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ABSTRACT

We resolve a family of recently observed identities involving 1/π using

the theory of modular forms and hypergeometric series. In particular,

we resort to a formula of Brafman which relates a generating function of

the Legendre polynomials to a product of two Gaussian hypergeometric

functions. Using our methods, we also derive some new Ramanujan-type

series.
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1. Introduction

Recently, Z.-W. Sun [16] and G. Almkvist experimentally observed several new

identities for 1/π of the form

(1)

∞∑
n=0

(s)n(1− s)n
n!2

(A+Bn)Tn(b, c)λ
n =

C

π
,

where s ∈ {1/2, 1/3, 1/4}, A,B, b, c ∈ Z, Tn(b, c) denotes the coefficient of xn

in the expansion of (x2 + bx+ c)n, viz.

(2) Tn(b, c) =

�n/2�∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck,

while λ and C are either rational or (linear combinations of) quadratic irra-

tionalities. All such equalities from [16] are compactly listed in Table 1 in

Section 2.

The binomial sums (2) can be expressed via the classical Legendre polyno-

mials

Pn(x) = 2F1

(−n, n+ 1

1

∣∣∣∣ 1− x

2

)
by means of the formula

Tn(b, c) = (b2 − 4c)n/2Pn

(
b

(b2 − 4c)1/2

)
,

so that equalities (1) assume the form

(3)
∞∑
n=0

(s)n(1− s)n
n!2

(A+Bn)Pn(x0)z
n
0 =

C

π
.

Here and throughout the paper we use a standard notation for hypergeometric

series,

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z) =

∞∑
n=0

(a1)n(a2)n · · · (am)n
(b2)n · · · (bm)n

zn

n!
,

where (a)n = Γ(a+ n)/Γ(a) denotes the Pochhammer symbol.

The sequence of Legendre polynomials can be alternatively defined by the

ordinary generating function

(1− 2xz + z2)−1/2 =
∞∑
n=0

Pn(x)z
n.
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In the rest of the paper, we will make heavy use of another generating func-

tion for the Legendre polynomials due to F. Brafman. This and our general

approach is described in Section 2. In Sections 3, 4, 5 and 6, we will examine

the conjectures for s = 1/2, 1/3, 1/4 and 1/6, respectively, and indicate six new

identities (46)–(51) for s = 1/4 and 1/6. Then in Sections 7 and 8 we show

that “companion series” involving derivatives of Legendre polynomials can be

obtained, and some of them, as well as a few series examined in the previous

sections, are expressible in terms of known constants.

Our main result is the following, which we prove in Section 2:

Theorem 1: All the series for 1/π listed in Table 1 are true.

2. Brafman’s formula and modular equations

In [10], Brafman proved the following elegant hypergeometric formula for a

generating function of the Legendre polynomials.

Proposition 1 (Brafman’s formula [10]):

(4)
∞∑

n=0

(s)n(1− s)n
n!2

Pn(x)z
n

= 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ− z

2

)
· 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ+ z

2

)
,

where ρ = ρ(x, z) := (1− 2xz + z2)1/2.

This result, in an even more general form involving Jacobi polynomials, is a

consequence of Bailey’s identity for a special case of Appell’s hypergeometric

function of the fourth type [1, Section 9.6]. In [17] we present a generalization

of Bailey’s identity and follow the lines of Brafman’s derivation to prove a new

type of generating functions of the Legendre polynomials.

By introducing the compact notation for the involved hypergeometric func-

tion and its derivative,

(5) F (t) = F (s, t) := 2F1

(
s, 1− s

1

∣∣∣∣ t), G(t) = G(s, t) := t
d

dt
F (t),

and differentiating both sides of (4) with respect to z, we immediately deduce
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Proposition 2:

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)z
n =F (t−)F (t+),(6)

∞∑
n=0

(s)n(1− s)n
n!2

nPn(x)z
n =

z(x− z − ρ)

ρ(1− ρ− z)
G(t−)F (t+)(7)

+
z(x− z + ρ)

ρ(1− ρ+ z)
F (t−)G(t+),

where t± = t±(x, z) := (1− ρ± z)/2.

For s ∈ {1/2, 1/3, 1/4, 1/6} the right-hand side of Brafman’s formula repre-

sents the product of two arithmetic hypergeometric series: the modular func-

tions

(8)

t4(τ) =

(
1 +

1

16

(
η(τ)

η(4τ)

)8)−1

, t3(τ) =

(
1 +

1

27

(
η(τ)

η(3τ)

)12)−1

,

t2(τ) =

(
1 +

1

64

(
η(τ)

η(2τ)

)24)−1

, t1(τ) =
1

2
− 1

2

√
1− 1728

j(τ)

(with subscripts denoting the levels) translate the respective series F (t) into a

weight 1 modular form F (t(τ)). Here η(τ) and j(τ) are classical Dedekind’s eta

function and the modular invariant, respectively. For the rest of the paper we

will omit the subscript in t�(τ) when the modular function used is clear from

the context. The inversion formula is given [4, p. 91] by

(9) τ = iCs
F (1− t)

F (t)
, where Cs =

1

2 sinπs
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 if s = 1

2 ,

1√
3

if s = 1
3 ,

1√
2

if s = 1
4 ,

1 if s = 1
6 .

The elliptic nome is defined throughout the paper as q = e2πiτ . Note that for

any of the four modular functions in (8) we have

(10)
1

2πi

dt

dτ
= q

dt

dq
= t(1 − t)F 2(t),

the result already known to Ramanujan [4, Chap. 33], [5], [13].
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Table 1. Identities (3), and the corresponding choice of τ0 and

N such that (1−ρ0−z0)/2 = t(τ0) and (1−ρ0+z0)/2 = t(τ0/N)

or 1− t(τ0/N) (the latter option is for entries marked by aster-

isk).

# in s x0 z0 ρ0 A B C τ0 N

[16]

(I1)∗ 1/2 −i

3
√

7

−3i
√

7
16

15
16 7 30 24 i

√
7+1
4 2

(I2) 1/2 17
12

√
2

−3

4
√

2

5
√

3

4
√

2
7 30 12 2i

√
3−3
2 3

(I3) 1/2 97
56

√
3

7
√

3
16

√
15

16 −1 30 80 i
√

15
2 5

(I4) 1/2 31
8
√

15

√
15

16
7
√

3
16 5 42 16

√
3 i

√
15
2 3

(II1) 1/3 3
√

3
5

5
6
√

3
5

6
√

3
2 15 45

√
3

4
2i√
3

2

(II2) 1/3 5
2
√

6

27
√

3

125
√

2
91
125 12 91 75

√
3

2 i
√
2 2

(II3) 1/3 99
70

√
2

35
27

√
2

√
5

27 −4 15 135
√

3
2

i
√

10√
3

5

(II4) 1/3 485
198

√
6

99
√

3

125
√

2

√
14

125 −41 42 525
√
3 i

√
14√
3

7

(II5) 1/3 365
364

91
125

27
√

3

125
√

2
1 18 25

√
3 i

√
2 3

(II6) 1/3 51
10

√
26

5
√

13

4913
√

2

3465
√

2
4913 559 6930 1445

√
6

2
i
√

26√
3

2

(II7) 1/3 99
70

√
2

35
35937

√
2

8710
√

17
35937 15724 222105 114345

√
3

4
i
√

34√
3

2

(II8) 1/3 19601
13860

√
2

3465
√

2
4913

5
√

13

4913
√

2
−3967 390 56355

√
3 i

√
26√
3

13

(II9) 1/3 143649
34840

√
17

8710
√

17
35937

35
35937

√
2

−7157 210 114345
√
3 i

√
34√
3

17

(II10)∗ 1/3 −13i

4
√

35

i
√

35
64

27
√

5
64 7 45 8(3+

√
5)√

3

i
√

35−1
6 3

(II11)∗ 1/3 −7i
√

5
22

−11i

10
√

5
27

10
√

5
2 9 15+

√
5

2
√

3

i
√

5+1
3 2

(II12)∗ 1/3 −10i
√

2
23

−23i

125
√

2
189

125
√

2
11 63 25(3+4

√
2)

4
√

3

i
√

8+1
3 3

(A1) 1/3 9
4
√

5

√
5

27
35

27
√

2
5 42 54

√
3

5
i
√

10√
3

2

(A2) 1/3 15
4
√

14

√
14

125
99

√
3

125
√

2
7 66 50

√
2

3
i
√

14√
3

2

(III1) 1/4 52
30

√
3

160
121

√
3

85
363 2 85 33

√
33 i

√
3 3

(III2) 1/4 55
12

√
21

−√
21

6
2
√

7
3 5 28 3

√
6 i

√
21+3
2 3

(III3) 1/4 49
20

√
6

10
√

6
49

10
√

6
49 3 40 70

√
21

9
3i√
2

3

(III4) 1/4 257
255

85
363

160
121

√
3

9 80 11
√

66
2 i

√
3 2

(III5)∗ 1/4 −7i

33
√

15

−11i
√

15
147

64
√

5
147 13 80 7

√
42(3+2

√
5)

8
i
√

15+1
4 2
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When τ is a quadratic irrationality (with Im τ > 0), the value t(τ) is known

to be an algebraic number; computation of such values is well discussed in

the literature— see, for example, [4, Chap. 34]. A common feature of the Sun–

Almkvist series (3) from [16] for s ∈ {1/2, 1/3, 1/4} is that the algebraic numbers

(11) α =
1− ρ0 − z0

2
and β =

1− ρ0 + z0
2

, where ρ0 := (1−2x0z0+z20)
1/2,

are always values of the modular function t(τ) at two quadratic irrational points.

In cases when x0 and z0 are real, we get α = t(τ0) and β = t(τ0/N); while in

cases when both x0 and z0 are purely imaginary (and there are five such cases

in Table 1 marked by asterisk), we have α = t(τ0) and β = 1 − t(τ0/N). The

corresponding choice of quadratic irrational τ0 and integer N > 1 is given in

Table 1. We also note that |α| ≤ |β| for all entries, with the strict inequality

when both x0 and z0 are real.

Remark 1: Observe the duality between several entries in Table 1, where the

roles of z0 and ρ0 are swapped. These correspond to the same choice of τ0 with

different choices of N , which is often a prime factor of an integer inside the

radical in τ0.

Proposition 3: In notation (11), assume that both α and β are within the

convergence domain of the hypergeometric function F (t) (that is, |α|, |β| < 1).

(a) Suppose that α = t(τ0) and β = t(τ0/N) for a quadratic irrational τ0

and an integer N > 1. Then there exist effectively computable algebraic

numbers μ0, λ0 and λ1 such that

(12) F (β) = μ0F (α) and G(β) = λ0F (α) + λ1G(α).

(b) Suppose that α = t(τ0) and β = 1− t(τ0/N) for a quadratic irrational

τ0 and an integer N > 1. In addition, assume that |1 − β| < 1. Then

there exist effectively computable algebraic numbers μ0, λ0, λ1 and λ2

such that

(13) F (β) = μ0F (α) and G(β) = λ0F (α) + λ1G(α) +
λ2

πF (α)
.

Proof. (a) For N given, the two modular functions t(τ) and t(τ/N) are related

by the modular equation of degree N ; in particular, the function t(τ/N) is

an algebraic function of t(τ). As both F (t(τ)) and F (t(τ/N)) are weight 1

modular forms, their quotient F (t(τ/N))/F (t(τ)) is a modular function, hence
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is an algebraic function of t(τ). The quotient specialized at τ = τ0 is then an

algebraic number, which we denote by μ0.

Differentiating F (t(τ/N))/F (t(τ)) logarithmically and multiplying the result

by F 2(t(τ)), we arrive at a relation expressing G(t(τ/N)) linearly via F (t(τ))

and G(t(τ)) with coefficients which are modular functions. Specializing at τ =

τ0 this yields the second equality in (12) with algebraic λ0 and λ1.

(b) Consider now β = 1 − β′ where β′ = t(τ0/N). By what is shown in

part (a),

(14) F (β′) = μ′
0F (α) and G(β′) = λ′

0F (α) + λ′
1G(α)

for certain algebraic μ′
0, λ

′
0 and λ′

1. Relation (9) implies that

(15)
F (1− t)

F (t)
= − iτ

Cs
,

which specialized to τ = τ0/N , hence t = β′, results in

(16) F (β) = − iτ0
NCs

F (β′).

Computing the logarithmic t-derivative of (15) and using (5), we find

tG(1 − t)

F (1− t)
+

(1− t)G(t)

F (t)
= − t(1− t)

τ

(
dt

dτ

)−1

=
it(1− t)F (t)

CsF (1 − t)

(
dt

dτ

)−1

,

which, after multiplication by F (1− t)/t and using (15), can be written as

(17) G(1 − t) =
iτ(1− t)

Cst
G(t) +

i(1− t)

Cs
F (t)

(
dt

dτ

)−1

.

Using now (10) and taking τ = τ0/N (so that t = t(τ0/N) = β′) in (17) we

obtain

(18) G(β) =
iτ0β

NCs(1− β)
G(β′) +

1

2πCs(1− β)F (β′)
.

Combining now (14), (16) and (18) we arrive at (13).

Finally note that all the above algebraicity is effectively computed by means

of the involved modular equations.

Now we appeal to a particular case of Clausen’s formula (1828),

(19) 2F1

(
s, 1− s

1

∣∣∣∣ t)2

= 3F2

(1
2 , s, 1− s

1, 1

∣∣∣∣ 4t(1− t)

)
,
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which is valid for t within the left half of the lemniscate 4|t(1− t)| = 1. Differ-

entiating (19) and expanding the 3F2 hypergeometric function into series, we

obtain

Proposition 4: For t satisfying |t(1− t)| ≤ 1/4 and Re t < 1/2,

F 2(t) =

∞∑
n=0

(12 )n(s)n(1− s)n

n!3
(
4t(1− t)

)n
,

F (t)G(t) =
1− 2t

2(1− t)

∞∑
n=0

(12 )n(s)n(1 − s)n

n!3
· n(4t(1− t)

)n
.

Our final argument goes back to Ramanujan’s discovery [15] of hypergeomet-

ric formulas for 1/π. Its proof is outlined in [6], [7], [8] and [12].

Proposition 5: Let α be the value of the modular function t(τ) at a quadratic

irrationality τ0. Assume that |α(1 − α)| ≤ 1/4 and Reα < 1/2. Then there

exist effectively computable algebraic constants a, b and c such that

(20)

∞∑
n=0

(12 )n(s)n(1 − s)n

n!3
(a+ bn)

(
4α(1 − α)

)n
=

c

π
.

Remark 2: Observe that all the values α = (1− ρ0 − z0)/2 from Table 1 satisfy

the hypothesis of Proposition 5, with the exception of (II11) which we treat

separately in Section 4.

Proof of Theorem 1. For a given entry from Table 1, we choose α =

(1 − ρ0 − z0)/2 = t(τ0) and β = (1 − ρ0 + z0)/2. Proposition 5 implies that

we have a Ramanujan series (20). On invoking Proposition 4 for t = α we can

write (20) in the form

(21) aF 2(α) + 2b
1− α

1− 2α
F (α)G(α) =

c

π
.

On the other hand, by specializing the identities in Proposition 2 at x = x0,

z = z0 and using then the algebraic relations obtained in Proposition 3, we

obtain
∞∑
n=0

(s)n(1− s)n
n!2

Pn(x0)z
n
0 = μ0F

2(α),

∞∑
n=0

(s)n(1− s)n
n!2

nPn(x0)z
n
0 = λ′

0F
2(α) + λ′

1F (α)G(α) +
λ′
2

π
,
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with some algebraic (effectively computable) coefficients μ0, λ′
0, λ′

1 and λ′
2,

where we simply choose λ′
2 = 0 if β = t(τ0/N).

Finally, taking

B′ =
2b(1− α)

λ′
1(1− 2α)

and A′ =
a−B′λ′

0

μ0

we derive from (21) that

∞∑
n=0

(s)n(1− s)n
n!2

(A′ +B′n)Pn(x0)z
n
0 =

c−B′λ′
2

π
,

which assumes the required form (3) after stretching A = CA′/(c − B′λ′
2),

B = CB′/(c−B′λ′
2).

As verification of each entry in the table requires an explicit knowledge of

all algebraic numbers involved and is therefore tedious, we give details for only

some of the entries. In Section 3 we discuss in detail identity (I2) by using

a parametrization of the corresponding modular equation. Section 4 describes

the techniques without using an explicit parametrization on an example of iden-

tity (II1), and uses a hypergeometric transformation to treat (II11), an entry

that does not satisfy the conditions of Proposition 5. Section 5 explains the

derivation of identity (III5), which corresponds to imaginary x0 and z0, as well

as outlines new identities for s = 1/4. In Section 6 we present two identities

corresponding to s = 1/6, which are not from the list in [16].

3. Identities for s = 1/2

We illustrate our techniques outlined in Section 2 with (I2),

∞∑
n=0

(12 )
2
n

n!2
(7 + 30n)Pn

(
17

12
√
2

)(
− 3

4
√
2

)n

=
12

π
.

Here we have N = 3, so that the values α = t(τ0) = (1 − ρ0 − z0)/2 and

β = t(τ0/3) = (1−ρ0+z0)/2 are related by the modular polynomial [3, Chap. 19]

(α2 + β2 + 6αβ)2 − 16αβ
(
4(1 + αβ) − 3(α+ β)

)2
= 0
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and admit the rational parametrization

α =
4
√
2− 5

√
3 + 3

8
√
2

=
p3(2 + p)

1 + 2p
,

β =
4
√
2− 5

√
3− 3

8
√
2

=
p(2 + p)3

(1 + 2p)3
,

p =
3−√

2−√
3

2
√
2

.

In notation (5), recall now the identity [3, p. 238, Entry 6 (i)]

(22) F

(
p(2 + p)3

(1 + 2p)3

)
= (1 + 2p)F

(
p3(2 + p)

1 + 2p

)
for p ∈

(
−1

2
, 1
)
;

differentiating it we obtain

(23)

G

(
p(2 + p)3

(1 + 2p)3

)
=
p(1 + 2p)(2 + p)

(1− p)2
F

(
p3(2 + p)

1 + 2p

)
+

3(1 + p)2(1 + 2p)

(1− p)2
G

(
p3(2 + p)

1 + 2p

)
.

Substituting p = (3 −√
2−√

3)/(2
√
2) into (22) and (23) we obtain

F (β) =
−√

6 + 3
√
2

2
F (α),

G(β) =− 85
√
6 + 120

√
3− 147

√
2− 208

2
F (α)

+
(−19

√
3 + 33)(17

√
2 + 24)

2
G(α).

Specializing (6), (7) by taking x = 17/(12
√
2), z = −3/(4

√
2) we get

∞∑
n=0

(12 )
2
n

n!2
(A+Bn)Pn

(
17

12
√
2

)( −3

4
√
2

)n

=
√
6

(√
3− 1

2
A− B

30

)
F 2(α)

+
15

√
2 + 8

√
3− 3

√
6

10
BF (α)G(α).

In turn, the choice A = 7 and B = 30, Clausen’s formula (19) (Proposition 4)

and

4t(1− t)
∣∣
t=(4

√
2−5

√
3+3)/(8

√
2)

= − (
√
3− 1)6

27
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imply

∞∑
n=0

(12 )
2
n

n!2
(7 + 30n)Pn

(
17

12
√
2

)( −3

4
√
2

)n

=

√
6(7

√
3− 9)

2
3F2

(1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣ −(
√
3− 1)6

27

)

+
9
√
2(101

√
3− 175)

128
3F2

(3
2 ,

3
2 ,

3
2

2, 2

∣∣∣∣ −(
√
3− 1)6

27

)
,

which is precisely 3/
√
2 times the Ramanujan-type formula [2, eq. (8.3)]

∞∑
n=0

(12 )
3
n

n!3
(
7− 3

√
3 + 6(5−√

3)n
) (−1)n(

√
3− 1)6n

27n
=

4
√
2

π
.

The derivation of (I4) is very similar, as the degree N is also 3 in this case

(although we have to swap the rational p-parametric expressions of α and β).

The choice of the parameter in the above rational parametrization is p =

−(2 +
√
3 +

√
15)/4, and the transformation (22) assumes the form

F

(
p(2 + p)3

(1 + 2p)3

)
= −1 + 2p

3
F

(
p3(2 + p)

1 + 2p

)
for p ∈ (−∞,−1).

This in fact follows from (22) by a change of variables, then by applying to both

sides a transformation of the complete elliptic integral K (as K(t) = πF (t2)/2),

(24) K(x) =
1√

1− x2
K

(√
x2

x2 − 1

)
,

itself a result of Euler’s hypergeometric transformation [1, Section 1.2, eq. (2)].

Finally, (I4) reduces to Ramanujan’s identity [15, eq. (30)]

∞∑
n=0

(12 )
3
n

n!3
(
5
√
5− 1 + 6(7

√
5 + 5)n

)(√5− 1)8n

214n
=

32

π
.

For (I1) and (I3) we have to use the modular equations of degree 2 and 5,

respectively [3, Chap. 19]; the corresponding “complex” Ramanujan-type series

for 1/π required in the derivation of (I1) can be found in [14, Section 4].
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4. Identities for s = 1/3

In this section we first prove (II1),

∞∑
n=0

(13 )n(
2
3 )n

n!2
(2 + 15n)Pn

(
3
√
3

5

)(
5

6
√
3

)n

=
45

√
3

4π
,

which is representative of identities in the large group for s = 1/3 in Table 1.

Here

(25) α =
1− ρ0 − z0

2
=

1

4

(
1− 1√

3

)3

and β =
1− ρ0 + z0

2
=

1

2

satisfy the modular equation of degree 2 in signature 3. Although a rational

parametrization similar to the one we exploited in Section 3 exists, we will

compute the algebraic relations of Proposition 3 by using the modular equation

itself

(26) (αβ)1/3 + ((1 − α)(1 − β))1/3 = 1

as well as the equation for the corresponding multiplier [4, p. 120, Theorem 7.1]

(27) m =
F (β)

F (α)
=

(1− α)2/3

(1− β)1/3
− α2/3

β1/3
,

where α = α(τ) = t(τ) has degree 2 over β = β(τ) = t(τ/2).

On specializing (27) by taking τ = τ0, we get

(28) F

(
1

2

)
=

2√
3
F (α)

∣∣
α=(1−1/

√
3)3/4

.

Computing the logarithmic t-derivative of (27) at t = α, and using the notation

of (5) result in

(29)

G(β)

βF (β)

dβ

dα
− G(α)

αF (α)
=

1

m

d

dα

(
(1− α)2/3

(1 − β)1/3
− α2/3

β1/3

)
=
F (α)

F (β)

1

3

(
dβ

dα

(
(1− α)2/3

(1− β)4/3
+

α2/3

β4/3

)
− 2

(1− α)1/3(1− β)1/3
− 2

α1/3β1/3

)
.

The derivative dβ/dα can be obtained by differentiating (26),

dβ

dα

(
α1/3

β2/3
− (1 − α)1/3

(1 − β)2/3

)
+

β1/3

α2/3
− (1 − β)1/3

(1 − α)2/3
= 0,
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so that
dβ

dα

∣∣∣∣
τ=τ0

= 9.

Thus, with the choice τ = τ0 in (29), we obtain

(30) G

(
1

2

)
=

(
2

9
F (α) +

3
√
3 + 5

3
G(α)

)∣∣∣∣
α=(1−1/

√
3)3/4

.

From now on we fix α and β as defined in (25). With the help of Proposition 2

and (28), (30) we find that

∞∑
n=0

(13 )n(
2
3 )n

n!2
Pn(x0)z

n
0 = F (α)F (β) =

2√
3
F 2(α),

∞∑
n=0

(13 )n(
2
3 )n

n!2
nPn(x0)z

n
0 =

3
√
3 + 5

5
G(α)F (β) +

3
√
3

5
F (α)G(β)

=
2

5
√
3
F 2(α) +

3
√
3 + 5√
3

F (α)G(α).

Therefore,

∞∑
n=0

(13 )n(
2
3 )n

n!2
(2 + 15n)Pn(x0)z

n
0 =

10√
3
F 2(α)+

15(3
√
3+5)√
3

F (α)G(α)

=
5√
3

∞∑
n=0

(12 )n(
1
3 )n(

2
3 )n

n!3
(2+15n)

(
4α(1−α)

)n
,

while the latter is a multiple of Ramanujan’s series [15, eq. (31)]

∞∑
n=0

(12 )n(
1
3 )n(

2
3 )n

n!3
(2 + 15n)

(
2

27

)n

=
27

4π
,

and identity (II1) follows.

Remark 3: In Section 8 we show that in the discussed example we have closed

form evaluations of F (1/2) and G(1/2), hence of

(31) F (α) =

√
3

2
F

(
1

2

)
, G(α) =

5
√
3− 9

6
F

(
1

2

)
+

9
√
3− 15

2
G

(
1

2

)
(the relations follow from (28) and (30)). In particular, this gives a different

way of deducing (II1), avoiding use of a Ramanujan-type series (Propositions 4

and 5).



14 H. H. CHAN, J. WAN AND W. ZUDILIN Isr. J. Math.

We now turn our attention to (II11), shown below, for which 4|α(1−α)| > 1

and thus does not satisfy the conditions of Proposition 5. Our method employed

is illustrative in dealing with more general situations when this occurs. It is

also worth noting that this approach bypasses the computational difficulties

encountered with purely imaginary x0 and z0 (see Section 5), as is the case

here.

We are required to prove

∞∑
n=0

(13 )n(
2
3 )n

n!2
(2 + 9n)Pn

(−7i
√
5

22

)(−11i

10
√
5

)n

=
15

√
3 +

√
15

6π
,

with α = (10
√
5− 27 + 11i)/(20

√
5). We now take

p0 =
(1 +

√
5)
√√

5− 2−
√
22− 10

√
5

4
− 1

2
,

and apply the transformation [4, p. 112, Theorem 5.6]

(32) 2F1

(1
3 ,

2
3

1

∣∣∣∣ 27p2(1 + p)2

4(1 + p+ p2)3

)
=

1+ p+ p2√
1 + 2p

2F1

(1
2 ,

1
2

1

∣∣∣∣ p3(2 + p)

1 + 2p

)
,

which is valid for real p ∈ [0, 1). By analytic continuation, the transformation

remains valid in a domain surrounding the origin in which the absolute values of

the arguments of both hypergeometric functions are less than 1; in particular,

this domain contains p0 and its conjugate p0.

In notation

F̃ (t) := 2F1

(1
2 ,

1
2

1

∣∣∣∣ t), G̃(t) := t
d

dt
F̃ (t),

transformation (32) at p = p0 gives us

(33) F (α) =
(2
√
5− 1 + (32− 14

√
5)i)1/4√

2
F̃ (α0),

where α0 = 1/2 −
√√

5− 2 is real. Moreover, as β is the conjugate of α, it

easily follows that at p = p0,

(34) F (β) =
(2
√
5− 1− (32− 14

√
5)i)1/4√

2
F̃ (α0).

Therefore, F (α) and F (β) are both algebraic multiples of F̃ (α0), and we have

transposed the problem to a simpler one in signature 2 with real argument. It

remains to express G(α) and G(β) in terms of F̃ (α0) and G̃(α0).
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To this end, we differentiate (32) with respect to p, and obtain

(35)
(1− p)(2 + p)(1 + 2p)5/2

(1 + p)(1 + p+ p2)
G

(
27p2(1 + p)2

4(1 + p+ p2)3

)
= 3p2(1 + p) F̃

(
p3(2 + p)

1 + 2p

)
+

6(1 + p)2(1 + p+ p2)

2 + p
G̃

(
p3(2 + p)

1 + 2p

)
.

Substituting p0 and its complex conjugate p0, respectively, into (35) simpli-

fies both G(α) and G(β) in terms of the desired functions. Armed with this

knowledge as well as with (33) and (34), we can use Proposition 2 to obtain

∞∑
n=0

(13 )n(
2
3 )n

n!2
(2 + 9n)Pn

(−7i
√
5

22

)(−11i

10
√
5

)n

=

√
5
√

41
√
5− 89√

6
F̃ 2(α0)+

(
5(
√
3 + 3

√
5)

6
+
10

√
17

√
5− 31√
6

)
F̃ (α0)G̃(α0).

This now satisfies the conditions of Proposition 4 with s = 1/2, and the truth

of (II11) is reduced to that of a classical Ramanujan series

(36)

∞∑
n=0

(12 )
3
n

n!3
(5 −√

5 + 20n)

(√
5− 1

2

)6n

=
2
√
5

π

√
2 +

√
5,

as 4α0(1 − α0) = ((
√
5 − 1)/2)6—we comment on this remarkable numerical

coincidence in Section 8.

5. Identities for s = 1/4

In this section we choose to prove identity (III5),

∞∑
n=0

(14 )n(
3
4 )n

n!2
(13 + 80n)Pn

(
− 7i

33
√
15

)(
−11i

√
15

147

)n

=
7
√
42(3 + 2

√
5)

8π
,

and our new “rational” identity (46). However, it is worth commenting on the

proof of (III3), which is very similar to the one of (II1) presented in Section 4.

For (III3) we get

α =
(
√
6− 2)4

23 · 72 , β =
1

2
,

the degree 3 modular equation reads

(37) (αβ)1/2 + ((1− α)(1 − β))1/2 + 4(αβ(1 − α)(1 − β))1/4 = 1,
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while the underlying series

∞∑
n=0

(12 )n(
1
4 )n(

3
4 )n

n!3
(3 + 40n)

1

74n
=

1

3π
√
3

is due to Ramanujan [15, eq. (42)]. A more elementary derivation of (II1), which

we discuss in Section 8, is also available for (III3).

In the case of (III5), we have τ0 = (1 + i
√
15)/4, N = 2,

α = t(τ0) =
1

2
− 32

√
5

3 · 72 +
11i

√
15

6 · 72 , β =
1

2
− 32

√
5

3 · 72 − 11i
√
15

6 · 72 ,

and β′ = 1− β = t(τ0/2). Note that for subsequent calculations,

β1/2 =
4
√
5− 5

14
− i

√
15 + 4

√
3

42
.

The degree 2 modular equation for s = 1/4 is [11, eq. (4.6)]

(38) α1/2
(
1 + 3(1− β′)1/2

)
= 1− (1− β′)1/2,

and the multiplier is given by [11, eq. (4.5)]

(39) m =
F (β′)
F (α)

= 2
(
1 + 3(1− β′)1/2

)−1/2
.

Using (16) and (38), we can find the ratio between F (β′) and F (β), as well

as between F (β′) and F (α):

F (β) =
3 + 2

√
5− (

√
5− 2)

√
3i

2
√
14

F (α),(40)

F (β′) =
2
√
3 +

√
15 + (2

√
5− 3)i

2
√
7

F (α).(41)

Relation (18) of Proposition 3 assumes the form

(42)

G(β) =
(7 − 3

√
5)(5

√
15 + 61i)

128
√
2

G(β′) +
3(69 + 7

√
5) + 33i

√
3(15− 7

√
5)

256
√
2 π F (β′)

.

It remains to express G(β′) as a linear combination of G(α) and F (α). Pro-

ceeding in a similar fashion as Section 4 (for (II1)), we differentiate both sides

of (38) with respect to t at α, and obtain

(1 + 3β1/2)2β1/2 =
(
1− β1/2 + 3α(1 + 3β1/2)

)dβ′

dα
,
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from which we easily solve for dβ′/dα; this we substitute into the next equation,

obtained by differentiating both sides of (39):

(43) G(β′) =
β′G(α)F (β′)

αF (α)

(
dβ′

dα

)−1

+
3β′F (α)

2β1/2(1 + 3β1/2)3/2
.

Now (43), when tidied up via (41), expresses G(β′) in terms of G(α) and

F (α) as promised. Substituting the result into (42) and using (41) again, after

much computational work we arrive at an expression of G(β) in terms of G(α)

and F (α):

(44)

G(β) =
3
√
7
(
23

√
15− 39

√
3− (3

√
5 + 1)i

)
256

√
2π F (α)

− 15 + 18
√
5 + (38

√
3− 23

√
15)i

112
√
14

F (α)

− 513 + 323
√
5 + (153

√
3− 361

√
15)i

448
√
14

G(α).

Combining (40) and (44) with Proposition 2 allows us to invoke Proposition 4

to arrive at a series equivalent to (III5); the corresponding Ramanujan-type

series and its conjugate are given by

(45)
∞∑
n=0

(12 )n(
1
4 )n(

3
4 )n

n!3
(
(52∓ 12i

√
3) + (320∓ 55i

√
3)n

)(2(5± i
√
3)

7
√
3

)4n

=
98

√
3

π
,

as we have

4α(1− α) =

(
2(5 + i

√
3)

7
√
3

)4

in this case.

Remark 4: We remark that the Ramanujan-type series (45) are rational over

the ring Z[e2πi/3]. A possible way to establish them rests upon application of

degree 2 modular equations (38), (39) with the different choice

α = t

(
i
√
15± 1

2

)
= −

(
16− 7

√
5

11
√
3

)2

, β′ = t

(
i
√
15± 1

4

)
,
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so that α is real, and on using the real Ramanujan-type series

∞∑
n=0

(12 )n(
1
4 )n(

3
4 )n

n!3
(
1500−604

√
5+(6825−2240

√
5)n

)
(−1)n

(
2(13− 5

√
5)

11
√
3

)4n

=
121

√
15

π

for the argument 4α(1 − α); this is very similar to what was done for (II11) in

Section 4. A different approach is applying the general construction from [7].

At the end of this section we would like to present four new rational series

that are analogous to (III2).

Our first series for s = 1/4 corresponds to the choice

x0 =
199

60
√
11

, z0 =
−5

√
11

96
, ρ0 =

65

32
√
3
, τ0 =

i
√
33 + 3

2
, and N = 3,

in the notation of Table 1. Then we have
∞∑

n=0

(14 )n(
3
4 )n

n!2
(33 + 260n)Pn(x0)z

n
0 =

32
√
6

π
,

or alternatively in the form involving Tn (as in (1)),

(46)
∞∑
n=0

33 + 260n

(−3842)n

(
4n

2n

)(
2n

n

)
Tn(398, 1) =

32
√
6

π
.

The proof proceeds in the fashion of (II1) via the degree 3 modular equation and

the multiplier in signature 4 (see [4, pp. 153–154]), and the Ramanujan-type

series
∞∑

n=0

(14 )n(
3
4 )n(

1
2 )n

n!3
(
33

√
33−119+(260

√
33−220)n

)(325
√
33− 1867

4608

)n

=
128

√
3

π
.

The three other new series are obtained by choosing

τ0 ∈
{
i
√
57 + 3

2
,
i
√
93 + 3

2
,
i
√
177 + 3

2

}
and, again, N = 3. They are:

∞∑
n=0

7 331 + 83 980n

(−2 6882)n

(
4n

2n

)(
2n

n

)
Tn(2 702, 1) =

80
√
423

π
,(47)

∞∑
n=0

71 161 + 1 071 980n

(−24 2882)n

(
4n

2n

)(
2n

n

)
Tn(24 302, 1) =

135
√
2533

π
√
6

,(48)
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and

∞∑
n=0

30 282 753+ 632 736 260n

(−1 123 5842)n

(
4n

2n

)(
2n

n

)
Tn(1 123 598, 1) =

2944
√
14633

π
√
3

.

(49)

The partial sum of (49) adds about four digits of accuracy per term.

In order to find these new series similar to (III2), we search for imaginary

quadratic fields Q(
√−3	) with class number 4, where prime 	 ≡ 3 (mod 4). It

turns out that this is satisfied when 	 = 7, 11, 19, 31 and 59 (this list seems

exhaustive). The four new series correspond to the latter four discriminants,

respectively.

Another curious observation is that, in the notation of
∞∑

n=0

A+Bn

Λn

(
4n

2n

)(
2n

n

)
Tn(b, 1) =

C

π
,

when N = 3 we have |b− |Λ|1/2| = 14. This is observed in (III1)–(III3), as well

as in (46)–(49), and in fact follows from the modular equation (37).

6. New identities for s = 1/6

In this section, we illustrate two series corresponding to s = 1/6, a case not

considered in [16].

Our first example follows by taking τ0 = i
√
6 and N = 2. Then

1728

j(τ0)
=

1399− 988
√
2

4913
and

1728

j(τ0/2)
=

1399 + 988
√
2

4913
,

and we have two Ramanujan-type series of Proposition 5,
∞∑

n=0

(12 )n(
1
6 )n(

5
6 )n

n!3
(
5 + 12(5∓√

2)n
)(1399± 988

√
2

4913

)n

=
3± 1

2π

√
213∓ 24

√
2.

Note that adding these two series gives a rational left-hand side. By using either

of the two series, and with

x0 =
17

√
17− 46

2
√
1757− 391

√
17

, z0 =

√
1757− 391

√
17

17
√
17

,

we obtain
∞∑
n=0

(16 )n(
5
6 )n

n!2
(
5(31 + 17

√
17) + 5928n

)
Pn(x0)z

n
0 =

17
√
6

π

√
1069

√
17− 1683.
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In notation of (1), this becomes

(50)
∞∑
n=0

(
6n

3n

)(
3n

n

)(
5(31 +

√
173) + 5928n

)
Tn

(
2
(√

173 − 46
)
, 1
) 1

(12
√
17)3n

=
17

√
6

π

√
1069

√
17− 1683.

In the second example we choose τ0 = i
√
7 + 1 and N = 2, so that

1728

j(τ0)
=

(
4

85

)3

and
1728

j(τ0/2)
= −

(
4

5

)3

,

and the related Ramanujan-type series is

∞∑
n=0

(12 )n(
1
6 )n(

5
6 )n

n!3
(8 + 133n)

(
4

85

)3n

=

√
853

18π
√
3
,

due to Ramanujan himself [15, eq. (34)]. The series and the corresponding

choice

x0 =
323

√
1785

13650
−

√
105

40950
, z0 =

171
√
1785

14450
− 3

√
105

50

generate the formula

∞∑
n=0

(16 )n(
5
6 )n

n!2
(1687−15

√
173+6552n)Pn(x0)z

n
0 =

85
√
30

32π

√
19809

√
17− 68425.

In notation of (1), the identity can be stated in the form

(51)
∞∑

n=0

(
6n

3n

)(
3n

n

)
(1687−15

√
173+6552n)Tn

(
10773−125

√
173

32
,−1

)
1

(−15
√
17)3n

=
85

√
30

32π

√
19809

√
17− 68425.

The appearance of a negative c in (1) is not found on the list from [16].

7. Companion series

If we differentiate (4) with respect to x instead of z, a series involving the

derivatives of Legendre polynomials is obtained:
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Proposition 6: In the notation of (5),

(52)
∞∑

n=0

(s)n(1− s)n
n!2

P ′
n(x)z

n =
z

ρ

(
G(t−)F (t+)

1− ρ− z
+

F (t−)G(t+)

1− ρ+ z

)
,

where t± = t±(x, z) := (1− ρ± z)/2.

We may then take a linear combination of the series (6) and (52), and apply

Proposition 4 to match a series for 1/π (of the type in Proposition 5), thus

obtaining what we call a “companion series”.

For instance, in the case of (II1), the resulting companion series is

∞∑
n=0

(13 )n(
2
3 )n

n!2

[
P ′
n

(
3
√
3

5

)
+
√
3Pn

(
3
√
3

5

)](
5

6
√
3

)n

=
15

2π
.

If we combine (II1), its companion, and the formula

P ′
n(x) =

n

x2 − 1

(
xPn(x)− Pn−1(x)

)
,

we produce the new identity

∞∑
n=0

(13 )n(
2
3 )n

n!2
nPn−1

(
3
√
3

5

)(
5

6
√
3

)n

=
3

4π
.

Note that the second order recursion satisfied by the Legendre polynomials

allows us to derive many identities of this kind.

As another example of a companion series, (I4) produces

∞∑
n=0

(12 )
2
n

n!2

[
7

26
√
5
P ′
n

(
31

8
√
15

)
+

214

13
√
3
Pn

(
31

8
√
15

)](√
15

16

)n

=
32

π
.

8. Closed forms

Here we give our elementary proof of (II1) as promised in Remark 3. Using the

same notation as Section 4, applying Proposition 2 and relation (31), we obtain

∞∑
n=0

(13 )n(
2
3 )n

n!2
(2 + 15n)Pn

(
3
√
3

5

)(
5

6
√
3

)n

=
45

2
F

(
1

2

)
G

(
1

2

)
.
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Note that both the hypergeometric series on the right-hand side can be summed

by Gauss’ second summation theorem [1, Section 2.4, eq. (2)]:

F

(
1

2

)
= 2F1

(1
3 ,

2
3

1

∣∣∣∣ 12
)

=
Γ(12 )

Γ(23 )Γ(
5
6 )

,

G

(
1

2

)
=

1

9
2F1

(4
3 ,

5
3

2

∣∣∣∣ 12
)

=
2Γ(12 )

Γ(13 )Γ(
1
6 )

.

Therefore,

F

(
1

2

)
G

(
1

2

)
=

√
3

2π
,

and identity (II1) follows. As mentioned, a similar derivation is valid for (III3).

When s = 1/2, we can alternatively use the complete elliptic integrals K(k)

and K ′(k) := K(k′) = K(
√
1− k2) to represent proofs of the identities in

group I. This sometimes leads to unexpected closed form evaluations of the

involved F (α) and F (β), hence also ofG(α) andG(β) through the corresponding

series for 1/π or by taking derivatives. Our evaluations depend on the Nth

singular value of K, that is, a modulus kN such that

K ′(kN )

K(kN)
=

√
N.

For a positive integer N , kN is algebraic and can be effectively computed [15],

and the values of K and its derivative at kN (hence F (k2N ) and G(k2N )) are

expressible in terms of gamma functions (see [8, Chap. 5], which also lists kN

for small N).

Consider, for example, the product F (α)F (β) for (I2); with the help of (22)

we see that it is

2
√
6(
√
3 + 1)

3π2
K2

(√
4
√
2− 5

√
3− 3

8
√
2

)
.

We now apply the transformation (24) followed by [8, Chap. 1]

K(x) =
1

1 + x
K

(
2
√
x

1 + x

)
,

and observe that the argument of the elliptic integral is transformed to k′3,
where k3 = sin(π/12) is the third singular value. As K ′(k3) has a closed form,

we obtain
∞∑

n=0

(12 )
2
n

n!2
Pn

(
17

12
√
2

)(
− 3

4
√
2

)n

=
3Γ

(
1
3

)6
211/3π4

.
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Curiously enough, the quantity on the right-hand side is exactly the value of

the (−1)st moment of the distance from the origin in a uniform 3-step walk on

the plane [9, Section 5, Example 5].

In (I3) and (I4), α = 16− 7
√
3−√

15 is the square of the 15th singular value

of K. In the proof of (II11), α0 is the square of the fifth singular value. In all

these cases, F and G all have computable closed forms at α and α0; we can

therefore complete their proofs without resorting to Propositions 4 and 5. In

the case of (II11) we can use the fact to establish the series (36).

9. Conclusion

We have discussed the proofs of several Ramanujan-type series for 1/π that are

associated with the Legendre polynomials. Our analysis in Sections 5 and 6

shows that the list in [16] does not exhaust all, even rational, examples of such

series, and that the latter problem is related to investigation of imaginary qua-

dratic fields with prescribed class groups. In particular, our work effectively

gives a recipe to generate more series of the type by picking suitable τ in imag-

inary quadratic fields.

The techniques of the present paper also allow us to prove other identities

in [16] of the forms

(53)
∞∑

n=0

(12 )
2
n

n!2
(A+Bn)P2n(x0)z

n
0 =

C

π
and

∞∑
n=0

(13 )n(
2
3 )n

n!2
(A+Bn)P3n(x0)z

n
0 =

C

π
,

although computation becomes more involved and the next two identities need

to be invoked. Brafman’s generating function (4) in these cases is replaced by

(54)
∞∑
n=0

(12 )
2
n

n!2
P2n

(
(u+ v)(1 − uv)

(u− v)(1 + uv)

)(
u− v

1 + uv

)2n

=
1 + uv

2
2F1

(1
2 ,

1
2

1

∣∣∣∣ 1− u2

)
2F1

(1
2 ,

1
2

1

∣∣∣∣ 1− v2
)

and

(55)
∞∑
n=0

(13 )n(
2
3 )n

n!2
P3n

(
u+ v − 2u2v2

(u− v)
√

1 + 4uv(u+ v)

)(
u− v√

1 + 4uv(u+ v)

)3n

=

√
1 + 4uv(u+ v)

3
2F1

(1
3 ,

2
3

1

∣∣∣∣ 1− u3

)
2F1

(1
3 ,

2
3

1

∣∣∣∣ 1− v3
)
.
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Identities (54) and (55), valid in a neighbourhood of u = v = 1, are new, and

we prove them and several other previously unknown generating functions of

Legendre polynomials in [17]; there we also discuss in more detail applications

to formulas for 1/π including the forms (53). In particular, we prove in [17]

new series such as:
∞∑

n=0

(12 )
2
n

n!2
(2 + 15n)P2n

(
3
√
3

5

)(
2
√
2

5

)2n

=
15

π
,

∞∑
n=0

(12 )
2
n

n!2
nP2n

(
45

17
√
7

)(
4
√
14

17

)2n

=
68

21π
,

and

∞∑
n=0

(13 )n(
2
3 )n

n!2
(1 + 9n)P3n

(
4√
10

)(
1√
10

)3n

=

√
15 + 10

√
3

π
√
2

.

Although parameters b, c and λ in notation (1) cannot all be made rational,

the summands of the three series given are all rational numbers.
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