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Modular equations
Wronskians

1. Introduction

Let q = eπiτ with Im τ > 0 and let

ϑ2(q) =
∞∑

k=−∞
q(k+1/2)2 , ϑ3(q) =

∞∑
k=−∞

qk
2
, and ϑ4(q) =

∞∑
k=−∞

(−1)kqk
2
.

Further, let

P (q) = 1 − 24
∞∑
k=1

kqk

1 − qk

and

α(q) = ϑ4
2(q)

ϑ4
3(q)

. (1.1)

In his paper “Modular equations and approximations to π”, S. Ramanujan gave a 
table [19, Table III] expressing the function

f(�) := �P (q2�) − P (q2)
ϑ2

3(q)ϑ2
3(q�)

(1.2)

in terms of α(q) and α(q�) for � = 2, 3, 4, 5, 7, 11, 15, 17, 19, 23, 31 and 35. (To be exact, 
Ramanujan actually defined f as f(l) = �P (q2�) −P (q2), i.e., without the denominator in 
(1.2). We have modified Ramanujan’s function for simplicity of the entries in the table.) 
Examples of such relations are

f(3) = 1 +
√

α(q)α(q3) +
√

(1 − α(q))(1 − α(q3)),

and

f(7) = 3
(
1 +

√
α(q)α(q7) +

√
(1 − α(q))(1 − α(q7))

)
.

Unfortunately, Ramanujan did not provide any proofs of these identities. Ramanujan’s 
table for f(�) was reproduced by J.M. Borwein and P.B. Borwein in their book “Pi and 
the AGM” [5, p. 159, Table 5.1]. The Borweins remarked that “The verification that f(�)
has the given form is tedious but straightforward for small �. For larger �, we rely on 
Ramanujan.” This remark added more mysteries to Ramanujan’s table of identities for 
f(�).
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In the paragraph after Table III of [19], Ramanujan outlined the relation of these 
identities with his series for 1/π [19, Section 13]. A more detailed explanation of Ra-
manujan’s method of deriving series for 1/π using f(�) was first made available by the 
Borweins in their book [5, Chapter 5].

Let

η(τ) = q1/12
∞∏
k=1

(
1 − q2k)

be the Dedekind η-function. It is immediate that

P (q2) = 12q dη(τ)
dq

· 1
η(τ) ,

and we can rewrite f(�) in terms of the Wronskian of η(τ) and η(�τ) as follows:

f(�) = 12
η(τ)η(�τ)ϑ2

3(q)ϑ2
3(q�)

det

⎛⎝ η(τ) η(�τ)

q
dη(τ)
dq

q
dη(�τ)
dq

⎞⎠ . (1.3)

In this article, we define analogues of f(�) by replacing the Wronskian involving η(τ)
in (1.3) by Wronskians of various theta functions. For example, associated with the 
classical Jacobi theta functions, we define the function

D�(q) = 1
ϑ3

3(q)ϑ3
3(q�)

det

⎛⎝ ϑ3(q) ϑ3(q�)

q
dϑ3(q)
dq

q
dϑ3(q�)

dq

⎞⎠ .

The relation of D�(q) with the series for 1/π is illustrated in the following theorem:

Theorem 1.1. Let N > 2 be an integer and let

αN = α
(
e−π

√
N
)
, (1.4)

where α(q) is given by (1.1). Then

1√
Nπ

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
k (1 − 2αN ) − 2√

N
DN

(
e−π/

√
N
))

(4αN (1 − αN ))k . (1.5)

Comparing (1.5) with the following simplified version of the Borweins’ series (see 
(5.5.13) of [5])

1√
Nπ

=
∞∑ ( 1

2
)3
k

(k!)3

(
k (1 − 2αN ) + 1 − 2αN

3 − σ(N)
6
√
N

)
(4αN (1 − αN ))k ,
k=0
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where

σ(N) = f(N)
∣∣∣∣
q=e−π/

√
N

,

we conclude that (1.5) is perhaps the simplest form of Ramanujan’s series for 1/π as-
sociated with the “classical base”. Using (1.5), we can derive a series for 1/π whenever 
αN and −DN

(
e−π/

√
N
)

are known. For example, we will show using modular equations 
satisfied by α(q), α(q13) and D13(q) that

α13 = 1
2 − 3

√
−18 + 5

√
13,

and

−D13

(
e−π/

√
13
)

= (−7 + 3
√

13)
√

−18 + 5
√

13
4 .

The series corresponding to N = 13 is then given by

1(
6
√

13
√
−18 + 5

√
13
)
π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
k + 1

4 − 7
156

√
13

)(
649 − 180

√
13

)k

. (1.6)

The identity (1.6) was implicitly given by the Borweins [5, p. 172, Table 5.2a]5 but since 
Ramanujan did not provide an expression for f(13), the Borweins probably arrived at 
the series without using any specific identity associated with f(13).

The article is organized as follows: In Section 2, we use the general series found by 
H.H. Chan, S.H. Chan and Z.-G. Liu [9, Theorem 2.1] to prove Theorem 1.1. We then 
state a result that is an extension of [9, Theorem 2.1] and use it to derive the following 
analogue of (1.5):

Theorem 1.2. Let N > 1 be a positive integer and αN be given as in (1.4). Then

1√
Nπ

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
1 + αN

1 − αN
k + âN

)(
−4 αN

(1 − αN )2

)k

, (1.7)

where

5 Tables 5.2a and 5.2b on page 172 of [5] list certain quantities which are used in formulas for 1/π
given by the Borweins in their book as (5.5.13) and (5.5.14), respectively. We should warn the reader that 
our notation is different from that used by the Borweins. In particular, the Borweins’ λ�(r) and λ�′(r)
translate in our notation to α(r) and 

√
1 − α(r), respectively, while the Borweins’ α(r) can be expressed 

as 
(
π−1 − 4

√
r(q d

dq (log(ϑ4(q)))
)
/ϑ4

3(q) evaluated at q = e−π
√

r (see [5, (5.1.10)]).
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D̂�(q) = 1
ϑ3

4(q)ϑ3
4(q�)

det

⎛⎝ ϑ4(q) ϑ4(q�)

q
dϑ4(q)
dq

q
dϑ4(q�)

dq

⎞⎠ (1.8)

and

âN = − 2√
N

√
αN

1 − αN
D̂N

(
e−π/

√
N
)

+ 1
2(1 − αN ) .

Note that for odd prime �,

D̂�(q) = D�(−q). (1.9)

Using (1.7), we derive some explicit examples, some of which are due to the Borweins. 
The series which we will prove with complete details is

1√
6π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(√
3
(
2 −

√
2
)
k + 2

3
√

3 − 5
12

√
6
)

(−1)k
(
17 − 12

√
2
)k

. (1.10)

Series (1.10) follows from the values

α6 = 35 + 24
√

2 − 20
√

3 − 14
√

6,

and

D̂6

(
e−π/

√
6
)

=
√

111
16 + 5

√
2 + 33

8
√

3 + 45
16

√
6.

We observe that the terms in the sum on the right-hand side of (1.10) have alternating 
signs. Although series with alternating signs in the “quartic base” are present in Ra-
manujan’s work [19, (35)–(38)], no series with alternating signs in the “classical base” 
was recorded by Ramanujan. It is likely that the study of series such as (1.10) began 
with the Borweins.

In Section 3, we study the function D�(−q2) and express D�(−q2) in terms of Haupt-
moduls when � = 3, 5, 7, 11 and 23.

In Section 4, we use the identities established in Section 3, modular equations satisfied 
by α(q) and α(q�), Theorem 1.1 and Theorem 1.2 to derive several explicit series for 
1/π. We also provide a table of identities associated with D�(q) that is an analogue of 
Ramanujan’s table for f(�). This table of formulas allows us to derive series for 1/π
associated with primes other than 3, 5, 7, 11 and 23. In particular, we give an expression 
for D13(q), for which its counterpart f(13) is missing in Ramanujan’s table. The discovery 
of an expression for D13(q) in terms of α(q) and α(q13) leads to a proof of (1.6).

In Section 5, we turn our attention to the Borweins’ cubic theta functions (see [6], 
[7]) and define the following cubic analogue of D�(q):
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C�(q) = 1
a2(q)a2(q�) det

⎛⎝ a(q) a(q�)

q
da(q)
dq

q
da(q�)
dq

⎞⎠ ,

where

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2
.

Using C�(q), we present Theorem 5.1 and Theorem 5.2, which are cubic analogues of 
Theorem 1.1 and Theorem 1.2, respectively. Ramanujan did not offer any series for 1/π
arising from the class of series given in Theorem 5.2. The first few examples of such series 
are given by H.H. Chan, W.-C. Liaw and V. Tan [14].

We also derive representations of C�(q) in terms of Hauptmoduls for � = 2, 5 and 11
and provide a table of identities representing C�(q) in terms of the cubic singular mod-
ulus. This table is an analogue of Ramanujan’s table for f(�). Using the representations 
of C�(q) in terms of Hauptmoduls and cubic singular modulus, we derive several series 
for 1/π associated with the cubic base.

In Section 6, we state the following quartic analogue of Theorem 1.1:

D⊥
� (q) = 1√

A3(q)A3(q�)
det

⎛⎝ A(q) A(q�)

q
dA(q)
dq

q
dA(q�)
dq

⎞⎠ ,

where

A(q2) = η8(τ) + 32η8(4τ)
η4(2τ) .

Instead of providing a table for D⊥
� (q) analogous to Ramanujan’s table for f(�) for the 

purpose of deriving Ramanujan’s series for 1/π in the quartic base, we establish a relation 
between D⊥

� (q) and D�(q) and show that Ramanujan’s series for 1/π in the quartic base 
can be derived from the table of identities for D�(q). In particular, we provide a proof 
of Ramanujan’s series

1
π

= 2
√

2
∞∑
k=0

( 1
2
)
k

( 1
4
)
k

( 3
4
)
k

(1)3k
(1103 + 26390k)

(
1

992

)2n+1

.

This series is perhaps Ramanujan’s most famous series for 1/π as it was the series used 
by B. Gosper in 1985 to compute π to 17526200 digits (cf. [1, p. 387 and p. 685]).

2. New representations of the Ramanujan–Borweins series for 1/π for the “classical 
base”

Let Q denote the field of rational numbers. We begin this section with a general series 
for 1/π given by H.H. Chan, S.H. Chan and Z.-G. Liu [9, Theorem 2.1].
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Theorem 2.1. Suppose Z(q), X(q) and U(q) are functions satisfying

rZ(e−2π
√

r/s) = Z(e−2π/
√
rs),

q
dX(q)
dq

= U(q)X(q)Z(q) (2.1)

and

Z(q) =
∞∑
k=0

AkX
k(q), Ak ∈ Q.

Suppose

MN (q) = Z(q)
Z(qN ) ,

for a positive integer N > 1. Let

aN = U(q)X(q)
2N

dMN (q)
dX(q)

∣∣∣∣
q=e−2π/

√
Ns

,

bN = U(e−2π
√

N/s),

and

XN = X(e−2π
√

N/s).

If the series

∞∑
k=0

(bNk + aN )AkX
k
N

converges, then √
s

N

1
2π =

∞∑
k=0

(bNk + aN )AkX
k
N .

We will now establish Theorem 1.1 using Theorem 2.1.

Proof of Theorem 1.1. We begin by applying Theorem 2.1 with Z(q) = ϑ4
3(q) and

X(q) = 4α(q) (1 − α(q)) .

This implies that XN = 4αN (1 − αN ). It is known that [9, (3.5)]
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Z(q) =
∞∑
k=0

( 1
2
)3
k

(k!)3X
k(q), (2.2)

and this implies that

Ak =
( 1

2
)3
k

(k!)3 .

The function ϑ3(q) satisfies the transformation formula (see for example [2, p. 43, En-
try 27(ii)])

ϑ2
3

(
e−π/

√
N
)

= N1/2ϑ2
3

(
e−π

√
N
)
, (2.3)

and this implies that

Z
(
e−π/

√
N
)

= NZ
(
e−π

√
N
)
.

In other words, the integer s in Theorem 2.1 is 4.
Next, from [2, p. 120, Entry 9(i)]

q
dX(q)
dq

= (1 − 2α(q))X(q)Z(q) (2.4)

we conclude that U(q) = 1 − 2α(q) and that

bN = 1 − 2αN .

In order to complete the proof of Theorem 1.1, it remains to verify that

aN = − 2√
N

DN

(
e−π/

√
N
)
. (2.5)

This follows by observing that

1
MN (q)q

dMN (q)
dq

= −4ϑ2
3(q)ϑ2

3(qN )DN (q). (2.6)

From (2.6) and (2.4), we deduce that

q
dMN (q)

dq
= dMN (q)

dX(q) q
dX(q)
dq

= ϑ4
3(q)U(q)X(q)dMN (q)

dX(q) = −4 ϑ6
3(q)

ϑ2
3(qN )DN (q).

Hence,

U(q)X(q)dMN (q)
dX(q)

∣∣∣∣
q=e−π/

√
N

= −4ϑ2
3(e−π/

√
N )

ϑ2
3(e−π

√
N )

DN (e−π/
√
N ),

and (2.5) follows from (2.3). �
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We now proceed to prove Theorem 1.2. We need the following generalization of [9, 
Theorem 2.1].

Theorem 2.2. Suppose Z(q), X (q) and U(q) are functions satisfying

Z
(
e−2π/

√
rs
)

= rZ
(
e−2π

√
r/s

)
C
(
e−2π

√
r/s

)
,

where C(q) is a certain function in q,

q
dX (q)
dq

= U(q)X (q)Z(q)

and

Z(q) =
∞∑
k=0

AkX k(q), Ak ∈ Q.

Suppose

MN (q) = Z(q)
Z(qN ) ,

for a positive integer N > 1.
Let

aN =
U
(
e−2π/

√
Ns

)
X
(
e−2π/

√
Ns

)
2N

dMN (q)
dX (q)

∣∣∣∣
q=e−2π/

√
Ns

+
U
(
e−2π

√
N/s

)
X

(
e−2π

√
N/s

)
2C

(
e−2π

√
N/s

) dC(q)
dX (q)

∣∣∣∣
q=e−2π

√
N/s

,

bN = U(e−2π
√

N/s),

and

XN = X (e−2π
√

N/s).

If the series

∞∑
k=0

(bNk + aN )AkXk
N

converges, then √
s

N

1
2π =

∞∑
(bNk + aN )AkXk

N .

k=0
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The differences between Theorem 2.2 and Theorem 2.1 are the transformation formu-
las for Z(q) and Z(q), which resulted in a difference between aN and aN . Theorem 2.2
can be proved in exactly the same way as Theorem 2.1. Note that Theorem 2.2 is a 
generalization of [9, Theorem 2.1] since in the latter case, the corresponding function 
C(q) is 1.

Proof of Theorem 1.2. It is known from Jacobi’s triple product identity [2, p. 37, (22.4)]
that

ϑ4(q) = η2(τ/2)
η(τ) , (2.7a)

and [2, p. 36, Entry 22])

ϑ2(q) = 2η
2(2τ)
η(τ) . (2.7b)

Using (2.7) and [2, p. 43, Entry 27(iii)]

η(−1/τ) =
√
−iτη(τ), (2.8)

we deduce that

ϑ4
4

(
e−π/

√
N
)

= Nϑ4
2

(
e−π

√
N
)

= Nϑ4
4

(
e−π

√
N
) ϑ4

2

(
e−π

√
N
)

ϑ4
4

(
e−π

√
N
) . (2.9)

Note that if we let Z(q) = ϑ4
4(q) in Theorem 2.2, then s = 4 and

C(q) = ϑ4
2(q)

ϑ4
4(q)

.

Using Jacobi’s identity (see [2, p. 40, Entry 25(vii)] or [5, (2.1.10)])

ϑ4
3(q) = ϑ4

2(q) + ϑ4
4(q), (2.10)

we find that

C(q) = ϑ4
2(q)

ϑ4
3(q)

ϑ4
3(q)

ϑ4
4(q)

= α(q)
1 − α(q) , (2.11)

where α(q) is given by (1.1).
Next, observe that

Z(q) = ϑ4
4(q) = ϑ4

3(−q).
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Therefore, by (2.2), we deduce that

Z(q) =
∞∑
k=0

AkX k(q),

where

Ak =
( 1

2
)3
k

(k!)3

and

X (q) = 4α(−q)(1 − α(−q)).

Using (2.10), we observe that

α(−q) = − α(q)
1 − α(q) , (2.12)

and hence

X (q) = −4 α(q)
1 − α(q) . (2.13)

Next, (2.1) holds with q replaced by −q and therefore,

U(q) = 1 − 2α(−q) = 1 + α(q)
1 − α(q) , (2.14)

where the last equality follows from (2.12). Letting q = e−π/
√
N , we deduce from (2.13)

and (2.14) that

XN = −4 αN

1 − αN

and

bN = 1 + αN

1 − αN
.

Using the argument as in the proof of Theorem 1.1, we may write the first term of aN

involving MN in terms of D̂�(q). The second term of aN follows from (2.11), (2.13) and 
(2.14). Substituting the expressions of aN , bN , and XN in Theorem 2.2, we complete 
the proof of Theorem 1.2. �

The series (1.7), in a slightly different form, was discovered by the Borweins [5, p. 182, 
(5.5.14)].
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3. The functions D�(q) and D̂�(q)

In this section, instead of working with D�(q), we derive identities for D̂�(q) given by 
(1.8).

We first establish the following fact:

Theorem 3.1. Let � be an odd prime and let

ω� =
{

2 if � ≡ 1 (mod 4),
1 if � ≡ 3 (mod 4).

Then D̂ω�

� (q2) is a modular function on Γ0(2�) + W�, where Γ0(N) + We denotes the 
group generated by Γ0(N) and

We =
(

a
√
e b/

√
e

cN/
√
e d

√
e

)
,

with e|N , gcd(N/e, e) = 1 and det(We) = 1.

Proof. Let

T (τ) := ϑ4(q2) = η2(τ)
η(2τ) , (3.1)

where the product representation of ϑ4(q2) follows from (2.7a).
Let

Γ0(N) =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)
}
.

For

U =
(
a b
c d

)
∈ Γ0(2),

let

U ◦ τ := aτ + b

cτ + d
.

It is known, using the transformation formula of the η-function (see for example [18, p. 
163] or [10, Theorem 1.2]) and (3.1), that

T (U ◦ τ) = ξ(a, b, c, d)(cτ + d)1/2T (τ) (3.2)

where
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ξ(a, b, c, d) =
( c

d

)
eπi(d−1−cd/2)/4.

Identity (3.2) implies that if

Ψ(τ) = 1
T (τ)

dT

dτ
(τ),

then

Ψ (U ◦ τ) =
(

c

2(cτ + d) + Ψ (τ)
)

(cτ + d)2. (3.3)

Next, let � be an odd prime and observe that for

V =
(
α β
γ δ

)
∈ Γ0(2�),

�Ψ (� (V ◦ τ)) =
(

γ

2(γτ + δ) + �Ψ (�τ)
)

(γτ + δ)2.

Note that since

V ∈ Γ0(2�) ⊂ Γ0(2),

(3.3) also holds for the matrix V , and we find that

S�(τ) = �Ψ(�τ) − Ψ(τ)

is a modular form of weight 2 on Γ0(2�). By (3.2), we find that 
(
T 2(�τ)T 2(τ)

)ω� is a 
modular form of weight 2ω� on Γ0(2�). Therefore,(

S�(τ)
T 2(�τ)T 2(τ)

)ω�

is a modular function on Γ0(2�).
Next, by using (3.2), we conclude that(

S�(W� ◦ τ)
T 2(�(W� ◦ τ))T 2(W� ◦ τ)

)ω�

=
(

S�(τ)
T 2(�τ)T 2(τ)

)ω�

.

Observe that by (1.8), we find that

D̂ω�

� (q2) =
(

S�(τ)
T 2(�τ)T 2(τ)

)ω�

.

This implies, from the transformation properties of 
(

S�(τ)
T 2(�τ)T 2(τ)

)ω�

, that D̂ω�

� (q2) is 

a modular function on Γ0(2�) + W�. �
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We now use Theorem 3.1 to derive identities for D̂�(q). We first determine prime 
numbers � for which all modular functions associated with Γ0(2�) + W� are rational 
functions of a single function, which we shall call a Hauptmodul. From the table in [12, 
p. 14], we find that this occurs when � = 3, 5, 7, 11 and 23. For such a prime �, we 
construct a Hauptmodul Hl (which a priori is not unique) for the corresponding field of 
functions for Γ0(2�) + W� and obtain the following identities:

Theorem 3.2. Let

H� = H�(τ) =
(
η(2τ)η(2�τ)
η(τ)η(�τ)

) 24
�+1

.

Then

D̂3(q2) = 2H3, (3.4a)

D̂2
5(q2) = 4H2

5 (1 + 4H5),

D̂7(q2) = 2H7 (1 + 3H7) ,

D̂11(q2) = 2H11
(
1 + 4H11 + 5H2

11
)
, (3.4b)

D̂23(q2) = 2H23
(
1 + 5H23 + 13H2

23 + 20H3
23 + 20H4

23 + 11H5
23
)
. (3.4c)

Remark 3.1. We note that since q = eπiτ , the identities given in Theorem 3.2 can all be 
expressed in terms of q2. Replacing q2 by q, we obtain identities for D̂�(q) in terms of

H�(τ/2),

for � = 3, 5, 7, 11 and 23, and these functions are in terms of infinite products with 
variable q. Replacing q by −q and using

∞∏
k=1

(1 − (−q)k) =
∞∏
k=1

(1 − q2k)3

(1 − qk)(1 − q4k) , (3.5)

we obtain identities from Theorem 3.2 expressing D�(q) in terms of Dedekind η-functions 
η(τ/2), η(τ), η(�τ/2) and η(�τ).

4. Explicit examples of Theorems 1.1 and 1.2

In this section, we first derive explicit series for 1/π from Theorem 3.2 for N =
3, 5, 7, 11 and 23. We give complete details only for the case N = 3. We then derive 
explicit series from Theorem 1.2 for N = 6, 10, 14, 22 and 46. We need to work harder 
deriving these series as our identities in Theorem 3.2 are only for � = 3, 5, 7, 11 and 23
instead of 6, 10, 14, 22 and 46. Again we give complete details only for the case N = 6.
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4.1. Case N = 3

Following Remark 3.1, we deduce from (3.4a) that

D3(q) = −2η
3(τ)η3(3τ)
ϑ3

3(q)ϑ3
3(q3) , (4.1)

where we have used (3.5) and the product representation of ϑ3(q) [2, p. 36, Entry 22]):

ϑ3(q) = η5(τ)
η2(2τ)η2(τ/2) . (4.2)

Let τ = i/
√

3 in (4.1). Observe that

D3(e−π/
√

3) = −2 η6(i
√

3)
ϑ6

3(e−π
√

3)
, (4.3)

where we have used (2.3) and (2.8).
Next, using (2.7a), (4.2) and (2.7b), we immediately deduce Jacobi’s identity [17, 

pp. 515–517]

η24(τ) = 1
28ϑ

24
3 (q)ϑ

8
2(q)

ϑ8
3(q)

ϑ8
4(q)

ϑ8
3(q)

. (4.4)

Letting q = e−π
√
n in (4.4), we deduce that

η6(i
√
N)

ϑ6
3(e−π

√
N )

= 1
22

√
αN (1 − αN ), (4.5)

where we have used (2.10). It remains to compute α3. It is known that [2, p. 230, 
Entry 5(i)] (

(1 − α(q))
(
1 − α(q3)

))1/4 +
(
α(q)α(q3)

)1/4 = 1. (4.6)

When q = e−π/
√

3,

α(e−3π/
√

3) = α(e−π
√

3), (4.7)

and

α(e−π/
√
r) = 1 − α(e−π

√
r), (4.8)

with r = 3. Identity (4.8) is a consequence of (2.10) and (2.8). Substituting (4.7) and 
(4.8) into (4.6), we conclude that
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α3(1 − α3) = 1
24 ,

which implies that

α3 = 1
2 −

√
3

4 . (4.9)

Let N = 3 in (4.5). Substituting (4.9) in the resulting equation, we deduce using (4.3)
that

D3(e−π/
√

3) = −1
8 .

From (1.5), we deduce the following Ramanujan series for 1/π:

1
π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
3
2k + 1

4

)
1
4k .

We have learnt from our derivation of the series corresponding to N = 3 that in order 
to derive a series for 1/π corresponding to N = 3, 5, 7, 11, 23 from Theorem 1.1 and 
Theorem 3.2, we only need the value of αN . As such, for the following derivations of 
the series for 1/π corresponding to N = 5, 7, 11, 23 we will only discuss the evaluation 
of αN .

4.2. Case N = 5

The value of α5 can be determined from the following modular equation of degree 5 
[2, p. 280, Entry 13(i)]:

(
α(q)α(q5)

)1/2 +
(
(1 − α(q))

(
1 − α(q5)

))1/2
+ 2

(
16α(q)α(q5) (1 − α(q))

(
1 − α(q5)

))1/6 = 1.

This modular equation allows us to conclude that

α5 = 1
2 −

√
−2 +

√
5.

Therefore, the series we obtain from (1.5) and Theorem 3.2 is

1
π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

((
2
√

−10 + 5
√

5
)
k +

√
−22 + 10

√
5

2

)(
9 − 4

√
5
)k

.
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4.3. Case N = 7

The value α7 can be derived from the following modular equation of degree 7 [2, 
p. 314, Entry 19(i)]:

(
α(q)α(q7)

)1/8 +
(
(1 − α(q))

(
1 − α(q7)

))1/8 = 1. (4.10)

This implies that

4α7(1 − α7) = 1
64 ,

1 − 2α7 = 3
8
√

7,

and

α7 = 1
2 − 3

16
√

7.

The series we obtain from (1.5) and Theorem 3.2 is

1
π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
21
8 k + 5

16

)(
1
64

)k

.

4.4. Cases N = 11 and 23

We first observe that our series obtained in this article depend entirely on the value 
of α�(1 − α�). The degree of the polynomial satisfied by α�(1 − α�) increases in general 
with �. In fact, if

� + 1
8 = ν

s

with (ν, s) = 1, then (α�(1 − α�))s/8 satisfies a polynomial equation of degree ν which can 
be derived from a Russell-type modular equation. For example, (α7(1 − α7))1/8 satisfies 
a polynomial equation of degree 1 (see (4.10)). For N = 11 and 23, we have to solve 
cubic polynomial equations since 12/8 = 3/2 and 24/8 = 3/1. For more discussion on 
the evaluations of (α�(1 − α�))s/8 and modular equations, see [13] and [20].

We now continue with N = 11. The modular equation given by Ramanujan is [2, 
p. 363, Entry 7(i)]

(
α(q)α(q11)

)1/4 +
(
(1 − α(q))(1 − α(q11))

)1/4
+ 2

(
16α(q)α(q11)(1 − α(q))(1 − α(q11))

)1/12 = 1.
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This implies that

α11(1 − α11) = − 1
12

(
27 + 21

√
33

)1/3
+ 2(

27 + 21
√

33
)1/3 + 1

16 .

The series we obtain from (1.5) and Theorem 3.2 is

1
π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
k
√

11 ·
√

1 − δ + 2
(
δ1/6 − 2δ1/3 + 5

4δ
1/2

))
δk,

where

δ = −1
3

(
27 + 21

√
33
)1/3

+ 8(
27 + 21

√
33

)1/3 + 1
4 .

A modular equation of degree 23 can be found in [2, p. 411, Entry 15(i)] and is given 
by (

α(q)α(q23)
)1/8 +

(
(1 − α(q))(1 − α(q23))

)1/8
+ 22/3 (α(q)α(q23)(1 − α(q))(1 − α(q23))

)1/24 = 1.

Let X23 = 4α23(1 −α23). From the above modular equation of degree 23, we deduce that

X23 = 1
384

5μ2 − 1660 − 44μ
μ

,

where

μ =
(
4724 + 924

√
69
)1/3

.

The associated series we obtain from (1.5) and Theorem 3.2 is

1
π

=
∞∑
k=0

( 1
2
)3
k

(k!)3
(
k
√

23 ·
√

1 −X23 + 2d23

)
Xk

23,

where

d23 =
√

2X1/12
23 − 5X1/6

23 + 13
√

2
2 X

1/4
23 − 10X1/3

23 + 5
√

2X5/12
23 − 11

4 X
1/2
23 .

As mentioned in the beginning of this article, the Borweins remarked that to derive 
series for 1/π given in Theorem 1.1 corresponding to N = 11 and 23, they needed to rely 
on Ramanujan’s expressions for f(11) and f(23). We have shown here that this is not 
necessary and that these series can be constructed from the new identities (3.4b) and 
(3.4c).
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Remark 4.1. We have cited [2] for modular equations of various degrees found by Ra-
manujan and used them to evaluate αN . These modular equations are what we called 
Russell-type modular equations. They were studied systematically by R. Russell [20]. In 
fact, it is possible for us to construct Russell-type modular equations of any odd prime 
degree using the results found in [20]. For more details on how to compute such modular 
equations and their cubic analogues, see [13].

Remark 4.2. We observe that Russell-type modular equations of degree � give us poly-
nomials satisfied by α�. But in order to determine α�, we still face the problem of finding 
the zeroes of polynomials. For example, in the case of 11 and 23, we need to find roots 
of polynomials of degree 3. In other words, obtaining αn using modular equations works 
only for relatively small composite or prime n. For certain n, especially those which are 
squarefree, we can compute αn without using modular equations. This requires class 
field theory and explicit Shimura’s reciprocity law. For more details, see [8], [11], [15], 
[16] and [21].

We have seen how Theorem 3.2 can be used to derive explicit series for 1/π. We now 
use these identities to derive examples for Theorem 1.2. In [5], the Borweins provided 
only examples to their series for even N . As such, we will first restrict our attention to 
the derivation of special cases of Theorem 1.2 when N is even.

Before we proceed, we observe that if � is a prime, then

D̂2�(q)ϑ2
4(q)ϑ2

4(q2�) = D̂�(q)ϑ2
4(q)ϑ2

4(q�) + �D̂2(q�)ϑ2
4(q�)ϑ2

4(q2�). (4.11)

From the above, we know that we will need to derive a formula for D̂2(q) and this is 
given by

D̂4
2(q) = 1

642
α4(q)

(1 − α(q))3 . (4.12)

The relation (4.12) can be proved by observing that both D̂2(q2) and α(q2) are modular 
functions invariant under Γ0(4). Note that

D̂2(q) �= D2(−q),

even though

D̂�(q) = D�(−q),

for odd prime � (see (1.9)).
We are now ready to derive explicit series for 1/π arising from Theorem 1.2 for N =

6, 10, 14, 22 and 46.
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4.5. Case N = 6

From (4.11), we find that

D̂6(e−π/
√

6) = D̂3(e−π/
√

6)ϑ
2
4(e

−π
√

3
2 )

ϑ2
4(e−π

√
6)

+ 3D̂2(e−π
√

3
2 ) ϑ

2
4(e

−π
√

3
2 )

ϑ2
4(e−π/

√
6)
.

In order to derive a series for 1/π using Theorem 1.2, we will need to derive the following 
identities:

α6 = 35 + 24
√

2 − 20
√

3 − 14
√

6, (4.13a)

α2/3 = 35 − 24
√

2 − 20
√

3 + 14
√

6, (4.13b)

D̂2
3

(
e−π/

√
6
)

=
(

5
2 + 3

2
√

3
)2

, (4.13c)

D̂2
2

(
e
−π

√
3
2

)
= −41

16
√

6 + 99
16 − 35

8
√

2 + 29
8
√

3, (4.13d)

ϑ4
4

(
e
−π

√
3
2

)
ϑ4

4

(
e−π/

√
6
) = 5 + 8

3
√

3 + 2
√

6 + 10
3
√

2, (4.13e)

ϑ4
4

(
e
−π

√
3
2

)
ϑ4

4

(
e−π

√
6
) = −3 + 2

√
2 + 2

√
3 −

√
6. (4.13f)

Assuming that the above identities hold, we find that

D̂2
6

(
e−π/

√
6
)

=

⎛⎜⎜⎝D̂3

(
e−π/

√
6
) ϑ2

4

(
e
−π

√
3
2

)
ϑ2

4

(
e−π

√
6
) + 3D̂2

(
e
−π

√
3
2

) ϑ2
4

(
e
−π

√
3
2

)
ϑ2

4

(
e−π/

√
6
)
⎞⎟⎟⎠

2

= 111
16 + 5

√
2 + 33

8
√

3 + 45
16

√
6.

Therefore,

â6 = 2√
6

√
α6

1 − α6

(
−D̂6(e−π/

√
6)
)

+ 1
2(1 − α6)

= −
(

1
4 + 1

6
√

6 − 1
6
√

3
)

+ 1
2(1 − α6)

= 2
3
√

3 − 5
12

√
6.
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Now, using the value of α6, we immediately compute

1 + α6

1 − α6
=

√
3
(
2 −

√
2
)

and −4 α6

(1 − α6)2
= −17 + 12

√
2.

Hence, by Theorem 1.2, we obtain the following identity

1√
6π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(√
3
(
2 −

√
2
)
k + 2

3
√

3 − 5
12

√
6
)(

−17 + 12
√

2
)k

,

which is (1.10) in the introduction.
We still have to show the identities in (4.13). Observe that using (1.1), Jacobi’s identity 

(2.10) and the product representations of ϑj(q) for j = 2, 3, 4 given in (2.7b), (4.2) and 
(2.7a), we find that

−4 α(q)
(1 − α(q))2

= −64 η24(τ)
η24(τ/2) . (4.14)

We now recall the following modular equation of Ramanujan which is a consequence of 
[2, Chapter 17, Entry 12], namely,

U(τ) + 1
U(τ) − 2 = V (τ) + 64

V (τ) + 16, (4.15)

where

U(τ) =
(

η(τ)η(6τ)
η(2τ)η(3τ)

)12

and V (τ) =
(

η(τ)η(3τ)
η(2τ)η(6τ)

)6

.

Substituting τ = i/
√

6 in (4.15), we find, using the evaluation formula (4.3) for the 
η-function, that

V (i/
√

6) = 8.

This implies that

4 α6

(1 − α6)2
= 64

(
η(i

√
6)

η(i
√

3/2)

)24

= 17 − 12
√

2,

and

4
α2/3(

1 − α2/3
)2 = 64

(
η(i

√
2/3)

η(i/
√

6)

)24

= 17 + 12
√

2.

This implies (4.13a) and the identity (4.13b).
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The above method of deriving α2� using α2/� and a modular equation is due to Ra-
manujan. For more details, see [19, Section 2] where α10 is derived.

Identity (4.13c) follows from the identity

D̂2
3(e−π/

√
6) = 1

16

√
16

α1/6α3/2

(1 − α1/6)2(1 − α3/2)2
= 1

16

√
16

(1 − α6)(1 − α2/3)
α2

6α
2
2/3

=
(

5
2 + 3

2
√

3
)2

,

where we have used the identity (see (4.8))

1 − α1/r = αr.

Identity (4.13d) follows immediately from (4.12) and (4.13b).
To prove (4.13e) and (4.13f), we observe that by (2.9), it suffices to compute

ϑ4
4(e−π

√
2/3)

ϑ4
4(e−π/

√
6)

.

To finish this final task, we recall two identities, namely (see for example [5, (2.1.6)])

ϑ2
3(q) + ϑ2

4(q) = 2ϑ3(q2), (4.16)

and [2, p. 214, (24.15)]

ϑ2
3(q)

ϑ2
3(q2) =

1 −
√

α(q2)√
1 − α(q)

. (4.17)

From (1.1), (2.10), (4.16) and (4.17) we conclude that

ϑ2
4(q)

ϑ2
4(q2) = 1√

1 − α(q2)

(
2 − ϑ2

3(q)
ϑ2

3(q2)

)
= 1√

1 − α(q2)

(
2 − 1 −

√
α(q2)√

1 − α(q)

)
.

This implies that

ϑ4
4(e−π/

√
6)

ϑ4
4(e−π

√
2/3)

= 1
1 − α2/3

(
2 −

1 −√
α2/3√

1 − α1/6

)2

= −3 − 2
√

2 + 2
√

3 +
√

6.

As indicated earlier, (4.13e) and (4.13f) follow from this computation.



288 A. Berkovich et al. / Advances in Mathematics 338 (2018) 266–304
4.6. Case N = 10

We now discuss the other cases of N , namely, N = 10, 14, 22 and 46. It is clear from 
our discussion of the case N = 6, to derive a series for 1/π from D̂N (q), we need, with 
help of the identities from Theorem 3.2, only the values for α2p and α2/p. In the case of 
N = 6, we use modular equation (4.15) to derive α6 and α2/3. We now discuss another 
method of deriving α2p and α2/p and we will illustrate this alternative method using the 
case N = 10. Let ξ(q) be the right-hand side of (4.14), namely,

ξ(q) = −64 η24(τ)
η24(τ/2) .

Let ξn = ξ(e−π
√
n). Then it can be shown (see [8] and [11]) that

ξ10
ξ2/5

+
ξ2/5

ξ10
= 103682.

Next, using (2.8), we deduce that for any positive real number n,

ξ2nξ2/n = 1. (4.18)

Solving the above equation and using (4.18) for any positive integer n, we deduce that

ξ2
10 = 51841 − 23184

√
5,

which implies that

ξ10 = −161 + 72
√

5.

Using (4.14), we deduce that

α10 = 323 + 144
√

5 − 102
√

10 − 228
√

2.

Similarly, we obtain

α2/5 = 323 − 144
√

5 − 102
√

10 + 228
√

2.

Using these values and following what we have done for N = 6, we deduce that

1√
10π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

((
3
√

10 − 6
√

2
)
k + 23

20
√

10 − 5
2
√

2
)(

−161 + 72
√

5
)k

.
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4.7. Case N = 14

The series for 1/π for N = 14 is not given by the Borweins. We now supply the missing 
series. We find, following the method illustrated in [8] and [11], that

(
ξ14
ξ2/7

)1/24

+
(
ξ2/7

ξ14

)1/24

= 1 +
√

2.

This yields

ξ14 = −
(

1
2
√

2 + 1
2 − 1

2

√
−1 + 2

√
2
)12

.

Using a formula of Ramanujan [4, Theorem 1.2], we deduce that

α14 =
(
−2

√
2 − 2 +

√
8
√

2 + 11
)2 (√

10 + 8
√

2 −
√

8
√

2 + 11
)2

.

Similarly, we find that

α2/7 =
(
−2

√
2 − 2 +

√
8
√

2 + 11
)2 (√

10 + 8
√

2 +
√

8
√

2 + 11
)2

.

From the values of α14, we should expect the series for 1/π to be very complicated. We 
will list the algebraic numbers needed to generate the series:

X14 = − 4α14

(1 − α14)2
= −

(
1
2
√

2 + 1
2 − 1

2

√
−1 + 2

√
2
)12

,

b14 = 1 + α14

1 − α14
,

V14 = ϑ4
4(e−π

√
7/2)

ϑ4
4(e−π/

√
14)

(
D̂2(e−π

√
7/2)

)2
= 1

56(1 − α14)
,

U14 = ϑ4
4(e−π

√
7/2)

ϑ4
4(e−π

√
14)

(
D̂7(e−π/

√
14)

)2
= 4h2

14(1 + 3h14)2
√
α2/7,

where

h14 =
(

(1 − α14)(1 − α2/7)
162α2

14α
2
2/7

)1/8

=
√

11
4 + 7

4
√

2 + 1
4

√
217 + 154

√
2.

Then
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1√
14π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
b14k + 2√

14

√
α14

1 − α14

(
−
√

U14 − 7
√
V14

)
+ 1

2(1 − α14)

)
Xk

14.

Note that in the case of N = 14, it is difficult to derive the series without knowing 
the explicit formula given by Theorem 1.2 and the corresponding identities given in 
Theorem 3.2. The complexity of the constants arising in this series is perhaps why the 
series is not given by the Borweins in their book.

4.8. Case N = 22

Following the method illustrated in [8] and [11], we find that

√
ξ22
ξ2/11

+

√
ξ2/11

ξ22
= 39202.

This yields

ξ22 = −
(
19601 − 13860

√
2
)
,

and

α22 = 39203 + 27720
√

2 − 11820
√

11 − 8358
√

22.

The corresponding series is

1
2(−5

√
2 + 7)π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
−33k + 17

√
2 − 33
4

)(
−19601 + 13860

√
2
)k

.

4.9. Case N = 46

The series for 1/π for N = 46 is not given by the Borweins. Following the method 
illustrated in [8] and [11], we find that

(
ξ46
ξ2/23

)1/24

+
(
ξ2/23

ξ46

)1/24

= 3 +
√

2.

This implies that

ξ46 = −
(

3
2 +

√
2

2 − 1
2

√
7 + 6

√
2
)12

.

Therefore,
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α46 =
(

26 + 18
√

2 − 3
√

147 + 104
√

2
)2 (√

1332 + 936
√

2 − 3
√

147 + 104
√

2
)2

,

and

α2/23 =
(

26 + 18
√

2 − 3
√

147 + 104
√

2
)2(√

1332 + 936
√

2 + 3
√

147 + 104
√

2
)2

.

The following constants will give rise to an explicit series for 1/π associated with N = 46:

b46 = 78
√

147 + 104
√

2 + 54
√

2
√

147 + 104
√

2

− 3
√

2
√

147 + 104
√

2
√

661 + 468
√

2,

X46 = −
(

3
2 +

√
2

2 − 1
2

√
7 + 6

√
2
)12

,

V46 = 1
23 · 23(1 − α46)

,

U46 =
(
2h46

(
1 + 5h46 + 13h2

46 + 20h3
46 + 20h4

46 + 11h5
46
))2 √

α2/23,

where

h46 =
(

(1 − α46)(1 − α2/23)
162α2

46α
2
2/23

)1/24

.

Then

1√
46π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

(
b46k + 2√

46

√
α46

1 − α46

(
−
√

U46 − 23
√
V46

)
+ 1

2(1 − α46)

)
Xk

46.

We have, in our attempt to prove some of the Borweins’ identities [5, p. 172, Ta-
bles 5.2a, 5.2b], used (1.5) to derive series for 1/π when N is odd and (1.7) when N is 
even. We would like to emphasize here that these restrictions are not necessary. Indeed 
if we consider N = 6, 10 and 22, we obtain from (1.5) the following series for 1/π:

The identity

1√
Nπ

=
∞∑
k=0

( 1
2
)3
k

(k!)3 (bNk + aN )Xk
N

is true when

b6 = −69 − 48
√

2 + 40
√

3 + 28
√

6,

a6 = −30 − 21
√

2 + 52√3 + 73√6,
3 6
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X6 = −18872 − 13344
√

2 + 10896
√

3 + 7704
√

6,

b10 = −645 + 456
√

2 + 204
√

10 − 288
√

5,

a10 = −290 + 205
√

2 + 917
10

√
10 − 648

5
√

5,

X10 = −1662776 + 1175760
√

2 + 525816
√

10 − 743616
√

5,

and

b22 = −78405 − 55440
√

2 + 23640
√

11 + 16716
√

22,

a22 = −36542 − 25839
√

2 + 121196
11

√
11 + 171397

22
√

22,

X22 = −24589219256 − 17387203680
√

2 + 7413928560
√

11 + 5242439160
√

22.

Similarly, we also found series associated with (1.7) when N is odd. For example, 
when N = 3 and 7, we have relatively simple series which were missing so far. These are 
respectively

1√
3π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

((√
15 − 8

√
3
)
k + 6 − 10

3
√

3
)(

−416 + 240
√

3
)k

,

and

1√
7π

=
∞∑
k=0

( 1
2
)3
k

(k!)3

((
255 − 96

√
7
)
k + 112 − 296

7
√

7
)(

−129536 + 48960
√

7
)k

.

There is also a series for the case N = 5 and it is given by

1√
Nπ

=
∞∑
k=0

( 1
2
)3
k

(k!)3
(
b̂Nk + âN

)
X̂k

N ,

where

b̂5 = 35 + 16
√

5 − 72
√√

5 − 2 − 32
√

5
√

5 − 10,

â5 = 15 + 34
5
√

5 − 18
√√

5 − 2 − 8
√

5
√

5 − 10 − 1
5

√
1990 + 890

√
5,

X̂5 = −4936 − 2208
√

5 + 10160
√√

5 − 2 + 4544
√

5
√

5 − 10.

We note that identities such as those given in Theorem 3.2 exist only when Γ0(2�) +W�

has genus 0, or according to [12, p. 14], when � = 3, 5, 7, 11, 23. In order to compute D�(q)
for primes other than 3, 5, 7, 11 and 23, we introduce modular functions similar to those 
used by Ramanujan in his representations of f(�).
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In Table 1, we state the value of N and in each entry, set

α = α(q), β = α(qN ).

Table 1
Table of identities for DN (q).

N = 3

D3(q) = −
(αβ(1 − α)(1 − β))1/4

2
.

N = 5
Let

X =
(
210αβ(1 − α)(1 − β)

)1/6

8
,

then
D

2
5(q) = 4X2(1 − 4X).

N = 7
Let

X =
(αβ(1 − α)(1 − β))1/8

2
,

then
D7(q) = −2X(1 − 3X).

N = 11
Let

X =
(
24αβ(1 − α)(1 − β)

)1/12

2
,

then
D11(q) = −2X(1 − 4X + 5X2).

N = 13
Let

X =
(αβ(1 − α)(1 − β))1/2

16
,

and

Y =
1 − (αβ)1/2 − ((1 − α)(1 − β))1/2

8
,

then

10XD
4
13(q) + (−116X − 404XY

2 + 528XY − Y
2 + Y

3 + 1280X2)D2
13(q)

− 16X − 20Y 5 − 16000X2
Y − 176XY

2 + 2112X2 + 4Y 4

+ 37824X2
Y

2 − 3504XY
3 + 8240XY

4 − 23040X3 + 192XY = 0.

N = 17
Let

X =
(
24αβ(1 − α)(1 − β)

)1/6

4
,

and

Y =
1 − (αβ)1/2 − ((1 − α)(1 − β))1/2

8
,

then

D
2
17(q) = 4

64X3Y − 11X2Y − 4X2 − 24XY + 31XY 2 − 32X3 + Y 2 + 3X − 8Y 2

1 − Y + 5X
.

(continued on next page)
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Table 1 (continued)

N = 19
Let

X =
(αβ(1 − α)(1 − β))1/4

4
,

and

Y =
1 − (αβ)1/4 − ((1 − α)(1 − β))1/4

4
,

then

D19(q) =
2X + 2Y + 16Y 3 − 10Y − 18XY

Y − 1
.

N = 23
Let

X =
(
216αβ(1 − α)(1 − β)

)1/24

2
,

then
D23(q) = −2X(1 − 5X + 13X2 − 20X3 + 20X4 − 11X5).

N = 29
Let

X =
(
αβ(1 − α)(1 − β)

256

)1/6
,

and

Y =
1 − (αβ)1/2 − ((1 − α)(1 − β))1/2

8
,

then
A2D

4
29(q) + A1D

2
29(q) + A0 = 0,

where

A2 = −585689508612X2
,

A1 = 123736544264XY + 3702335691264X2 + 97491959398X

+ 134904595824360X4 − 44395652981864X2
Y

2 − 432321617914Y 3

− 42626822690432X5 − 29875947341036X3 − 9779263696654XY
2

+ 41705207079730X2
Y − 8251360353152X4

Y + 5451791661904XY
3

− 176409878302552X3
Y,

A0 = 13753900119256887X2
Y

3 − 4877930791543X

+ 2618284012843192X3
Y + 2305243907550368XY

3

− 700939761749206XY
2 + 505394444931798X2

Y

+ 96399537859592XY − 4086296883979928X2
Y

2

− 14225126607270367X3
Y

2 + 4709822410848252X5
Y

+ 25397795278722548X3
Y

3 − 16793873356376932X4
Y

2

+ 1068896146837092XY
5 − 175149710486642X3

+ 5709212469240785X4
Y − 3216747114074433XY

4

− 16394572380315964X2
Y

4 − 1065063721978775X5
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Table 1 (continued)

− 368335914073064X4 − 19806094957276X2

+ 6607217263199Y 5 − 204688220825404X6 − 25269791081528Y 6
.

N = 31
Let

X =
(αβ(1 − α)(1 − β))1/8

2
,

and

Y =
1 − (αβ)1/8 − ((1 − α)(1 − β))1/8

8
,

then
D31(q) = −82X2 + 22X − 1536Y 3 − 8Y − 32XY + 160Y 2 + 896XY

2
.

Using the identity associated with D29(q), we obtain Borweins’ series [5, p. 172] as-
sociated with N = 58 in Theorem 1.2, namely,

1√
Nπ

=
∞∑
k=0

( 1
2
)3
k

(k!)3
(
b̂Nk + âN

)
X̂k

N ,

where

b̂58 = −6930
√

2 + 1287
√

58,

â58 = −6351
2

√
2 + 68403

116
√

58,

X̂58 = −192119201 + 35675640
√

29.

As in the case of N = 13 for Theorem 1.1, the Borweins derived the above series without 
the knowledge of f(29) which is not listed in Ramanujan’s table for f(�).

Remark 4.3. Note that the above table contains identities analogous to Ramanujan’s 
table for f(�). In particular, using the expression for D13(q), we obtain the series given in 
(1.6), etc. The identities in the table were found with the assistance of computer algebra, 
more precisely with F.G. Garvan’s qseries package (available at http://qseries .org /
fgarvan /qmaple /qseries/), using suitable functions such as X and Y given in the table. 
Once an identity is found, the validity of the identity can be established by first deriving 
a modular equation from the identity and then by verifying the respective modular 
equation by the standard technique of comparing the q-series expansions of the modular 
functions which appear in the modular equation. The identity to be proved is then one 
of the solutions of the modular equation.

http://qseries.org/fgarvan/qmaple/qseries/
http://qseries.org/fgarvan/qmaple/qseries/
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5. Series for 1/π associated with the cubic theta function a(q)

In this section, we consider a cubic analogue of (1.5) and (1.7). Let

a(q) =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+n2

,

and

1
α†(q2) = 1 + 1

27
η12(τ)
η12(3τ) .

The analogues of Theorems 1.1 and 1.2 are respectively given as follows:

Theorem 5.1. Let N ≥ 2 be a positive integer,

α†
N = α†

(
e−2π

√
N/3

)
,

and

CN (q) = 1
a2(q)a2(qN ) det

⎛⎝ a(q) a(qN )

q
da(q)
dq

q
da(qN )

dq

⎞⎠ .

Then √
3
N

1
2π =

∞∑
k=0

( 1
2
)
k

( 1
3
)
k

( 2
3
)
k

(k!)3
(
b†Nk + a†N

)(
X†

N

)k

, (5.1)

where

b†N = 1 − 2α†
N ,

a†N = −CN (q)√
N

∣∣∣∣
q=e−2π/

√
3N

,

and

X†
N = 4α†

N

(
1 − α†

N

)
.

Theorem 5.2. Let N ≥ 8 be a positive integer,

α̂†
N = α†

(
− e−π

√
N/3

)
,

and
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ĈN (q) = 1
a2(−q)a2(−qN ) det

⎛⎝ a(−q) a(−qN )

q
da(−q)

dq
q
da(−qN )

dq

⎞⎠ .

Then √
3
N

1
π

=
∞∑
k=0

( 1
2
)
k

( 1
3
)
k

( 2
3
)
k

(k!)3
(
b̂†Nk + â†N

)(
X̂†

N

)k

, (5.2)

where

b̂†N = 1 − 2α̂†
N ,

â†N = ĈN (q)√
N

∣∣∣∣
q=e−π/

√
3N

,

and

X̂†
N = 4α̂†

N

(
1 − α̂†

N

)
.

We now state a few identities for the cubic case similar to those in Theorem 3.2.

Theorem 5.3. The following hold:
Let

H†
� = H†

� (τ) =
(
η(3τ)η(3�τ)
η(τ)η(�τ)

) 12
l+1

.

Then

C2(q2) = −6 H†
2

(1 + 9H†
2)2

, (5.3)

C5(q2) = −6H†
5

1 + 4H†
5 + 9H† 2

5

(1 + 9H†
5 + 9H† 2

5 )2
,

C11(q2) = −6H†
11(τ) U(H†

11(τ))
V 2(H†

11(τ))
,

where

U(s) = 1 + 5s + 18s2 + 37s3 + 54s4 + 45s5 + 27s6,

and

V (s) = 1 + 9s + 18s2 + 27s3 + 9s4.

The examples of (5.1) which follow from Theorem 5.3 are given as follows:
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5.1. Case N = 2

When N = 2, α†
2 =

√
2 − 1
2
√

2
, b†2 =

√
2

2 and X†
2 = 1

2. Using (5.3) and the fact that

H†
2(i/

√
6) = 1

9 ,

which follows from two instances of (2.8), we deduce that

C2(e−2π/
√

6) = −1
6 .

The series for 1/π in this case is

3
√

3
π

=
∞∑
k=0

( 1
2
)
k

( 1
3
)
k

( 2
3
)
k

(k!)3 (6k + 1) 1
2k .

For case N = 5 and 11, identity (5.1) holds for the following values:

b†5 = 11
23

√
5, a†5 = 4

75
√

5, X†
5 = 4

125

and

b†11 = − 5
242

√
11 + 45

242
√

33, a†11 = − 13
726

√
11 + 3

121
√

33, X†
11 = − 194

1331 + 225
2662

√
3.

When N = 2 and 5,

X̂†
2 = −256 − 153

√
3 and X̂†

5 = −4,

which have absolute values greater than 1. This implies that the right-hand side of (5.2)
diverges. In other words, the only identity from Theorem 5.3 that leads to a series for 
1/π via (5.2) is when N = 11 and is given by

√
3
π

=
∞∑
k=0

( 1
2
)
k

( 1
3
)
k

( 2
3
)
k

(k!)3

((
45
22

√
3 + 5

22

)
k + 13

66 + 3
11

√
3
)(

− 194
1331 − 225

2662
√

3
)k

.

We end this section with cubic analogues of Ramanujan’s identities for f(�). In Table 2, 
we will state the value of N and in each entry, set

α† = α†(q), β† = α†(qN ).
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Table 2
Table of identities for CN (q).

N = 2
Let

X =

(
α†β†(1 − α†)(1 − β†)

)1/3

9
,

then
C2(q) = −6X.

N = 5
Let

X =

(
α†β†(1 − α†)(1 − β†)

)1/6

3
,

then
C5(q) = −6X(1 − 5X).

N = 11
Let

X =

(
α†β†(1 − α†)(1 − β†)

)1/6

3
,

and

Y =
1 −

(
α†β†

)1/3
−

(
(1 − α†)(1 − β†)

)1/3

9
,

then
C11(q) = −33XY + 3X − 6Y + 33Y 2

.

N = 17
Let

X =

(
α†β†(1 − α†)(1 − β†)

)1/6

3
,

and

Y =
1 −

(
α†β†

)1/3
−

(
(1 − α†)(1 − β†)

)1/3

9
,

then

C17(q) =
6
(
−2X2 + 34X2Y + 51XY 2 − 14Y 2 − 9XY + Y + 51Y 3)

8Y − 1
.

Remark 5.1. In the above table, we give an identity for � = 17 to illustrate the fact 
that we can compute C�(q) even when the genus of Γ0(3�) + W� is not zero. Applying 
Theorem 5.2, together with the identity given above for C17(q) and the value

α̂†
17 = 1

2 −
√

17
8 ,

we obtain the series

12
√

3
π

=
∞∑
k=0

( 1
2
)
k

( 1
3
)
k

( 2
3
)
k

(k!)3 (51k + 7)
(
−1
16

)k

,

which was discovered by Chan, Liaw and Tan [14, (1.15)].
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6. Quartic theory and Ramanujan’s most famous series for 1/π

In 1985, B. Gosper brought Ramanujan’s series for 1/π to the attention of the math-
ematical community by computing 17526200 digits of π using the series

1
π

= 2
√

2
∞∑
k=0

( 1
2
)
k

( 1
4
)
k

( 3
4
)
k

(1)3k
(1103 + 26390k)

(
1

992

)2k+1

(6.1)

(see [1, p. 387 and p. 685]). Series (6.1) was discussed in the book by the Borweins 
(see [5, (5.5.23)]), where they remarked that they computed α(58) (see [5, (5.1.2)]) by 
calculating a certain number d0(58) (see [5, (5.5.16)]) to high precision. In other words, 
it appears that a rigorous proof has not been found for (6.1).

In this section, we will give a proof of (6.1). Identity (6.1) belongs to the quartic theory 
(cf. [3]) and a quartic analogue of Theorem 1.1 is given by the following Theorem:

Theorem 6.1. Let

A2(q2) = η16(τ)
η8(2τ)

(
1 + 32η

8(4τ)
η8(τ)

)2

= η16(τ)
η8(2τ)

(
1 + 64η

24(2τ)
η24(τ)

)
,

and

1
α⊥(q2) = 1 + 1

64
η24(τ)
η24(2τ) .

Let

α⊥
N = α⊥

(
e−π

√
2N

)
,

and

D⊥
N (q) = 1√

A3(q)A3(qN )
det

⎛⎝ A(q) A(qN )

q
dA(q)
dq

q
dA(qN )

dq

⎞⎠ .

Then √
2
N

1
2π =

∞∑
k=0

( 1
2
)
k

( 1
4
)
k

( 3
4
)
k

(k!)3
(
b⊥Nk + a⊥N

) (
X⊥

N

)k
,

where

b⊥N = 1 − 2α⊥
N ,

a⊥N = −D⊥
N (q)√

∣∣∣∣ √
,

2 N q=e−2π/ 2N
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and

X⊥
N = 4α⊥

N

(
1 − α⊥

N

)
,

In order to derive series for 1/π using Theorem (6.1), it appears that we need to 
construct formulas analogous to those for DN(q) given in Table 1 in Section 5 for the 
function D⊥

N (q). Fortunately, this turns out to be unnecessary. We will show that the 
knowledge of DN (q) is all we need in order to compute D⊥

N (q). We begin with our 
discussion with the following Theorem:

Theorem 6.2. Let Z(q) = ϑ4
3(q). Then

−D⊥
� (q) =

√
Z(q)Z(q�)
A(q)A(q�)

(
1

1 + α(q)

√
Z(q)
Z(q�)α(q)(1 − α(q)) (6.2)

− �

1 + α(q�)

√
Z(q�)
Z(q) α(q�)(1 − α(q�)) − 4D�(q)

)
.

Proof. The proof of (6.2) follows from the identity

A(q) = (1 + α(q))Z(q), (6.3)

which follows by observing that A(q2)/Z(q2) is a modular function on Γ0(4). Using (6.3), 
we deduce that

A(q)
A(q�) = 1 + α(q)

1 + α(q�)
Z(q)
Z(q�) . (6.4)

Logarithmically differentiating (6.4), identifying the resulting expressions with D�(q) and 
D⊥

� (q), and using the identity

q
dα(q)
dq

= Z(q)α(1 − α),

we complete the proof of (6.2). �
Identity (6.2) and Theorem 6.1 allow us to derive any series for 1/π for a positive 

integer N from identities for DN (q) given in Table 1. For example, when N = 3, we find, 
using the identity for D3(q) given in Section 4, that

α6 = 35 + 24
√

2 − 20
√

3 − 14
√

6,

α2/3 = 35 − 24
√

2 − 20
√

3 + 14
√

6,

D3(e−π
√

2/3) = 5 − 3
√

3
,
2 2
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√
Z(e−π

√
2/3)

Z(e−π
√

6)
= 3 − 2

√
3 + 3

√
2 −

√
6,√

Z(e−π
√

2/3)Z(e−π
√

6)
A(e−π

√
2/3)A(e−π

√
6)

= 1√
6

+
√

2
4 .

This yields

−D⊥
3 (e−π

√
2/3) = 1√

6
and a⊥6 =

√
2

12 ,

and we deduce the series

1√
6π

=
∞∑
k=0

( 1
2
)
k

( 1
4
)
k

( 3
4
)
k

(k!)3

(
2
√

2
3 k +

√
2

12

)
1
9k .

Similarly, when N = 29, we find, using the modular equation for D29(q) derived in 
Section 4, that

α58 = 384238403 + 71351280
√

29 − 50452974
√

58 − 271697580
√

2,

α2/29 = 384238403 − 71351280
√

29 − 50452974
√

58 + 271697580
√

2,

D29(e−π
√

2/29) = 6351
√

29 − 24184
√

2,√
Z(e−π

√
2/29)

Z(e−π
√

58)
= 37323 + 6930

√
29 − 26390

√
2 − 4900

√
58,√

Z(e−π
√

2/29)Z(e−π
√

58)
A(e−π

√
2/29)A(e−π

√
58)

= 13
198

√
29 + 1

4
√

2.

This yields

−D⊥
29(e−π

√
2/29) = 4412

9801 and a⊥29 = 2206
√

2
284229 .

Together with

b⊥29 = 1820
9081

√
29 and X⊥

29 = 1
994 ,

we complete the proof of Ramanujan’s series (6.1).

Remark 6.1. We were made aware that an unpublished proof of Ramanujan’s series (6.1)
was discovered around 2015 by Yue Zhao [22], a young Electrical Engineering student 
from Tsinghua University. Shaun Cooper also discovered another proof of (6.1) shortly 
after the discovery of our proof.
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Zhao also gave a first proof of Ramanujan’s series [5, p. 187]

4
π

=
∞∑
k=0

(−1)k
( 1

2
)
k

( 1
4
)
k

( 3
4
)
k

(1)3k
(1123 + 21460k)

(
1

882

)2k+1

,

which corresponds to N = 37. A proof of the above identity using the method illustrated 
here would require an identity associated with D37(q) which is not present in this article.

Acknowledgments

We would like to thank Professor Bruce C. Berndt for his detailed comments and 
Liuquan Wang for uncovering several misprints in an earlier version of this article. The 
second author would like to thank Professor C. Krattenthaler for his hospitality and for 
providing an excellent research environment during his stay at the Faculty of Mathemat-
ics, University of Vienna. We would also like to thank Professor C.B. Zhu for showing 
the second author a picture of the series (6.1) painted on the wall at a train station near 
EPFL, Switzerland. This picture motivated us to examine the series which eventually 
led to the proof of (6.1) presented in the last section of this article. At a recent Pan Asia 
Number Theory conference in Singapore, Professor E. Bayer informed the second author 
that the formula on the wall was painted by a group of students at EPFL. They were 
looking for beautiful formulas for the wall and painted Ramanujan’s series for 1/π used 
by Gosper at the suggestion of Professor M. Philippe. Finally, it gives us great pleasure 
to thank our two referees for giving valuable suggestions which significantly improved 
the presentation of our work.

References

[1] J.L. Berggren, J. Borwein, P. Borwein, Pi: A Source Book, Springer-Verlag, New York, 2004.
[2] B.C. Berndt, Ramanujan’s Notebooks Part III, Springer-Verlag, New York, 1991.
[3] B.C. Berndt, H.H. Chan, W.-C. Liaw, On Ramanujan’s quartic theory of elliptic functions, J. Num-

ber Theory 88 (1) (2001) 129–156.
[4] B.C. Berndt, H.H. Chan, L.-C. Zhang, Ramanujan’s singular moduli, Ramanujan J. 1 (1997) 53–74.
[5] J.M. Borwein, P.B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Compu-

tational Complexity, Wiley, New York, 1987.
[6] J.M. Borwein, P.B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. 

Math. Soc. 323 (1991) 691–701.
[7] J.M. Borwein, P.B. Borwein, F.G. Garvan, Some cubic identities of Ramanujan, Trans. Amer. Math. 

Soc. 343 (1994) 35–47.
[8] H.H. Chan, Ramanujan’s class invariants and Watson’s empirical process, J. Lond. Math. Soc. 57 

(1998) 545–561.
[9] H.H. Chan, S.H. Chan, Z.-G. Liu, Domb’s numbers and Ramanujan–Sato type series for 1/π, Adv. 

Math. 186 (2004) 396–410.
[10] H.H. Chan, T.G. Chua, An alternative transformation formula for the Dedekind η-function via the 

Chinese remainder theorem, Int. J. Number Theory 12 (2) (2016) 513–526.
[11] H.H. Chan, A.C.P. Gee, V. Tan, Cubic singular moduli, Ramanujan’s class invariant λn and the 

explicit Shimura reciprocity law, Pacific J. Math. 208 (1) (2003) 23–37.
[12] H.H. Chan, M.L. Lang, Ramanujan’s modular equations and the Atkin–Lehner involutions, Israel 

J. Math. 103 (1998) 1–16.

http://refhub.elsevier.com/S0001-8708(18)30338-4/bib5069536F75726365s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4265726E6474494949s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4265726E64742D4368616E2D4C696177s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4265726E64742D4368616E2D4C696177s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4265726E64742D4368616E2D73696E67756C6172s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib5069616E6441474Ds1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib5069616E6441474Ds1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib426F727765696E732D6375626963s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib426F727765696E732D6375626963s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib426F727765696E732D47617276616Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib426F727765696E732D47617276616Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4A4C4D53s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4A4C4D53s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4368616E2D4C6975s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4368616E2D4C6975s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D54656F684775616Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D54656F684775616Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4765652D54616Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4765652D54616Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4C616E672D4368616Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4C616E672D4368616Es1


304 A. Berkovich et al. / Advances in Mathematics 338 (2018) 266–304
[13] H.H. Chan, W.-C. Liaw, On Russell-type modular equations, Canad. J. Math. 52 (1) (2000) 31–46.
[14] H.H. Chan, W.-C. Liaw, V. Tan, Ramanujan’s class invariant λn and a new class of series for 1/π, 

J. Lond. Math. Soc. 64 (1) (2001) 93–106.
[15] A.C.P. Gee, Class invariants by Shimura’s reciprocity law, J. Théor. Nombres Bordeaux 11 (1999) 

45–72.
[16] A.C.P. Gee, P. Stevenhagen, Generating class fields using Shimura reciprocity, in: Algorithmic Num-

ber Theory, Portland, OR, 1998, in: Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, 
pp. 441–453.

[17] C.G.J. Jacobi, Gesammelte Werke, vol. 1, Reimer, Berlin, 1891.
[18] H. Rademacher, Topics in Analytic Number Theory, Springer, Berlin, 1973.
[19] S. Ramanujan, Modular equations and approximations to π, Q. J. Math. 45 (1914) 350–372.
[20] R. Russell, On κλ − κ′λ′ modular equations, Proc. Lond. Math. Soc. 19 (1887) 90–111.
[21] P. Stevenhagen, Hilbert’s 12th problem, complex multiplication and Shimura reciprocity, in: Class 

Field Theory – Its Centenary and Prospect, Tokyo, 1998, in: Adv. Stud. Pure Math., vol. 30, Math. 
Soc. Japan, Tokyo, 2001, pp. 161–176.

[22] Y. Zhao, A modular proof of two Ramanujan’s formulae for 1/π, preprint.

http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4C696177s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4C6961772D54616E2D7069s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4368616E2D4C6961772D54616E2D7069s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib476565s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib476565s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4765652D53746576656E686167656Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4765652D53746576656E686167656Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4765652D53746576656E686167656Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib4A61636F6269s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib526164656D6163686572s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib52616D2D6D6F64s1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib52757373656C6Cs1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib53746576656E686167656Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib53746576656E686167656Es1
http://refhub.elsevier.com/S0001-8708(18)30338-4/bib53746576656E686167656Es1

	Wronskians of theta functions and series for 1/π
	1 Introduction
	2 New representations of the Ramanujan-Borweins series for 1/π for the "classical base"
	3 The functions Dl(q) and D̂l(q)
	4 Explicit examples of Theorems 1.1 and 1.2
	4.1 Case N=3
	4.2 Case N=5
	4.3 Case N=7
	4.4 Cases N=11 and 23
	4.5 Case N=6
	4.6 Case N=10
	4.7 Case N=14
	4.8 Case N=22
	4.9 Case N=46

	5 Series for 1/π associated with the cubic theta function a(q)
	5.1 Case N=2

	6 Quartic theory and Ramanujan's most famous series for 1/π
	Acknowledgments
	References


