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Abstract In this article, we prove the Brent–Salamin algorithm for π using Jacobi’s
theta functions and use this approach to derive new analogues of the Brent–Salamin
algorithm for elliptic functions to alternative bases.
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1 Introduction

In 1976, R. Brent [9] and E. Salamin [13] discovered independently an efficient algo-
rithm, which is based on C.F. Gauss’ ‘Arithmetic–Geometric Mean’ two-term recur-
rence, for evaluating π . The Brent–Salamin algorithm is stated as follows:

Iteration 1.1 Let a0 = 1 and b0 = 1/
√
2. For n ≥ 0, let

an+1 = an + bn
2

(1.1)

bn+1 = √
anbn, (1.2)
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76 H. H. Chan

and

πn = 2a2n

1 −
n∑

j=0

2 j
(
a2j − b2j

) .

Then, πn increases monotonically to π .

Both Brent and Salamin derived their algorithm using the elliptic integrals

K (α) =
π/2∫

0

dθ
√
1 − α sin2 θ

, (1.3)

E(α) =
π/2∫

0

√
1 − α sin2 θ dθ, (1.4)

I (a, b) =
π/2∫

0

dθ
√
a2 cos2 θ + b2 sin2 θ

= 1

a
K

(
1 − b2

a2

)

and

J (a, b) =
π/2∫

0

dθ
√
a2 cos2 θ + b2 sin2 θ

= aE

(
1 − b2

a2

)
.

The proof of the Brent–Salamin algorithm requires several identities involving these
integrals. A sample of such identities is

E(α) = (1 + √
1 − α)E

⎛

⎝

(
1 − √

1 − α

1 + √
1 − α

)2
⎞

⎠ − √
1 − αK (α), (1.5)

2J (an+1, bn+1) − J (an, bn) = anbn I (an, bn) (1.6)

and

E(α)K (1 − α) + E(1 − α)K (α) − K (α)K (1 − α) = π

2
. (1.7)

Identity (1.5) is an example of duplication and dimidiation formulas for elliptic inte-
grals, (1.6) plays a significant role in the derivation of Iteration 1.1 and (1.7) is known
as the Legendre relation. For detailed proofs of these identities and Iteration 1.1, see
[6, p. 12, Theorem 1.2, p. 13, Theorem 1.3, p. 24, Theorem 1.6 and p. 48]).
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Analogues of the Brent–Salamin algorithm for evaluating π 77

In this article, we will present a proof of the Brent–Salamin algorithm using theta
functions instead of elliptic integrals. Our approach is motivated by known relations
between elliptic integrals and theta functions. In the process of deriving the proof of
the Brent–Salamin algorithm using theta functions, we will have to replace identities
such as (1.5)–(1.7) by identities involving theta functions. We then use this alternative
approach to derive algorithms for the computations of π associated with the analogues
of Gauss’ AGM iteration and compare them with those discovered by the Borweins
[7].

2 Jacobi theta functions

We first recall some important identities satisfied by the Jacobi theta functions.

Theorem 2.1 Let

θ3(q) =
∑

n∈Z

qn
2
,

θ2(q) =
∑

n∈Z

q(n+ 1
2 )2

θ4(q) =
∑

n∈Z

(−1)nqn
2

and

2F1 (a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n! ,

with

(a)k =
{
1 if k = 0,

(a)(a + 1) · · · (a + k − 1) if k ≥ 1.

Then,

2θ23 (q2) = θ23 (q) + θ24 (q) (2.1)

θ44 (q2) = θ23 (q)θ24 (q) (2.2)

θ43 (q) = θ42 (q) + θ44 (q) (2.3)

θ23 (q) = 2F1

(
1

2
,
1

2
; 1; θ42 (q)

θ43 (q)

)

. (2.4)

For proofs of (2.1)–(2.4), see [2, Chapter 16, Chapter 17], or [6, Chapter 2].
For simplicity, let

α = α(q) = θ42 (q)

θ43 (q)
(2.5)
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78 H. H. Chan

and

F(α) = 2F1

(
1

2
,
1

2
; 1;α

)
= θ23 (q). (2.6)

We emphasize here that F(α) is a theta series as well as a hypergeometric function.
From [1, Chapter 11, p. 88], we know that

q
dα

dq
= F2(α)α(1 − α). (2.7)

Using the product representations θ3 and θ4 (see for example [6, p. 64, Corollary 3.1]),
one can show that (2.7) is equivalent to Jacobi’s identity for the generating function
of the sums of four squares, namely,

θ43 (q) = 1 + 8
∞∑

k=1
4�k

kqk

1 − qk
.

From (2.7), we conclude that if � is a positive integer greater than 1, then

dα(q�)

dα(q)
= �

α(q�)(1 − α(q�))

α(q)(1 − α(q))

F2(α(q�))

F2(α(q))
. (2.8)

It is known that ([2, Chapter 16, Entry 27(i),(ii)] or [6, Chapter 2])

θ23 (e−π/t ) = tθ23 (e−π t ), θ22 (e−π/t ) = tθ24 (e−π t ). (2.9)

Hence,

α(e−π/t ) = θ44 (e−π/t )

θ43 (e−π/t )
= θ42 (e−π t )

θ43 (e−π t )
= 1 − α(e−π t ), (2.10)

where we have used (2.3). Since

θ23 (e−π/t ) = F(1 − α),

we deduce that

t = F(1 − α)

F(α)
. (2.11)

Prompted by (2.10) and (2.11), we also deduce that when α(q) is defined by (2.5),

q = e−π t = exp

(
−π

F(1 − α)

F(α)

)
. (2.12)

Differentiating (2.11) with respect to α and using (2.7), we find that

α(1 − α)
(
F(α)F ′(1 − α) + F(1 − α)F ′(α)

) = 1

π
(2.13)

123

Author's personal copy



Analogues of the Brent–Salamin algorithm for evaluating π 79

where

F ′(x) = dF(x)

dx
.

Identity (2.13) will play the role of Legendre’s relation (1.7). Note that when α = 1/2,
we have from (2.13) that

F

(
1

2

)
F ′

(
1

2

)
= 2

π
. (2.14)

Now, from (2.1), (2.3) and (2.4), we find that if β = α(q2), then

F(α)

F(β)
= 2

1 + √
1 − α

.

This implies that
(1 + √

1 − α)F(α) = 2F(β). (2.15)

Differentiating (2.15) with respect to α, we deduce that

− 1

2
√
1 − α

F(α) + (1 + √
1 − α)F ′(α) = 4F ′(β)

β(1 − β)

α(1 − α)

F2(β)

F2(α)
, (2.16)

where we have used (2.8) with � = 2. Multiplying (2.16) by 2α(1 − α) and using
(2.15), we deduce that

−α(1 − α)√
1 − α

F(α) + 2α(1 − α)F ′(α)(1 + √
1 − α)

= 2β(1 − β)F ′(β)(1 + √
1 − α)2. (2.17)

Next, set
G(α) = 2α(1 − α)F ′(α) + (1 − α)F(α). (2.18)

Our choice of G(α) is motivated by our attempt to replace the elliptic integral E(α)

defined in (1.4) by expressions involving only F(α). We know from [6, p. 10, Exercise
3] that

E(α) = 2(1 − α)αK ′(α) + (1 − α)K (α). (2.19)

Motivated by (2.19), we let

Gr,s(α) = rα(1 − α)F ′(α) + s(1 − α)F(α),

with r, s ∈ Q and choose r and s such that (2.17) simplifies (see (2.21)). This happens
when r = 2 and s = 1 and leads to our choice ofG(α). It is clear that in this case,G(α)

coincides with E(α) when we express K (α) as the hypergeometric representation of
F(α). We will see in the next few sections that our analogues of G(α) do not always
coincide with the analogues of E(α), namely, Es, s = 1/6, 1/4 (see [6, (5.5.5)]).
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80 H. H. Chan

Now, from (2.1), (2.2) and (2.3), we deduce that

β =
(
1 − √

1 − α

1 + √
1 − α

)2

. (2.20)

Substituting (2.20) and using (2.18) and (2.15) in (2.17), we conclude that

G(α) = (1 + √
1 − α)G(β) − √

1 − αF(α). (2.21)

Identity (2.21) is equivalent to [6, Theorem 1.2 (d)].
We are now ready to establish the Brent–Salamin algorithm. Let

An = θ23 (e−2nπ ), Bn = θ24 (e−2nπ ) and Cn = θ22 (e−2nπ ). (2.22)

Note that by (2.1) and (2.2), we have

An+1 = An + Bn

2
, and Bn+1 = √

AnBn .

Let

αn =
(
Cn

An

)2

.

By (2.3), we have
√
1 − αn = Bn

An
. (2.23)

Next, substitute α = αn in (2.21) and using (2.23), we deduce that

G(αn) =
(
1 + Bn

An

)
G(αn+1) − Bn

An
F(αn)

or

AnG(αn) = 2An+1G(αn+1) − Bn An
F(αn)

An
.

Now, (2.6) and (2.22) show that for all n ≥ 0,

F(αn)

An
= 1.

Therefore,

2An+1G(αn+1) − AnG(αn) = AnBn .
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Analogues of the Brent–Salamin algorithm for evaluating π 81

Next, we express AnBn in terms of A2
n+1 and A2

n and our final result is

2A2
n+1 − A2

n = B2
n − A2

n

2
+ AnBn .

Hence,

2(An+1G(αn+1) − A2
n+1) − (AnG(αn) − A2

n) = 2−1(A2
n − B2

n ). (2.24)

Multiplying (2.24) by 2n , we find that

2n+1(An+1G(αn+1) − A2
n+1) − 2n(AnG(αn) − A2

n) = 2n−1(A2
n − B2

n ). (2.25)

We next sum both sides of (2.25) from 0 to N to deduce that

2N+1
(
AN+1G (αN+1) − A2

N+1

)
−

(
A0G (α0) − A2

0

)
=

N∑

n=0

2n−1
(
A2
n − B2

n

)
.

(2.26)
Now, from (2.18) and the fact that

αn = e−2nπ + · · · ,

we find that

lim
N→∞ 2N+1

(
AN+1G(αN+1) − A2

N+1

)
= 0.

Therefore, letting N tends to infinity in (2.26), we arrive at

− A0G(α0) + A2
0 =

∞∑

n=0

2n−1(A2
n − B2

n ) (2.27)

or

A0G(α0) = A2
0

(

1 −
∞∑

n=0

2n−1

((
An

A0

)2

−
(
Bn

A0

)2
))

. (2.28)

Next, note that α0 = 1/2 if and only if

q = exp

(
−π

F(1 − α0)

F(α0)

)
= e−π .

Hence, by (2.18), we conclude, using

A0 = F

(
1

2

)
, (2.29)
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82 H. H. Chan

that

F

(
1

2

) (
1

2
F ′

(
1

2

)
+ 1

2
F

(
1

2

))
= A2

0

(

1 −
∞∑

n=0

2n−1

((
An

A0

)2

−
(
Bn

A0

)2
))

.

Using (2.14) and (2.29), we deduce that

2

π
= F2

(
1

2

) (

1 −
∞∑

n=0

2n
((

An

A0

)2

−
(
B2
n

A2
0

)))

.

Let

an = An/A0, bn = Bn/A0.

Then, from (2.6) and (2.22), we find that

F(αn)A0 = F(α0)An .

From the theta function representation of F(α) (see (2.6)), we conclude that

lim
n→∞ F(αn) = 1.

Hence,

lim
n→∞ an = lim

n→∞
An

A0
= 1

F
( 1
2

) .

This implies that

1

π
= 1

2
(1 −

∞∑

j=0

2 j (a2j − b2j ))F
2
(
1

2

)
.

Identifying

F2
(
1

2

)
= lim

n→∞
1

a2n
,

we have the following iteration:

Iteration 2.2 (Brent–Salamin) Let a0 = 1, b0 = 1√
2
. Let

an+1 = an + bn
2

, bn+1 = √
anbn
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Analogues of the Brent–Salamin algorithm for evaluating π 83

and

πN = 2a2N

1 −
N∑

j=0

2 j (a2j − b2j )

.

Then,

πN → π.

The numbers πN for N = 1, 2, 3 and 4 in Iteration 2.2 coincide with π for up to 1,
3, 9 and 20 decimal places, respectively.

In a similar way, we can derive the following iteration to π :

Iteration 2.3 Let a0 = 1 and b0 = 1
4√2

. Let

an+1 = an + bn
2

, bn+1 = 4

√
a3nbn + anb3n

2

and

πN = 4a4N

2 −
N∑

j=0

4 j (a2j − b2j )(b
2
j + 3a2j )

.

Then, πN → π .

The numbers πN for N = 1, 2, 3 and 4 in Iteration 2.3 coincide with π for up to 4,
20, 85 and 347 decimal places, respectively.

The derivation of the above is by applying the AGM iteration twice.More precisely,
using (2.20) twice, we find that

α(q4) =
(
1 − √

1 − α(q2)

1 + √
1 − α(q2)

)2

=
(
1 − 4

√
1 − α(q)

1 + 4
√
1 − α(q)

)4

.

This implies that

β̂ =
(
1 − 4

√
1 − α

1 + 4
√
1 − α

)4

, (2.30)

where
β̂ = α(q4) (2.31)

and α = α(q). Using (2.8) with � = 4 and (2.30), we deduce that

F(α)(1 + 4
√
1 − α)2 = 4F(β̂).
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84 H. H. Chan

Differentiating both sides of the above with respect to α, we find that

− 1

2

(1 + 4
√
1 − α)

(1 − α)3/4
F(α) + (1 + 4

√
1 − α)2F ′(α) = F ′(β̂)

β̂(1 − β̂)

α(1 − α)
(1 + 4

√
1 − α)4.

(2.32)
Repeating what we did earlier and using the sameG(α) defined in (2.18), we conclude
that

G(β̂)(1 + 4
√
1 − α)2 = G(α) + 4

√
1 − α(

√
1 − α + 4

√
1 − α + 1). (2.33)

Let Ân = θ3(e−4nπ ) and B̂n = θ4(e−4nπ ). Then, we write

α(e−4nπ ) = αn = 1 −
(
B̂n

Ân

)4

and (2.33) is

4G(β̂n) Â
2
n+1 = G(αn) Â

2
n + B̂n Ân(B̂

2
n + B̂n Ân + Â2

n).

Next, by simplifying B̂n Ân(B̂2
n + B̂n Ân + Â2

n) using Â4
n+1 and Â4

n, we observe that

B̂n Ân(B̂
2
n + B̂n Ân + Â2

n) = 4 Â4
n+1 − Â4

n + 1

4

(
Â2
n − B̂2

n

) (
B̂2
n + 3 Â2

n

)
.

Hence, by repeating the argument as in the previous case, we conclude that

Â2
0G(α0) = Â4

0 −
∞∑

j=0

4 j−1
(
Â2
j − B̂2

j

) (
B̂2
j + 3 Â2

j

)
. (2.34)

As in the previous case, we can use (2.14) and (2.18) to conclude from (2.34) that

1

π
= Â4

0

⎛

⎝1

2
−

∞∑

j=0

4 j−1
(
Â2
j − B̂2

j

) (
B̂2
j + 3 Â2

j

)
⎞

⎠ .

By letting

an = Ân

Â0
and bn = B̂n

Â0

and truncating the series above, we conclude the proof of Iteration 2.3.
One should compare Iteration 2.3 with the Borweins’ quartic iteration:
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Analogues of the Brent–Salamin algorithm for evaluating π 85

Iteration 2.4 (The Borweins) Let a0 = 1 and b0 = 4
√
12

√
2 − 16. Let

an+1 = an + bn
2

, bn+1 = 4

√
a3nbn + anb3n

2

and

πN = 3a4N

1 −
N∑

j=0

4 j+1(a4j − a4j+1)

.

Then, πN → π .

Note the difference between the initial values b0 in Iterations 2.3 and 2.4. The
Borweins used the initial value corresponding to α(q) at q = e−2π as the identity

1 − 24
∞∑

k=1

ke−2kπ

1 − e−2kπ = 3

π

plays a crucial role in their proof of Iteration 2.4. The method of proof given in [7]
is independent of elliptic integrals. It is straightforward once identities between theta
functions and Eisenstein series

P(q) = 1 − 24
∞∑

k=1

kq2k

1 − q2k

are established. The only disadvantage of their method is that the derivations of their
iterations depend on the explicit values of P(q). For further development of this
method, see [5].

Our method does not involve P(q). It is, therefore, possible to derive a class of
iterations with different b0 since it is independent of our knowledge of explicit values
of P(q). To use the Borweins’ method to produce an iteration with initial value for
b̌0 = 1/ 4

√
2, one would need to know the value of P(e−π/2). We now produce an

iteration with initial value b0 = (12
√
2 − 16)1/4 (which is Borweins’ initial values)

using our new approach.
We have the following result that shows the difference between the Borweins’

method and the present one:

Iteration 2.5 Let a0 = 1 and b0 = 4
√
12

√
2 − 16. Let

an+1 = an + bn
2

, bn+1 = 4

√
a3nbn + anb3n

2
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86 H. H. Chan

and

πN = 2a4N

12 − 8
√
2 −

N∑

j=0

4 j (a2j − b2j )(b
2
j + 3a2j )

.

Then, πN → π .

The numbers πN for N = 1, 2, 3 and 4 in both Iterations 2.4 and 2.5 coincide with
π for up to 9, 42, 173 and 697 decimal places, respectively.

Proof Ifwe study the proof of Iteration 2.3,wefirst observe that the difference between
the condition of Iteration 2.3 and Iteration 2.5 is the initial value of b̂0 and the present

value corresponds to setting ˆ̂A0 = θ3(e−2π ) instead of θ3(e−π ). In other words, the
value α̂0 is replaced by

ˆ̂α0 = α(e−2π ) = 17 − 12
√
2.

Now, (2.34) is still valid but we need to compute ˆ̂A2
0G( ˆ̂α0). In our previous case,

we compute Â2
0G(1/2) using (2.14). We need another idea to compute ˆ̂A2

0G( ˆ̂α0). It

suffices to compute F( ˆ̂α0)F ′( ˆ̂α0). We recall (2.13) with α = ˆ̂α0, namely,

ˆ̂α0(1 − ˆ̂α0)
(
F( ˆ̂α0)F

′(1 − ˆ̂α0) + F(1 − ˆ̂α0)F
′( ˆ̂α0)

)
= 1

π
. (2.35)

Next, we multiply (2.32) by F(α) and set γ = α(e−π/2) to conclude that

−1

2

(1 + 4
√
1 − γ )

(1 − γ )3/4
F2(γ ) + (1 + 4

√
1 − γ )2F ′(γ )F(γ )

= F ′(β̂)F(γ )
β̂(1 − β̂)

γ (1 − γ )
(1 + 4

√
1 − γ )4. (2.36)

Now, by (2.31),

β̂ = α(e−2π ) = ˆ̂α0.

Now, the transformation formulas (2.9) for θ3(q) and θ2(q) imply that

γ = 1 − ˆ̂α0.

From (2.35) and (2.36), we conclude that

8F( ˆ̂α0)F
′( ˆ̂α0) = − 1

(280 − 198
√
2)π

− (10 + 7
√
2)F2( ˆ̂α0).
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Analogues of the Brent–Salamin algorithm for evaluating π 87

This allows us to evaluate ˆ̂A2
0G( ˆ̂α0), and we complete the proof of Iteration 2.5. �	

We note that the value F( ˆ̂α0)F ′( ˆ̂α0) obtained in the proof of Iteration 2.5 will give
rise to another quadratic iteration for π . Returning to (2.28) with α0 replaced by ˆ̂α0,
we obtain the following new iteration similar to Brent–Salamin algorithm but with
different initial value.

Iteration 2.6 Let a0 = 1, b0 =
√
12

√
2 − 16. Let

an = an−1 + bn−1

2
, bn = √

an−1bn−1

and

πN = a2N

6 − 4
√
2 −

N∑

j=0

2 j (a2j − b2j )

.

Then,

πN → π.

From the proofs of Iterations 2.2 and 2.5, we see that identities such as (2.27) (see
also (2.34)) play very important roles in this method. For (2.27), the identity is true if
we replace

An = θ23 (e−2nπ ) and Bn = θ24 (e−2nπ )

by

An,s = θ23 (e−2n
√
sπ ) and Bn,s = θ24 (e−2n

√
sπ ).

To establish an iteration corresponding to A0,s and B0,s as initial values, one would
need to compute F(λs)F ′(λs) where

λs =
(

θ2(e−π
√
s)

θ3(e−π
√
s)

)4

.

The proof of Iteration 2.5 illustrates how this is done. The keys lie in identities such as
(2.35) and (2.36). The identity (2.35) will be the same with ˆ̂α0 replaced by λs , namely,

λs(1 − λs)
(
F(λs)F

′(1 − λs) + F(1 − λs)F
′(λs)

) = 1

π
. (2.37)

We will also need an identity to replace (2.36).
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We say that β has degree s over α if

F(1 − β)

F(β)
= s

F(1 − α)

F(α)
. (2.38)

This is equivalent to saying that if α = α(q) then β = α(qs) by the identification
(2.12). In this section, we have already worked with β when s = 2 and 4.

The multiplier of degree s is defined by

ms = F(α)

F(β)
. (2.39)

Note thatms canbe expressed in termsofα andβ.Now, by theoryofmodular functions,
β and α are connected via some polynomial of two variables and the resulting equation
is called a modular equation of degree s. An example of a modular equation of degree
4 is (2.30). In general, β can also be expressed in terms of α via modular equation of
degree s and hence, ms may also be viewed as a function of α. Next, note that when β

has degree s over α, one has when α = 1− β, we find from (2.38) that β = λs since

F(1 − λs)

F(λs)
= √

s.

Now, differentiating (2.39) with respect to α and simplifying with (2.8), we have

F ′(α) = dms

dα
F(β) + s

ms

β(1 − β)

α(1 − α)
F ′(β). (2.40)

Multiplying by F(β) and setting α = 1 − β, we conclude from (2.40) the following
generalization of (2.36):

F ′(1 − λs)F(λs) = dms

dα

∣
∣
∣
∣
α=1−λs

F2(λs) + s

ms |α=1−λs

F ′(λs)F(λs). (2.41)

Identities (2.37) and (2.41) then imply that

F(λs)F
′(λs) = 1

2
√
s

1

πλs(1 − λs)
− 1

2
√
s

dms

dα

∣
∣
∣
∣
α=1−λs

F2(λs). (2.42)

Using (2.42), we find that

−A0,sG(λs)=− 1

π
√
s

+ dms

dα

∣
∣
∣
∣
α=1−λs

λs(1 − λs)√
s

A2
0,s − (1 − λs)A

2
0,s .
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Substituting this into (2.27) where An and Bn are replaced by An,s and Bn,s , respec-
tively, we find that

1√
sπ

= A2
0,s

(
dms

dα

∣
∣
∣
∣
α=1−λs

λs(1 − λs)√
s

+ λs

)

−
∞∑

j=0

2 j−1
(
A2
n,s − B2

n,s

)
.

This yields the following iteration :

Iteration 2.7 Let

a0,s = 1 and b0,s = θ24 (e−π
√
s)

θ23 (e−π
√
s)

.

Let

an,s = an−1,s + bn−1,s

2
and bn,s = √

an−1,sbn−1,s .

If

πN ,s = a2N ,s

√
s

(
dms

dα

∣
∣
∣
∣
α=1−λs

λs(1 − λs)√
s

+ λs

)

− √
s

N∑

j=0

2 j−1
(
a2j,s − b2j,s

)
, (2.43)

then

πN ,s → π.

For results similar to Iteration 2.7, see [6, p. 169, Theorem 5.5].
When s = 4,

m4 = 4

(1 + 4
√
1 − α)2

and we recover Iteration 2.6. When s = 3, we use the modular equation [2, p. 230,
Entry 5(iii)]

m3 = 1 + 2 8

√
β

α
,

where β has degree 3 over α and obtain the iteration

Iteration 2.8 Let

a0,3 = 1 and b0,3 =
√
1

2
+

√
3

4
.
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Let

an,3 = an−1,3 + bn−1,3

2
and bn,3 = √

an−1,3bn−1,3.

If

πN ,3 = a2N ,3√
3

2
− 1

2
− √

3
N∑

j=0

2 j−1
(
a2j,3 − b2j,3

)
,

then

πN ,3 → π.

The numbers πN ,3 for N = 1, 2, 3 and 4 in Iteration 2.8 coincide with π for up to
3, 8, 17 and 36 decimal places, respectively.

In [7], the Borweins indicated that any iteration to π that we have shown so far
leads naturally to an iteration to 1/π . We end this section by obtaining iterations to
1/π from Iteration 2.7. First, note that from (2.43), we find that

1

πN ,s
= 1

a2N ,s

√
s

(
dms

dα

∣
∣
∣
∣
α=1−λs

λs(1 − λs)√
s

+ λs

)

− √
s

N∑

j=0

2 j−1
(
a2j,s − b2j,s

)

(2.44)
and

1

πN−1,s
= 1

a2N−1,s

√
s

(
dms

dα

∣
∣
∣
∣
α=1−λs

λs(1 − λs)√
s

+ λs

)

−√
s
N−1∑

j=0

2 j−1
(
a2j,s − b2j,s

)
.

(2.45)
Subtracting (2.45) from (2.44) and letting kN ,s = 1/πN ,s , we conclude after simpli-
fying that

kN ,s =
(

m2
s

∣
∣
∣
∣
α=1−λN ,s

)

· kN−1,s − √
s · 2N−1λN ,s,

where

λ0,s = λs and λN ,s = α(e−2Nπ
√
s).

Hence, we have the following iteration :

Iteration 2.9 (For 1/π ) Let

ms = θ23 (e−π t )

θ23 (e−sπ t )
.
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Let λ0,s = α(e−π
√
s),

k0,s = √
s

(
dms

dα

∣
∣
∣
∣
α=1−λs

λs(1 − λs)√
s

+ λs

)

−
√
s

2
λ0,s

and

λN ,s =
(
1 − √

1 − λN−1,s

1 + √
1 − λN−1,s

)2

.

If

kN ,s =
(

m2
s

∣
∣
∣
∣
α=1−λN ,s

)

· kN−1,s − √
s · 2N−1λN ,s,

then

kN ,s → 1

π
.

As indicated earlier, the method of obtaining iteration for 1/π from an iteration for
π is due to the Borweins [7]. For more iterations of this type, see [5] and [10].

We illustrate Iteration 2.9 using an example. When s = 2, λ0,2 = 3 − 2
√
2 (sub-

stitute α = 1 − β into (2.20)) and hence b0,2 = √
1 − λ0,2. In terms of λN ,2, we

have

m2 = 1 + √
λN ,2.

Now, setting sN ,2 = √
λN ,2, we obtain the following iteration :

Iteration 2.10 Let s0,2 =
√
3 − 2

√
2, k0,2 = 1 −

√
2

2
and

sn,2 =
1 −

√
1 − s2n−1,2

1 +
√
1 − s2n−1,2

.

If

kN ,2 = (1 + sN ,2)
2kN−1,2 − √

2 · 2N−1s2N ,2,

then

kN ,s → 1

π
.
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The numbers kN ,2 for N = 1, 2, 3 and 4 in Iteration 2.2 coincide with 1/π for up
to 3, 7, 15 and 30 decimal places, respectively.

We end this section by showing that identity (2.42) gives rise to Ramanujan’s series
for 1/π associated with the hypergeometric series F(u). More precisely, since [12,
(25)]

F2(u) = 3F2

(
1

2
,
1

2
,
1

2
; 1; 1; 4u(1 − u)

)
=

∞∑

k=0

( 1
2

)3
k

(1)3k
(4u(1 − u))k,

we deduce from (2.42) that

1√
sπ

=
∞∑

k=0

( 1
2

)3
k

(1)3k
(4λs(1 − λs))

k

(

(1 − 2λs)k + λs(1 − λs)√
s

· dms

dα

∣
∣
∣
∣
α=1−λs

)

.

In the special case when s = 2, we have

1

π
=

∞∑

k=0

( 1
2

)3
k

(1)3k
(40

√
2 − 56)k

(
(8 − 5

√
2)k + 3 − 2

√
2
)

.

3 The Borweins cubic theta functions

There are analogues of the iterations we discussed in the previous sections for elliptic
functions to alternative bases. We will not give too many details as the proofs are
similar.We give the relevant identities which allow us to construct analogues of Brent–
Salamin algorithm.

Theorem 3.1 Let

a(q) =
∑

m,n∈Z

qm
2+mn+n2 ,

b(q) =
∑

m,n∈Z

e2π i(m−n)/3qm
2+mn+n2 ,

c(q) =
∑

m,n∈Z

q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 .

Then,

a3(q) = b3(q) + c3(q) (3.1)

3a(q3) = a(q) + 2b(q) (3.2)

b3(q3) = b(q)
(
a2(q) + a(q)b(q) + b2(q)

)

3
(3.3)

a(q) = 2F1

(
1

3
,
2

3
; 1; c

3(q)

a3(q)

)
. (3.4)
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For proofs of (3.1)–(3.4), see [8]. For more information about elliptic functions to
cubic base, see [3].

For simplicity, let

α̃ = α̃(q) = c3(q)

a3(q)
(3.5)

and

F̃(α̃) = 2F1

(
1

3
,
2

3
; 1; α̃

)
.

Next, we recall the following differential equation [11, (4.7)]

q
dα̃

dq
= (F̃(α̃))2α̃(1 − α̃).

This is of the same form as (2.7). As such, the following analogue of (2.8) also holds:

dα̃(q�)

dα̃(q)
= �

α̃(q�)(1 − α̃(q�))

α̃(q)(1 − α̃(q))

F̃2(α̃(q�))

F̃2(α̃(q))
.

It is known from the transformation formula of η(t) [14] and η-product represen-
tations of a(q), b(q) and c(q) [8] that

a(e−2π/(
√
3t)) = ta(e−2π t/

√
3), b(e−2π/(

√
3t)) = tc(e−2π t/

√
3).

This implies that

t = F̃(1 − α̃)

F̃(α̃)
. (3.6)

As in the previous section, this implies that if (3.5) holds, then

q = exp

(

− 2π√
3

F̃(1 − α̃)

F̃(α̃)

)

.

Using exactly the same method as in the previous section, we obtain the following
analogue of (2.13) :

α̃(1 − α̃)
(
F̃ ′(α̃)F̃(1 − α̃) + F̃ ′(1 − α̃)F̃(α̃)

)
=

√
3

2π
(3.7)

where

F̃ ′(x) = d F̃(x)

dx
.
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Note that

F̃ (1/2) F̃ ′ (1/2) =
√
3

π
,

which is the analogue of (2.14).
We also need the modular equation of degree 3 in the cubic theory, which is

F̃(α̃)

F̃(β̃)
= 3

1 + 2 3
√
1 − α̃

where

β̃ = α̃(q3).

This follows from (3.1), (3.2), (3.3) and (3.4).
Differentiating with respect to α̃ yields

9F̃ ′(β̃)
β̃(1 − β̃)

α̃(1 − α̃)

(
F̃(β̃)

F̃(α̃)

)2

= − 2

3 3
√

(1 − α̃)2
F̃(α̃) +

(
1 + 2 3

√
1 − α̃

)
F̃ ′(α̃).

(3.8)
The key now is to choose a suitable G̃(α̃)which plays the role of G(α) in the previous
section. This is where our choice differs slightly from the Borweins. According to [6,
p. 178, (5.5.5)], the Borweins suggested

E1/6(α̃) = (1 − α̃)F̃(α̃) + 3

4
α̃(1 − α̃)F̃ ′(α̃)

but this choice appears to give complicated expressions. We propose to let

G̃(α̃) = (1 − α̃)F̃(α̃) + 3α̃(1 − α̃)F̃ ′(α̃).

This function is chosen to clear denominators that appear in (3.8), and the final result
is

G̃(α̃) = (1 + 2 3
√
1 − α̃)G̃(β̃) −

(
3
√
1 − α̃ + 3

√
(1 − α̃)2

)
F̃(α̃). (3.9)

Now, let

Ãn = a(e−3n ·2π/
√
3), B̃n = b(e−3n ·2π/

√
3), C̃n = c(e−3n ·2π/

√
3),

and

α̃n = (C̃n)
3

( Ãn)3
.
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By (3.9), we find that

ÃnG̃(α̃n) = 3 Ãn+1G̃(α̃n+1) −
(

B̃n + (B̃n)
2

Ãn

)

F̃(α̃n).

As before,

F̃(α̃n)/ Ãn = 1.

It remains to express

Ãn B̃n + (B̃n)
2

in terms of ( Ãn+1)
2 and ( Ãn)

2. It turns out that

Ãn B̃n + (B̃n)
2 = 3( Ãn+1)

2 − ( Ãn)
2 − (B̃n)

2 + Ãn B̃n − 2( Ãn)
2

3
.

As before, we conclude that

Ã0G(α̃0) = ( Ã0)
2 −

∞∑

j=0

3 j−1
(
2 Ã j + B̃ j

) (
Ã j − B̃ j

)
.

Following the previous case, we have the following iteration:

Iteration 3.2 Let a0 = 1 and b0 = 1/ 3
√
2. Let

an+1 = an + 2bn
3

, bn+1 = 3

√
bn((an)2 + anbn + (bn)2)

3
,

and

πN = 3
√
3(aN )2

2 − 4
N∑

j=0

3 j−1 (
2a j + b j

) (
a j − b j

)
.

then, πN → π .

Truncated in this way and letting kn = 1/πN (see the proof of Iteration 2.9), we
obtain a new iteration for 1/π given by the following :
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Iteration 3.3 (For 1/π ) Let

k0 = 2
√
3

27

(
−1 + 3

√
2 + 3

√
4
)

, s0 = 1
3
√
2
,

sn = 3

√

1 −
(

1 − sn−1

1 + 2sn−1

)3

and

kn =
(

3

1 + 2sn−1

)2

kn−1 − 4
√
3

9
3n−1(2 − sn − (sn)

2).

Then, kn tends to 1/π .

The numbers kn for n = 1, 2, 3 and 4 in Iteration 3.3 coincide with 1/π for up to
4, 13, 41 and 127 decimal places, respectively.

It is clear that general result similar to Iteration 2.7 exists for cubic theory of elliptic
functions and we leave this as an exercise for the reader.

4 Quartic theory

In this section, we list down the relevant functions for the ‘quartic theory of elliptic
functions’.

Theorem 4.1 Let

A(q) = θ43 (q) + θ42 (q),

B(q) = θ43 (q) − θ42 (q),

C(q) = 2θ23 (q)θ22 (q).

Then,

A2(q) = B2(q) + C2(q) (4.1)

4A(q2) = A(q) + 3B(q) (4.2)

B2(q2) =
√

B(q)(A(q) + B(q))

2
(4.3)

√
A(q) = 2F1

(
1

4
,
3

4
; 1; C

2(q)

A2(q)

)
. (4.4)

The proofs of all the above identities can be found in [4].
For simplicity, let

ᾰ = ᾰ(q) = C2(q)

A2(q)
(4.5)
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and

F̆(ᾰ) = 2F1

(
1

4
,
3

4
; 1; ᾰ

)
.

Next, we recall the following differential equation [4]

q
dᾰ

dq
= (F̆(ᾰ))2ᾰ(1 − ᾰ).

This is of the same form as (2.7). As such, the following analogue of (2.8) also holds:

dᾰ(q�)

dᾰ(q)
= �

ᾰ(q�)(1 − ᾰ(q�))

ᾰ(q)(1 − ᾰ(q))

F̆2(ᾰ(q�))

F̆2(ᾰ(q))
.

It can be shown using transformation formulas (2.9) that

A(e−π
√
2/t ) = t2A(e−π

√
2t ), B(e−π

√
2/t ) = t2C(e−π

√
2t ).

This implies using (4.4) that

t = F̆(1 − ᾰ)

F̆(ᾰ)

since

ᾰ(e−√
2π/t ) = 1 − ᾰ(e−√

2π t ).

Therefore, if (4.5) holds, then

q = exp

(

−√
2π

F̆(1 − ᾰ)

F̆(ᾰ)

)

.

Using exactly the same method as in Sect. 2, we obtain the following analogue of
(2.13) :

ᾰ(1 − ᾰ)
(
F̆ ′(ᾰ)F̆(1 − ᾰ) + F̆ ′(1 − ᾰ)F̆(ᾰ)

)
= 1

π
√
2

where

F̆ ′(x) = d F̆(x)

dx
.
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Note that

F̆ (1/2) F̆ ′ (1/2) =
√
2

π
,

which is the analogue of (2.14).
We also need the modular equation of degree 2 in the quartic theory, which is

F̆(ᾰ)

F̆(β̆)
= 2

√
1 + 3

√
1 − ᾰ

where

β̆ = ᾰ(q2).

Differentiating with respect to ᾰ yields

β̆(1 − β̆)F̆ ′(β̆)
(
1 + 3

√
1 − ᾰ

)

= −3

4

ᾰ(1 − ᾰ)√
1 − ᾰ

√
1 + 3

√
1 − ᾰ

F̆(ᾰ) + ᾰ(1 − ᾰ)F̆ ′(ᾰ)

√
1 + 3

√
1 − ᾰ.

(4.6)

The key now is to choose a suitable Ğ(ᾰ) to play the role of G(α) and G̃(α̃) in the
previous sections. According to [6, p. 178, (5.5.5)], the Borweins suggested

E1/4(ᾰ) = (1 − ᾰ)F̆(ᾰ) + 2

3
ᾰ(1 − ᾰ)F̆ ′(ᾰ)

but we propose to let

Ğ(ᾰ) = (1 − ᾰ)F̆(ᾰ) + 4ᾰ(1 − ᾰ)F̆ ′(ᾰ).

This function is chosen to clear denominators that appear in (4.6), and the final result
is

Ğ(ᾰ) =
√
1 + 3

√
1 − ᾰĞ(β̆) −

√
1 − ᾰ F̆(ᾰ). (4.7)

Now, let

Ăn = A(e−2n ·√2π ), B̆n = B(e−2n ·√2π ), C̆n = C(e−2n ·√2π ),

and

ᾰn = (C̆n)
2

( Ăn)2
.
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By (4.7), we find that

√
ĂnĞ(ᾰn) = 2

√
Ăn+1Ğ(ᾰn+1) − B̆n .

As before, we have used

F̆(ᾰn)/

√
Ăn = 1.

Next, observe that

B̆n = 2 Ăn+1 − Ăn − B̆n − Ăn

2
.

Using this relation and simplifying as before, we conclude that

√
Ă0Ğ(ᾰ0) = Ă0 −

∞∑

j=0

2 j−1
(
Ă j − B̆ j

)
.

Following the previous cases, we have the following iteration:

Iteration 4.2 Let a0 = 1 and b0 = 1√
2
. Let

an+1 = an + 3bn
4

, bn+1 =
√
bn(an + bn)

2

and

πN = 2
√
2aN

1 −
N∑

j=0

2 j (a j − b j )

.

Then, πN → π.

The numbers πN for N = 1, 2, 3 and 4 in Iteration 4.2 coincide with π for up to 1,
5, 13 and 28 decimal places, respectively.

It is clear that general result similar to Iteration 2.7 exists for quartic theory of
elliptic functions and we leave this as an exercise for the reader.
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