128γ

80γ − 36γ α + 162γ 2α − 144γ 2 + 2α

γ (1 − γ )

α(1 − α)
.

Differentiating M2 with respect to α,1 and letting α = F(−1/τ1) and γ = F(τ3), we
conclude that

G

(
− 1

τ1

)
− 2G(τ3) =

(
11

49
+

√
5

7
+

√−15

21
−

√−3

147

)
Z(τ1). (4.5)

In a similar way, we use (4.2) and the relation between Z(τ1) = Z(−1/τ2) and
Z(τ2) to deduce that

G(τ2) − 3G(τ3) =
(

4

49

√
5 − 20

49

√−3 + 2

49

√−15 + 30

49

)
Z (τ1) . (4.6)

Next, using (3.1) and (3.2) in (4.5) and (4.6) to remove the term G(τ3), we find
that

−
(

15

4
+ 9

4

√−15

)
G(τ1) −

(
27

49
− 13

49

√
5 − 3

49

√−15 − 39

49

√−3

)
Z(τ1)

= −9i + √
15

2π
.

Finally, observing that

Z(τ1) =
∞∑

k=0

( 1
2 )k(

1
4 )k(

3
4 )k

k!3
(
4F(τ1)

(
1 − F(τ1)

))k

1This would be too complicated to present here.
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and

G(τ1) = (
1 − 2F(τ1)

) ∞∑

k=0

( 1
2 )k(

1
4 )k(

3
4 )k

k!3 k
(
4F(τ1)

(
1 − F(τ1)

))k
,

we obtain the desired series for 1/π .

Remarks

1. The degrees of modular equations to be used to prove complex series for 1/π are
not as obvious as in the real series. In the real series for 1/π , if τ = √−pq/2
where p and q are primes, then it is clear that we need modular equations of
degree p and q . In the complex case, we observe that the norms of

1√
2

τ3

(−1/τ1)
and

1√
2

τ3

τ2

are 2 and 3, respectively. These norms determine the degrees of modular equations
we used. We stress that the method presented here can also be applied to series for
1/π with complex coefficients that belong to the theory of elliptic function in
other alternative bases.

2. In most of the proofs of Ramanujan-type series for 1/π , the most complicated
expression arises from differentiating MN . In the quartic theory, this complication
can be avoided by writing the derivative of MN in terms of the expression

fN(q) = NL(qN) − L(q)

(N − 1)
√

Z(q)Z(qN)
,

where

L(q) = 1 − 24
∞∑

k=1

kqk

1 − qk
.

This identity, after some simplifications, is [3, (4.36)]

NL(qN) − L(q)

Z(q)
= (

1 − 3x
(
qN

)) N

MN

− (
1 − 3x(q)

) − 6
M̃N

Z(q)
.

The expression fN can then be expressed in terms of x(q) and x(qN) and we can
then derive the value of M̃N at corresponding values of q without differentiat-
ing MN . In this article, we would require the formulas

f 2
2 (q) = 1 + 3

√
x
(
q2

)

and

f 2
3 (q) = 1 + 3

√
x(q)x

(
q3

)
.
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The two values that we needed are then

f2
(
e2πi(−1/τ1)

) =
√

105 + 2
√

21 + 2
√−35 − √−7

14

and

f3
(
e2πiτ2

) =
√

105 − 3
√−7

14
.

These values would then lead to the values on the right-hand sides of (4.5) and
(4.6).

3. A different approach to derive series for 1/π with complex coefficients and argu-
ment is based on algebraic transformations of hypergeometric and related series
of modular origin; the required details of the method can be found in [5]. For
example, starting from real Ramanujan’s series

∞∑

k=0

( 1
2 )3

k

k!3
(
5 − √

5 + 20k
)(

√
5 − 1

2

)6k

= 2
√

5

π

√
2 + √

5,

and applying subsequently the transformation

3F2

(
1
3 , 1

2 , 2
3

1, 1

∣∣∣∣
27p4(1 − p2)(2 + p)4(1 + 2p)

(2 + 2p − p2)6

)

= (2 + 2p − p2)2

4(1 + 2p)
3F2

(
1
2 , 1

2 , 1
2

1, 1

∣∣∣∣
4p3(1 − p2)(1 + p)2(2 + p)

(1 + 2p)2

)

at

p = (1 + √
5)

√√
5 − 2 −

√
22 − 10

√
5

4
− 1

2
(cf. [7]) and then the generating function

∞∑

k=0

δku
k = 1

1 − 4u
3F2

(
1
3 , 1

2 , 2
3

1, 1

∣∣∣∣
108u2

(1 − 4u)3

)

of the Domb numbers [5] at u = (3 − 2i −√
5 − 10i)/32, we obtain the following

two complex series:

∞∑

k=0

( 1
3 )k(

1
2 )k(

2
3 )k

k!3
(
3
(
401 − i − (109 − 69i)

√
1 + 2i

) + 5830k
)

×
(

27(2530 + 1451i − 65(30 − i)
√

1 + 2i)

495 − 4888i

)k

= 3321 − 381i + 81(33 − 17i)
√

1 + 2i

4π
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and

∞∑

k=0

(
69 + 13i − (23 − 7i)

√
1 + 2i + 170k

)
δk

(
3 − 2i − (1 − 2i)

√
1 + 2i

32

)k

= 66 + 42i + 12(1 − 4i)
√

1 + 2i

π
.
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