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Dedicated to Professor George E. Andrews on the occasion of his 80th birthday

Abstract. Let k and n be positive integers. Let cφk(n) denote the number
of k-colored generalized Frobenius partitions of n and let CΦk(q) be the gen-
erating function of cφk(n). In this article, we study CΦk(q) using the theory
of modular forms and discover new surprising properties of CΦk(q).

1. Introduction

A partition π of an integer n is a sequence of non-increasing positive integers
which add up to n. We denote the number of partitions of n by p(n). It is known
that a partition π of n can be visualized using a Ferrers diagram by representing
the positive integer m of the s-th part by m dots on the s-th row. An example
showing the pictorial representation of the partition 4 + 4 + 4 + 2 of the integer 14
is given in Figure 1.

Figure 1

From the Ferrers diagram of a partition, we can construct a 2 by d matrix by
carrying out the following steps:

Step 1. Remove all the dots lying on the diagonal of the diagram.
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Step 2. Fill the first row of the matrix with entries r1,j , where r1,j is the number
of dots on the j-th row that are to the right of the diagonal.

Step 3. Fill the second row of the matrix with entries r2,j , where r2,j is the number
of dots on the j-th column that are below the diagonal.

For example, after Step 1, we obtained Figure 2 from Figure 1. Carrying out Steps 2

Figure 2

and 3, we arrive at the matrix (
3 2 1
3 2 0

)
.

It is clear that we can always construct a 2 by d matrix from any partition π with
d dots along the diagonal of its Ferrers diagram, and the matrix obtained from a
partition π using the above procedures is called a Frobenius symbol for the partition
π. A Frobenius symbol, by construction, has strictly decreasing entries on each row.

One way to find new functions that are similar to the partition function p(n) is
to start with a modified version of the Frobenius symbol. In his 1984 AMS Memoir,
G.E. Andrews [2, Section 4] introduced a generalized Frobenius symbol with at most
k repetitions for each integer by relaxing the “strictly decreasing” property and
allowing at most k-repetitions of each positive integer in each row. Andrews then
used the generalized Frobenius symbol to define the generalized Frobenius partition
of n. For a generalized Frobenius symbol with entries ri,j , i = 1, 2, 1 ≤ j ≤ d, the
generalized Frobenius partition of n is given by

n = d+
d∑

j=1

(r1,j + r2,j).

Andrews used the symbol φk(n) to denote the number of such partitions of n. As an
example, we observe that φ2(3) = 5 and these are given by the following generalized
Frobenius symbols with at most 2 repetitions on each row:(

2
0

)
,

(
0
2

)
,

(
1
1

)
,

(
1 0
0 0

)
,

(
0 0
1 0

)
.

Note that with this definition,

φ1(n) = p(n).

There are at most k-repetitions in each row of a generalized Frobenius symbol. In
order to restore the “strictly decreasing” property of a Frobenius symbol from a
generalized Frobenius symbol, Andrews colored the repeated parts using “colors”
denoted by 1, 2, . . . , k and imposed an ordering on these parts as follows:

(1.1) 01 ≺ 02 ≺ · · · ≺ 0k ≺ 11 ≺ 12 ≺ · · · ≺ 1k ≺ 21 ≺ 22 ≺ · · · ≺ 2k ≺ · · · .
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k-COLORED GENERALIZED FROBENIUS PARTITIONS 2161

Here, we use “≺” to differentiate the inequality from the usual inequality “<”.
Andrews referred to a symbol obtained using k-colors in this way as a k-colored
generalized Frobenius symbol.

Given a k-colored generalized Frobenius symbol with entries

ri,j ∈ {�c|� and c are non-negative integers with 1 ≤ c ≤ k}

and

ri,j+1 ≺ ri,j , i = 1, 2 and 1 ≤ j ≤ d− 1.

Andrews associated a k-colored generalized Frobenius partition of n to a k-colored
generalized Frobenius symbol (ri,j)2×d by setting

n = d+
d∑

j=1

(r1,j + r2,j),

where only the non-negative integer � is added if ri,j = �c. He used the symbol
cφk(n) to denote the number of such partitions of n. Observe that when k = 1,
the 1-colored generalized Frobenius symbols coincide with the Frobenius symbols
and cφ1(n) = p(n). To help the reader understand k-colored generalized Frobenius
symbols, we list the following 2-colored generalized Frobenius symbols which give
rise to 2-colored generalized Frobenius partitions of 2:(

11
01

)
,

(
11
02

)
,

(
12
01

)
,

(
12
02

)
,(1.2) (

01
11

)
,

(
02
11

)
,

(
01
12

)
,

(
02
12

)
,

(
02 01
02 01

)
.

Note that there are altogether nine 2-colored generalized Frobenius partitions of 2
and hence

cφ2(2) = 9.

The best way to study a new function such as the k-colored generalized Frobenius
partition function cφk(n) is to study its generating function

CΦk(q) :=
∞∑

n=0

cφk(n)q
n.

In [2, Theorem 5.2], Andrews showed that

(1.3) CΦk(q) =
1

(q; q)k∞

∑
m1,··· ,mk−1∈Z

qQ(m1,...,mk−1),

where

(1.4) Q(m1,m2, . . . ,mk−1) =

k−1∑
i=1

m2
i +

∑
1≤i<j≤k−1

mimj

and

(a; q)∞ =
∞∏
j=1

(
1− aqj−1

)
, |q| < 1.
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Using (1.3), Andrews [2, Corollary 5.2] discovered alternative expressions for CΦk(q)
when k = 2, 3, and 5. To describe Andrews’ identities, let q = e2πiτ throughout
this paper, so

Θ3(q) = ϑ3(0|2τ ) =
∞∑

j=−∞
qj

2

and Θ2(q) = ϑ2(0|2τ ) =
∞∑

j=−∞
q(j+1/2)2 ,

where

ϑ2(u|τ ) =
∞∑

j=−∞
eπiτ(j+1/2)2e(2j+1)iu

and

ϑ3(u|τ ) =
∞∑

j=−∞
eπiτj

2

e2jiu.

Andrews showed that

CΦ2(q) =
(q2; q4)∞

(q; q2)4∞(q4; q4)∞
,(1.5)

CΦ3(q) =
1

(q; q)3∞

(
Θ3(q)Θ3(q

3) + Θ2(q)Θ2(q
3)
)

(1.6)

=
1

(q; q)3∞

⎛
⎝1 + 6

∞∑
j=0

(
j

3

)
qj

1− qj

⎞
⎠ ,(1.7)

and

CΦ5(q) =
1

(q; q)5∞

⎛
⎝1 + 25

∞∑
j=1

(
j

5

)
qj

(1− qj)2
− 5

∞∑
j=1

(
j

5

)
jqj

1− qj

⎞
⎠ ,(1.8)

where

(
j

·

)
is the Kronecker symbol. For (1.8), we have recorded the equivalent

version of Andrews’ identity found in the work of L.W. Kolitsch [23, Lemma 1].
Andrews [2, pp. 13–15] used Jacobi triple product identity (see for example [2,
(3.1)]) and properties of theta series to prove (1.5) and (1.6). The proofs of (1.7) and
(1.8) [2, pp. 26–27] are dependent on the work of H.D. Kloosterman [20, pp. 362,
358]. In a paragraph before the proofs of (1.7) and (1.8), Andrews [2, p. 26]
mentioned that similar identity exists for k = 7, but this identity was not given in
[2]. This missing identity, namely,

(1.9) CΦ7(q) =
1

(q; q)7∞

⎛
⎝1 +

343

8

∞∑
j=1

(
j

7

)
qj + q2j

(1− qj)3
− 7

8

∞∑
j=1

(
j

7

)
j2qj

1− qj

⎞
⎠ ,

was later published by Kolitsch [23, Lemma 2].
Recently, N.D. Baruah and B.K. Sarmah [6, 7] used the method illustrated in

Z. Cao’s work [11] and found representations of CΦk(q) for k = 4, 5, and 6. They
showed that

(1.10) CΦ4(q) =
1

(q; q)4∞

(
Θ3

3(q
2) + 3Θ3(q

2)Θ2
2(q

2)
)
,
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CΦ5(q) =
1

(q; q)5∞

(
Θ3(q

10)Θ3
3(q

2) + 3Θ3(q
10)Θ3(q

2)Θ2
2(q

2) +
1

2
Θ2(q

5/2)Θ3
2(q

1/2)

+ 3Θ2(q
10)Θ2(q

2)Θ2
3(q) + Θ2(q

10)Θ3
2(q

2)
)
,(1.11)

and

CΦ6(q) =
1

(q; q)6∞

(
Θ3

3(q)Θ3(q
2)Θ3(q

6) +
3

4
Θ3

2(q
1/2)Θ2(q)Θ2(q

3/2)

+ Θ2
3(q)Θ2(q

2)Θ2(q
6)
)
.(1.12)

Identities (1.10) and (1.11) can be found in [6, (2.2)] and [6, (2.13)] respectively,
while (1.12) can be found in [7, (2.1)].

For k > 7, it is not clear if new identities associated with CΦk(q) could be de-
rived using the methods of Andrews and Baruah-Sarmah. In fact, Andrews [2, p. 15]
commented that as k increases, “the expressions quickly become long and messy”.
The main goal of this paper is to discuss ways of finding new representations of
CΦk(q). Using the theory of modular forms, we will derive all the identities men-
tioned above. In addition to providing new proofs to known identities, we will also
construct new representations for CΦk(q) for the first time for 8 ≤ k ≤ 17. In
Section 2, we discuss the behavior of CΦk(q) as the modular form for each integer
k > 2. In Section 3, we derive alternative representations of CΦk(q) for primes
k = 3, 5, 7, 11, 13, and 17 and prove Kolitsch’s identities [23, p. 223]

cφ5(n) = p(n/5) + 5p(5n− 1)(1.13)

and

cφ7(n) = p(n/7) + 7p(7n− 2).(1.14)

We also discover and prove the identities

cφ11(n) = p(n/11) + 11p(11n− 5)(1.15)

and

cφ13(n) = p(n/13) + 13p(13n− 7) + 26a(n),(1.16)

where p(x) = 0 when x is not an integer and

q

∞∏
j=1

(1− q13j)

(1− qj)2
=

∞∑
j=0

a(j)qj.

It turns out that (1.15) is equivalent to Kolitsch’s identity for an 11-colored general-
ized Frobenius partition with order 11 [26, Theorem 3], which was first established
using the results of F.G. Garvan, D. Kim, and D. Stanton [16]. Identity (1.16), on
the other hand, is new. The proof of (1.16) motivates the discovery of a uniform
method of treating identities such as (1.16). We discuss this method in Section 4
and derive analogues of (1.16) for � = 17, 19, and 23. This method also leads to
the discovery of interesting modular functions that satisfy mysterious congruences.
For example, if

h�(τ )=(q�; q�)∞CΦ�(q)−1−�(q�; q�)∞

∞∑
j=1

p

(
�j − �2 − 1

24

)
qj−2�(�−11)/2 η

�−11(�τ )

η�−11(τ )
,
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where η(τ ) is the Dedekind eta function given by

η(τ ) = q
1
24

∞∏
n=1

(1− qn),

then for � = 17, 19, and 23,

h�(τ ) ≡ 0 (mod ν�)

where

ν� = �2 − �p

(
�n− �2 − 1

24

)
.

In Section 5, we discuss the cases for k = 9 and 15, the two composite odd integers
less than 17. We derive the following congruence satisfied by cφk(n):

(1.17) cφpαN (n) ≡ cφpα−1N (n/p) (mod p2α),

where cφk(m) = 0 if m is not an integer, p is a prime, and N and α are positive
integers with (N, p) = 1. The discovery of congruence (1.17) is motivated by con-
gruences found in the study of CΦ10(q) and CΦ14(q) in Section 6, where identities
associated with k = 4, 6, 8, 10, 12, and 16 are given. More precisely, we discovered
that

(1.18) CΦ2p(q) ≡
Θ3(q

p)

(qp; qp)∞
= CΦ2(q

p) (mod p2),

which holds for any odd prime p. The second equality follows from Andrews’ iden-
tity for CΦ2(q) (see also (3.1)). Congruence (1.18) can be viewed as an extension
of Andrews’ congruence [2, Corollary 10.2]

(1.19) CΦp(q) ≡
1

(qp; qp)∞
(mod p2)

if we rewrite (1.19) as

(1.20) CΦp(q) ≡ CΦ1(q
p) (mod p2)

using the fact that
cφ1(n) = p(n).

The discovery of (1.18) leads to the congruence

(1.21) CΦ�p(q) ≡ CΦ�(q
p) (mod p2),

which holds for any distinct primes � and p. Congruence (1.21) eventually leads to
(1.17).

There may be more surprising properties to be discovered for cφk(n), and we
hope that this article will be helpful to future researchers who are interested in
knowing more about these functions.

2. Modular properties of CΦk(q)

In this section, we determine the modular properties of the function

Ak(q) := (q; q)k∞CΦk(q) =
∑

m1,...,mk−1∈Z

qQ(m1,...,mk−1), k > 1.

Let χ be a Dirichlet character and let Mk(Γ0(N), χ) be the space of modular forms
on Γ0(N) with weight k and multiplier χ. When χ is the trivial Dirichlet character,
we write Mk(Γ0(N)) for Mk(Γ0(N), χ).
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Let

(2.1) An =

⎛
⎜⎜⎝

2 1 1 · · · 1
1 2 1 · · · 1
· · · · · · · · · · · · · · ·
1 1 1 · · · 2

⎞
⎟⎟⎠

n×n

.

Then det(An) = n+ 1 and

(2.2) A−1
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

n+ 1
− 1

n+ 1
− 1

n+ 1
· · · − 1

n+ 1

− 1

n+ 1

n

n+ 1
− 1

n+ 1
· · · − 1

n+ 1

· · · · · · · · · · · · · · ·

− 1

n+ 1
− 1

n+ 1
− 1

n+ 1
· · · n

n+ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let n be a positive even integer and let

χ(·) =
(
(−1)n/2 det(An)

·

)
=

(
(−1)n/2(n+ 1)

·

)
.

Since all the diagonal components of An and (n+ 1)A−1
n are even, we deduce from

[30, Corollary 4.9.5(3)] that if

θ(τ ;An) =
∑

m∈Zn

eπiτ ·m
tAnm =

∑
m∈Zn

q
1
2m

tAnm =
∑

m∈Zn

qQ(m1,...,mn),

then

(2.3) θ(τ ;An) =
∑

m∈Zn

qQ(m1,...,mn) = An+1 ∈ Mn/2

(
Γ0(n+ 1), χ

)
.

Next, let n > 1 be an odd positive integer and let

Bn =

(
An 0
0 2

)
.

Then detBn = 2(n+ 1). We have

θ(τ ;Bn) =
∑

m∈Zn+1

eπiτ ·m
tBnm =

∑
m∈Zn

q
1
2m

tAnm
∑

mn+1∈Z

qm
2
n+1

=
∑

m∈Zn

qQ(m1,...,mn)
∑

mn+1∈Z

qm
2
n+1

= An+1(q)Θ3(q).

Note that

B−1
n =

(
A−1

n 0
0 1

2

)
.

Let

χ(·) =
(
(−1)(n+1)/2 det(Bn)

·

)
=

(
2(−1)(n+1)/2(n+ 1)

·

)
.
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Since all the diagonal components of Bn and 2(n+1)B−1
n are even, we deduce from

[30, Corollary 4.9.5(3)] that

(2.4) θ(τ ;Bn) = An+1(q)Θ3(q) ∈ M(n+1)/2

(
Γ0(2(n+ 1)), χ

)
.

Similarly, let

Cn =

(
An 0
0 4

)
.

Then detCn = 4(n+ 1). Note that

C−1
n =

(
A−1

n 0
0 1

4

)
.

Let

χ(·) =
(
(−1)(n+1)/2 det(Cn)

·

)
=

(
(−1)(n+1)/2(n+ 1)

·

)
.

Since all the diagonal components of Cn and 4(n + 1)C−1
n are even, we find from

[30, Corollary 4.9.5(3)] that

(2.5) θ(τ ;Cn) = An+1(q)Θ3(q
2) ∈ M(n+1)/2

(
Γ0(4(n+ 1)), χ

)
.

From (2.3), (2.4), and (2.5), we deduce the following theorem.

Theorem 2.1. If k = 2r + 1 is odd, then

Ak(q) ∈ M(k−1)/2

(
Γ0(k),

((−1)r · k
·

))
.

If k = 2r is even, then

Θ3(q)Ak(q) ∈ Mk/2

(
Γ0(2k),

(2(−1)r · k
·

))
and

Θ3(q
2)Ak(q) ∈ Mk/2

(
Γ0(4k),

( (−1)r · k
·

))
.

3. Generating function of cφk(n) when k is a prime

In this section, we will derive expressions for CΦk(q) when k is a prime number
less than 18.

3.1. Case k = 2.
Our proof for k = 2 is exactly the same as that of Andrews’ proof of (1.5), and

we include it for the sake of completeness. From (1.3), we find that

(3.1) CΦ2(q) =
Θ3(q)

(q; q)2∞
.

Using Jacobi triple product identity (see [2, (3.1)]), we deduce that

(3.2) Θ3(q) = (−q; q2)2∞(q2; q2)∞.

Substituting (3.2) into (3.1) and simplifying, we complete the proof of (1.5).

Licensed to National University of Singapore. Prepared on Wed Jan 15 01:45:52 EST 2020 for download from IP 137.132.123.69.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



k-COLORED GENERALIZED FROBENIUS PARTITIONS 2167

3.2. Case k = 3.
From Theorem 2.1, we deduce that A3(q) is a modular form of weight 1 on

Γ0(3) with multiplier
(−3

·
)
. Comparing the coefficients of A3(q) with the known

Eisenstein series of weight 1 [15, Theorem 4.8.1] on Γ0(3) with multiplier
(−3

·
)
, we

deduce that

A3(q) =

∞∑
m,n=−∞

qm
2+mn+n2

= 1 + 6

∞∑
j=1

(
3

j

)
qj

1− qj
.

This is equivalent to (1.7). Another proof of (1.7) can also be found, for example,
in the article by J.M. Borwein, P.B. Borwein, and F.G. Garvan [10, p. 43].

We next show that (1.6) follows from a general identity. Let ω = (1 +
√
−d)/2,

with d ≡ 3 (mod 4). Observe that the set

S = {m+ nω|m,n ∈ Z}
is a disjoint union of

S0 = {m+ nω|m,n ∈ Z, n ≡ 0 (mod 2)}

and

S1 = {m+ nω|m,n ∈ Z, n ≡ 1 (mod 2)} .
Let

N(m+ nω) = m2 +mn+

(
d+ 1

4

)
n2.

Then ∑
v∈S

qN(v) =
∑
v∈S0

qN(v) +
∑
v∈S1

qN(v).

Simplifying the above, we deduce that

(3.3)
∑

m,n∈Z

qm
2+mn+( d+1

4 )n2

= Θ3(q)Θ3(q
d) + Θ2(q)Θ2(q

d).

Identity (1.6) follows from (3.3) with d = 3.

3.3. Case k = 5.
We first establish three representations of CΦ5(q).

Theorem 3.1. The following identities hold:

CΦ5(q) =
1

(q; q)5∞

⎛
⎝1 + 25

∞∑
j=1

(
j

5

)
qj

(1− qj)2
− 5

∞∑
j=1

(
j

5

)
jqj

1− qj

⎞
⎠(3.4)

=
1

(q5; q5)∞
+ 25q

(q5; q5)5∞
(q; q)6∞

(3.5)

=
1

(q5; q5)∞
+ 5

∞∑
j=1

p(5j − 1)qj .(3.6)

Proof. From Theorem 2.1, we deduce that

A5(q) ∈ M2

(
Γ0(5),

(
5

·

))
.
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Since [31, Theorem 1.34]

dimM2

(
Γ0(5),

(
5

·

))
= 2,

we deduce that the two modular forms

E5,1 =
∞∑

m=1

∞∑
d=1

(
d

5

)
mqmd =

∞∑
j=1

(
j

5

)
qj

(1− qj)2
(3.7)

and

E5,2 = 1− 5
∞∑

m=1

∞∑
d=1

(
d

5

)
dqmd = 1− 5

∞∑
j=1

(
j

5

)
jqj

1− qj
,

which are in M2

(
Γ0(5),

(
5
·
))

(see [15, Section 4.6]), form a basis for this space
of modular forms. By comparing Fourier coefficients of A5(q), E5,1, and E5,2, we
deduce that

A5(q) = 25E5,1 + E5,2,

and the proof of (3.4) is complete.
Before we begin with our proof of (3.5), we observe that if p > 3, then by

Theorem 2.1,

CΦp(q)(q
p; qp)∞

is a modular function on Γ0(p). This implies that the function can be expressed in
terms of combinations of infinite products. For more details, see for example the
paper by H.H. Chan, H. Hahn, R.P. Lewis, and S.L. Tan [12]. In [2, Corollary 10.2],
Andrews showed that if p is a prime, then

CΦp(q) =
1

(qp; qp)∞
+ p2Gp(q)

for some Gp(q) analytic inside |q| < 1 with integral power series coefficients. He
then asked [2, Problem 6] for explicit closed forms for Gp(q). Since

Gp(q)(q
p; qp)∞ =

1

p2
(CΦp(q)(q

p; qp)∞ − 1) ,

we conclude that Gp(q) is a modular function on Γ0(p) for p > 3. This provides an
answer to Andrews’ question. The above discussion also gives us a way to derive
alternative expressions for CΦp(q) whenever the functions invariant under Γ0(p)
can be expressed as a rational function of a single modular function. This happens
for p = 5, 7, and 13. We now use this fact to derive an expression for CΦ5(q).
It is known from T. Kondo’s work [28] that every modular function on Γ0(5) is a
rational function of η6(5τ )/η6(τ ), where

η(τ ) = eπiτ/12
∞∏
j=1

(
1− e2πijτ

)
.

Since CΦ5(q)(q
5; q5)∞ is a modular function on Γ0(5), we deduce that

CΦ5(q)(q
5; q5)∞ = 1 + 25

η6(5τ )

η6(τ )
.

This completes the proof of (3.5).
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Using the fact that

1

(q; q)∞
=

∞∑
j=0

p(j)qj

and Ramanujan’s identity [9, Theorem 2.3.4],

(3.8)

∞∑
j=1

p(5j − 1)qj = 5q
(q5; q5)5∞
(q; q)6∞

,

we deduce (3.6) from (3.5). �

Remark 3.1. Identity (3.4) is Andrews’ (1.8), which was first proved using results
found in Kloosterman’s work [20]. Identity (3.6) immediately implies (1.13). We
emphasize here that our proof of (1.13) is different from Kolitsch’s proof as we have
used (3.5) instead of (1.8).

As shown in (1.11), there is a fourth representation of CΦ5(q) due to Baruah
and Sarmah. This identity can be proved by realizing that

A5(q) ∈ M2

(
Γ0(40),

(
5

·

))
,

together with the fact that the space M2

(
Γ0(40),

(
5
·
))

is spanned by the modular

forms

Θ3(q)Θ
3
3(q

5), Θ3
3(q)Θ3(q

5), Θ3(q
2)Θ3

3(q
10), Θ3

3(q
2)Θ3(q

10),

Θ3(q)Θ3(q
5)Θ2

2(q
2), Θ3(q

2)Θ3(q
10)Θ2

2(q
2), Θ3

2(q
1/2)Θ2(q

5/2),

Θ2
3(q)Θ2(q

2)Θ2(q
10), Θ3

2(q
2)Θ2(q

10), and Θ2
3(q

5)Θ2(q
2)Θ2(q

10).

3.4. Case k = 7.

Theorem 3.2. The following identities are true:

CΦ7(q) =
1

(q; q)7∞

(
1− 7

8

∞∑
k=1

(
k

7

)
k2qk

1− qk
+

343

8

∞∑
k=1

(
k

7

)
qk + q2k

(1− qk)3

)
(3.9)

=
1

(q7; q7)∞
+ 49q

(q7; q7)3∞
(q; q)4∞

+ 343q2
(q7; q7)7∞
(q; q)8∞

(3.10)

=
1

(q7; q7)∞
+ 7

∞∑
j=1

p(7j − 2)qj .(3.11)

Proof. Before giving the proof of (3.9), we observe that (3.9) is the same as (1.9).
We will prove (3.9) using the theory of modular forms. Note that by Theorem 2.1,
we have A7(q) ∈ M3

(
Γ0(7),

(−7
·
))
. The space M3

(
Γ0(7),

(−7
·
))

is spanned by

E7,1 =
∞∑

m=1

∞∑
d=1

(
d

7

)
m2qmd =

∞∑
j=1

(
j

7

)
qj + q2j

(1− qj)3
,

E7,2 = 1− 7

8

∞∑
m=1

∞∑
d=1

(
d

7

)
d2qmd = 1− 7

8

∞∑
j=1

(
j

7

)
j2qj

1− qj
,

and

S7 = η3(τ )η3(7τ ).
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By comparing Fourier coefficients of these modular forms, we deduce that

A7(q) =
343

8
E7,1 + E7,2.

This completes the proof of (3.9).
The proof of (3.10) is similar to the proof of (3.5). We recall that modular

functions invariant under Γ0(7) is a rational function of

η4(7τ )

η4(τ )
.

Since (q7; q7)∞CΦ7(q) is such a function, we conclude that

(q7; q7)∞CΦ7(q) = 1 + 49
η4(7τ )

η4(τ )
+ 343

η8(7τ )

η8(τ )
,

and the proof of (3.10) is complete.
Ramanujan discovered that [9, Theorem 2.4.2]

(3.12)

∞∑
j=1

p(7j − 2)qj = 7q
(q7; q7)3∞
(q; q)4∞

+ 49q2
(q7; q7)7∞
(q; q)8∞

.

Using (3.12) and (3.10), we deduce (3.11). �

Identity (3.11) immediately implies Kolitsch’s identity (1.14). We emphasize
here that our proof of (1.14) uses (3.10) instead of (3.9).

As in the case for k = 5, we are able to find a representation of CΦ7(q) in terms
of theta functions. This new identity is an analogue of (1.11). We first observe that
A7(q) ∈ M3

(
Γ0(28),

(−28
·
))
. Furthermore the modular forms

Θ5
3(q)Θ3(q

7), Θ3
3(q)Θ

3
3(q

7), Θ3(q)Θ
5
3(q

7), Θ4
3(q)Θ2(q

1/2)Θ2(q
7/2),

Θ4
3(q

7)Θ2(q
1/2)Θ2(q

7/2), Θ4
3(q)Θ2(q)Θ2(q

7), Θ4
3(q

7)Θ2(q)Θ2(q
7),

Θ3
2(q

1/2)Θ3
2(q

7/2), Θ3
2(q)Θ

3
2(q

7), Θ5
2(q)Θ2(q

7), and Θ2(q)Θ
5
2(q

7)

form a basis for M3

(
Γ0(28),

(−28
·
))
. Hence, we deduce that

CΦ7(q) =
1

(q; q)7∞

(
− 15

32
Θ5

3(q)Θ3(q
7) +

55

16
Θ3

3(q)Θ
3
3(q

7)− 63

32
Θ3(q)Θ

5
3(q

7)

+
15

16
Θ4

3(q)Θ2(q
1/2)Θ2(q

7/2) +
105

16
Θ4

3(q
7)Θ2(q

1/2)Θ2(q
7/2)

− 15

16
Θ4

3(q)Θ2(q)Θ2(q
7) +

525

16
Θ4

3(q
7)Θ2(q)Θ2(q

7)

+
105

32
Θ3

2(q
1/2)Θ3

2(q
7/2) +

95

8
Θ3

2(q)Θ
3
2(q

7)

+
15

16
Θ5

2(q)Θ2(q
7)− 189

16
Θ2(q)Θ

5
2(q

7)

)
.(3.13)

We next prove some congruences satisfied by cφ7(n) using (3.13) and (3.10).

Theorem 3.3. For any integer n ≥ 0,

cφ7(5n+ 3) ≡ 0 (mod 5).
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Proof. From (3.13), we deduce that
∞∑
j=0

cφ7(j)q
j ≡ 1

(q; q)7∞

(
Θ3(q)Θ

5
3(q

7) + Θ2(q)Θ
5
2(q

7)
)

(mod 5)

≡ 1

(q5; q5)2∞

(
(q; q)3∞Θ3(q)Θ3(q

35) + (q; q)3∞Θ2(q)Θ2(q
35)

)
(mod 5).

(3.14)

Using Jacobi’s identity for (q; q)3∞ [9, Theorem 1.3.9], we find that

(3.15) (q; q)3∞Θ3(q) =

∞∑
i=0

∞∑
j=−∞

(−1)i(2i+ 1)qi(i+1)/2+j2 .

Now, observe that

m =
i(i+ 1)

2
+ j2

is equivalent to
8m+ 1 = (2i+ 1)2 + 8j2.

If 8m ≡ −1 (mod 5), then m ≡ 3 (mod 5). Since(
−8

5

)
= −1,

we deduce that
(2i+ 1)2 + 8j2 ≡ 0 (mod 5)

holds if and only if
2i+ 1 ≡ j ≡ 0 (mod 5).

Similarly, we have

(3.16) q35/4(q; q)3∞Θ2(q) =

∞∑
i=0

∞∑
j=0

(−1)i(2i+ 1)q9+i(i+1)/2+j(j+1).

Observe that

m = 9 +
i(i+ 1)

2
+ j(j + 1)

is equivalent to
8m− 69 = (2i+ 1)2 + 2(2j + 1)2.

Note that if 8m− 69 ≡ 0 (mod 5), then m ≡ 3 (mod 5). Since(
−2

5

)
= −1,

we deduce that
(2i+ 1)2 + 2(2j + 1)2 ≡ 0 (mod 5)

holds if and only if
2i+ 1 ≡ 2j + 1 ≡ 0 (mod 5).

From (3.14), (3.15), and (3.16), we conclude that if m ≡ 3 (mod 5), then

cφ7(m) ≡ 0 (mod 5)

or, equivalently,
cφ7(5n+ 3) ≡ 0 (mod 5)

for any integer n ≥ 0. �
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Remark 3.2. It is possible to deduce Theorem 3.3 without using (3.13). We first
recall a recent result of F.G. Garvan and J.A. Sellers [17] which states that if p is
a prime number and 0 < r < p, then the congruence

cφk(pn+ r) ≡ 0 (mod p), for all n ∈ N,

implies that

cφpN+k(pn+ r) ≡ 0 (mod p), for all n ∈ N.

In [2, (10.3)], Andrews showed that for all integers n ≥ 0,

(3.17) cφ2(5n+ 3) ≡ 0 (mod 5).

Applying the result of Garvan and Sellers with p = 5, r = 3, N = 1, and k = 2, we
complete the proof of Theorem 3.3.

Our next set of congruences are consequences of (3.10).

Theorem 3.4. For any integer n ≥ 0, we have

cφ7(7n+ 3) ≡ cφ7(7n+ 5) ≡ cφ7(7n+ 6) ≡ 0 (mod 73).(3.18)

Proof. From (3.10), we find that

∞∑
k=0

cφ7(k)q
k ≡ 1

(q7; q7)∞
+ 49q

(q7; q7)3∞
(q; q)4∞

(mod 73).(3.19)

Let

q
(q7; q7)3∞
(q; q)4∞

=
∞∑
j=0

a(j)qj .

Then

∞∑
n=0

cφ7(7n+ r)qn ≡ 49
∞∑
n=0

a(7n+ r)qn (mod 73), 1 ≤ r ≤ 6.(3.20)

By the binomial theorem, we find that

∞∑
j=0

a(j)qj≡q(q7; q7)2∞(q; q)3∞≡(q7; q7)2∞

( ∞∑
i=0

(−1)i(2i+ 1)qi(i+1)/2+1

)
(mod 7).

(3.21)

Since

1 +
i(i+ 1)

2
≡ 0, 1, 2, or 4 (mod 7),

we deduce that

a(7n+ 3) ≡ a(7n+ 5) ≡ a(7n+ 6) ≡ 0 (mod 7).(3.22)

Combining (3.20) with (3.22) we complete the proof of (3.18). �
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3.5. Case k = 11.

Theorem 3.5. We have

(3.23) CΦ11(q) =
1

(q11; q11)∞
+ 11

∞∑
j=1

p(11j − 5)qj .

Proof. By Theorem 2.1, we know that A11(q) ∈ M5

(
Γ0(11),

(−11
·
))
. The dimension

of M5

(
Γ0(11),

(−11
·
))

is 5 [31, Theorem 1.34], and this space is spanned by the
modular forms

η11(11τ )

η(τ )
,

η11(τ )

η(11τ )
, (q; q)11∞

∞∑
j=1

p(11j − 5)qj ,

∞∑
m=1

∞∑
d=1

(
d

11

)
m4qmd and

1275

11
+

∞∑
m=1

∞∑
d=1

(
d

11

)
d4qmd.

By comparing the coefficients of A11(q) with those of the five modular forms above,
we deduce that

A11(q) =
η11(τ )

η(11τ )
+ 11(q; q)11∞

∞∑
j=1

p(11j − 5)qj .

This proves (3.23). �

It is immediate that (3.23) implies (1.15). There is no analogue of (3.4) and
(3.9) for k = 11, but an analogue for (1.11) and (3.13) exists. This expression is
complicated and we will give such identities if we do not have other representations
for (qk; qk)∞CΦk(q) when k is composite (see Section 6).

3.6. Case k = 13.

Theorem 3.6. We have

CΦ13(q) =
1

(q13; q13)∞
+ 169

(
q
(q13; q13)∞
(q; q)2∞

+ 36q2
(q13; q13)3∞
(q; q)4∞

+ 494q3
(q13; q13)5∞
(q; q)6∞

+ 3380q4
(q13; q13)7∞
(q; q)8∞

+ 13182q5
(q13; q13)9∞
(q; q)10∞

+ 28561q6
(q13; q13)11∞
(q; q)12∞

+ 28561q7
(q13; q13)13∞
(q; q)14∞

)
(3.24)

=
1

(q13; q13)∞
+ 13

∞∑
j=1

p(13j − 7)qj + 26q
(q13; q13)∞
(q; q)2∞

.

(3.25)

Proof. From the discussion at the end of Section 3.3, we know that

(q13; q13)∞CΦ13(q)
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is a modular function invariant under Γ0(13), and since modular functions invariant
under Γ0(13) are rational functions of H = η2(13τ )/η2(τ ) [28], we deduce that

(q13; q13)∞CΦ13(q)

= 1 + 169

(
H + 36H2 + 494H3 + 3380H4 + 13182H5 + 28561H6 + 28561H7

)
,

and (3.24) follows.
Around 1939, motivated by Ramanujan’s identities (3.8) and (3.12), H. Zucker-

man [44, eq. (1.15)] discovered that

∞∑
j=1

p(13j − 7)qj = 11q
(q13; q13)∞
(q; q)2∞

+ 468q2
(q13; q13)3∞
(q; q)4∞

+ 6422q3
(q13; q13)5∞
(q; q)6∞

+ 43940q4
(q13; q13)7∞
(q; q)8∞

+ 171366q5
(q13; q13)9∞
(q; q)10∞

+ 371293q6
(q13; q13)11∞
(q; q)12∞

+ 371293q7
(q13; q13)13∞
(q; q)14∞

.(3.26)

Using (3.26) to simplify (3.24), we deduce that

CΦ13(q) =
1

(q13; q13)∞
+ 13

∞∑
j=1

p(13j − 7)qj + 26q
(q13; q13)∞
(q; q)2∞

,

and this yields (3.25). �

Identity (3.25) immediately implies (1.16).
We observe that the appearance of

∞∑
j=1

p(13j − 7)qj

simplifies (3.24), leading to (3.25) with only three terms on the right hand side.
Identity (3.25) is clearly an analogue of Kolitsch’s identities (3.6) and (3.11).

In Section 4, we will prove identities involving both CΦk(q) and

∞∑
j=1

p

(
kj − k2 − 1

24

)
qj

when k > 3 is a prime. This method appears to yield the simplest (in terms of the
number of modular forms involved) representation of CΦk(q) for any prime k > 3,
and it does not involve the construction of basis for

M(k−1)/2

(
Γ0(k),

( (−1)(k−1)/2k

·
))

.

Constructing such basis could get complicated for large k, as we shall see in the
next subsection.

3.7. Case k = 17.
Let

(3.27) Ea(τ ) = q17B2(a/17)/2
∞∏

m=1

(1− q17(m−1)+a)(1− q17m−a),
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where B2(x) = x2 − x+ 1/6. Let

f17,1 = η7(τ )η(17τ ), f17,2(τ ) = η(τ )η7(17τ ),

g17,1(τ ) =
1

8
(17E2(17τ )− E2(τ )),

g17,2(τ ) = η4(17τ )
7∑

k=0

E2·3k(τ )E14·3k(τ )E4·3k(τ )2E12·3k(τ )E6·3k(τ )E10·3k(τ )2E8·3k(τ ),

h17,1(τ ) = g217,1(τ ), h17,2(τ ) = g17,1(τ )g17,2(τ ), h17,3(τ ) = g217,2(τ ),

h17,4(τ ) = η4(τ )η4(17τ ), h17,5(τ ) =
1

24

(
289E4(17τ )− E4(τ )

)
.

From Theorem 2.1, we know that A17(q) ∈ M8

(
Γ0(17),

(
17
·
))
. By [31, Theorem

1.34], we find that

dimM8

(
Γ0(17),

(17
·
))

= 12.

Let

B17,1 = f17,1h17,1, B17,2 = f17,1h17,2, B17,3 = f17,1h17,3, B17,4 = f17,1h17,4,

B17,5 = f17,1h17,5, B17,6 = f17,2h17,1, B17,7 = f17,2h17,2, B17,8 = f17,2h17,3,

B17,9 = f17,2h17,4, B17,10 = f17,2h17,5, B17,11 =
η17(τ )

η(17τ )
, and B17,12 =

η17(17τ )

η(τ )
.

One can verify that {B17,j |1 ≤ j ≤ 12} forms a basis of M8

(
Γ0(17),

(
17
·
))
. By

comparing the Fourier coefficients of A17(q) and B17,j , 1 ≤ j ≤ 12, we deduce the
following identity.

Theorem 3.7. We have

CΦ17(q) =
1

(q; q)17∞

(1491529
118

B17,1 −
20931981

236
B17,2 −

117030839

236
B17,3(3.28)

+
78308596

59
B17,4 −

988669

236
B17,5 +

424841849

59
B17,6

− 10654955751

236
B17,7 −

17109438979

236
B17,8 +

7515406274

59
B17,9

+
91750275

236
B17,10 +B17,11 + 6975757441B17,12

)
.

Note that all the coefficients of B17,j , j �= 11, are divisible by 172. Therefore,

CΦ17(q) ≡
1

(q17; q17)∞
(mod 172)

or, equivalently,

cφ17(n) ≡ p(n/17) (mod 172).

This is a special case of Andrews’ congruence [2, Theorem 10.2 and Corollary 10.2]

cφp(n) ≡ cφ1(n/p) (mod p2),(3.29)

which is true for all primes p.
In the next section, we will provide an analogue for Kolitsch’s identities (3.6)

and (3.11) for CΦ17(q).
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4. k-colored generalized Frobenius partitions

and ordinary partitions

Kolitsch’s identities (1.13), (1.14), and Andrews’ congruence (3.29) show a close
relation between k-colored generalized Frobenius partitions and ordinary partitions.
In this section, we will give a more precise description of the relation and prove
(3.6), (3.11), (3.23), and (3.25) in a uniform way. We will also give an alternative
representation for CΦ17(q) and illustrate for any prime � > 3 a general procedure
to express CΦ�(q) in terms of other modular functions, one of which involves gen-
erating functions for p(�n− (�2 − 1)/24).

Let

F (τ )
∣∣∣(a b

c d

)
:= F

(
aτ + b

cτ + d

)
.

Let � be a prime ≥ 5 and let A�(τ ) denote the function A�(q) when the function
A�(q) is viewed as a function of τ with q = e2πiτ . By Theorem 2.1,

A�(q) = A�(τ ) = (q; q)�∞CΦ�(q) =
∑

m1,...,m�−1∈Z

qQ(m1,...,m�−1)

is a modular form of weight (� − 1)/2 with character χ(−1)(�−1)/2� on Γ0(�), where

Q(m1, . . . ,m�−1) is the quadratic form defined by (1.4) and χd is the character
defined by χd(·) =

(
d
·
)
. It follows that

f�(τ ) =
η(�τ )

η(τ )�
A�(τ )

is a modular function on Γ0(�). On the other hand, η(�2τ )/η(τ ) is a modular
function on Γ0(�

2), and by a lemma of A.O.L. Atkin and J. Lehner [5, Lemma 7],
we find that

η(�2τ )

η(τ )

∣∣∣U� :=
1

�

�−1∑
k=0

η(�2τ )

η(τ )

∣∣∣ (1 k
0 �

)
= (q�; q�)∞

∞∑
j=1

p

(
�j − �2 − 1

24

)
qj

is also a modular function on Γ0(�).
Set

(4.1) g�(τ ) = 1 + �
η(�2τ )

η(τ )

∣∣∣U� = 1 + �(q�; q�)∞

∞∑
j=1

p

(
�j − �2 − 1

24

)
qj .

We now compare the analytic behaviors of f�(τ ) and g�(τ ) at cusps associated
with Γ0(�).

Lemma 4.1. Let � ≥ 5 be a prime and let

δ� =
�2 − 1

24
.

At the cusp ∞, we have

f�(τ )− g�(τ )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�(�− p(�− δ�))q +O(q2) if � ≤ 23,

�2q+

(
1

4
�2(�2−2�+9)−�p(2�−δ�)

)
q2+O(q3) if 29 ≤ � ≤ 47,

�2q +
1

4
�2(�2 − 2�+ 9)q2 +O(q3) if � ≥ 53.
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At the cusp 0, we have

(f�(τ )− g�(τ ))
∣∣∣(0 −1

� 0

)
=

⎧⎪⎨
⎪⎩
O(q) if � = 5, 7, 11,

2q−1 − 4 +O(q) if � = 13,

2q−(�2−1)/24+(�−1)/2(1− q +O(q2)) if � ≥ 17.

Proof. It is clear from the definition of g�(τ ) that

g�(τ ) = 1 + �(q�; q�)∞
∑

n≥(�2−1)/24�

p(�n− δ�)q
n

=

⎧⎪⎨
⎪⎩
1 + �p(�− δ�)q +O(q2) if � ≤ 23,

1 + �p(2�− δ�)q
2 +O(q3) if 29 ≤ � ≤ 47,

1 +O(q3) if � ≥ 53.

(4.2)

On the other hand, we have

Q(m1, . . . ,m�−1) = (m2
1 + · · ·+m2

�−1) +
1

2

∑
i �=j

mimj

=
1

2
(m2

1 + · · ·+m2
�−1) +

1

2
(m1 + · · ·+m�−1)

2.

From this, we see that Q(m1, . . . ,m�−1) = 1 if and only if exactly one of mj is ±1
and the other are all 0, or mi = 1 and mj = −1 for some i, j with i �= j and all
others are 0. Likewise, we can check that Q(m1, . . . ,m�−1) = 2 if and only if there
are two 1’s and two −1’s among mj , or there are two 1’s and one −1 among mj ,
or there are two −1’s and one 1 among mj . Thus, the number of integer solutions
of Q(m1, . . . ,m�−1) = 2 is

1

4
(�− 1)(�− 2)(�− 3)(�− 4) + 2 · 1

2
(�− 1)(�− 2)(�− 3) =

1

4
�(�− 1)(�− 2)(�− 3).

Consequently, we have

A�(τ ) = 1 + �(�− 1)q +
1

4
�(�− 1)(�− 2)(�− 3)q2 + · · ·

and

f�(τ ) =
(q�; q�)∞

(1− q − q2 + · · · )�

(
1 + �(�− 1)q +

1

4
�(�− 1)(�− 2)(�− 3)q2 + · · ·

)

= 1 + �2q +
1

4
�2(�2 − 2�+ 9)q2 + · · · .

Together with (4.2), this yields the first half of the lemma. We next consider the
analytic behavior of f�(τ )− g�(τ ) at 0.

Recall that if Λ is an even integral lattice of rank n and Λ′ is its dual lattice,
then their theta series θΛ(τ ) and θΛ′(τ ) are related by the transformation formula
(see [38, Chapter VII, Proposition 16])

(4.3) θΛ′(−1/τ ) =
(τ
i

)n/2

ν(Λ)θΛ(τ ),

where ν(Λ) is the volume of the lattice Λ. Here, we let Λ be the lattice whose Gram
matrix is �A−1

�−1, where An and A−1
n are given by (2.1) and (2.2), respectively. The

determinant of �A−1
�−1 is ��−1/ det(A�−1) = ��−2. Hence

ν(Λ) = ��/2−1.
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Let B�(τ ) be the theta series of Λ and observe that the theta series of Λ′ is A�(τ/�).
Thus, by (4.3), we have

A�

(
− 1

�τ

)
= ��/2−1

(τ
i

)(�−1)/2

B�(τ ).

Together with

η

(
− 1

�τ

)
=

√
�τ

i
η(�τ ) and η

(
−1

τ

)
=

√
τ

i
η(τ ),

we deduce that

(4.4) f�(τ )
∣∣∣ (0 −1

� 0

)
=

1

�

η(τ )

η(�τ )�
B�(τ ).

We now consider g�(−1/�τ ).
We have

�

(
η(�2τ )

η(τ )

∣∣∣U�

) ∣∣∣(0 −1
� 0

)
=

�−1∑
k=0

η(�2τ )

η(τ )

∣∣∣ (k� −1
�2 0

)
.

For k = 0, the transformation formula for η(τ ) yields

(4.5)
η(�2τ )

η(τ )

∣∣∣ ( 0 −1
�2 0

)
=

1

�

η(τ )

η(�2τ )
.

For 1 ≤ k ≤ �− 1, we find that

η

(
�2
k�τ − 1

�2τ

)
= η

(
k�− 1

τ

)
= e2πik�/24η(−1/τ ) = e2πik�/24

√
τ

i
η(τ ).(4.6)

Next, since (k, �) = 1, there exist integers a and k′ such that kk′ − a� = 1. This
implies that

η

(
k�τ − 1

�2τ

)
= η

(
τ − k′

�

) ∣∣∣(k a
� k′

)
(4.7)

=

(
k′

�

)
i(1−�)/2e2πi�(k+k′)/24

√
�τ

i
η

(
τ − k′

�

)
.

It follows from (4.6) and (4.7) that

η(�2τ )

η(τ )

∣∣∣ (k� −1
�2 0

)
=

1√
�

(
k′

�

)
i(�−1)/2e−2πi�k′/24 η(τ )

η(τ − k′/�)

=
1√
�

(
k′

�

)
i(�−1)/2e−2πimk′/� +O(q),
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where m = (�2 − 1)/24. Hence,

�−1∑
k=1

η(�2τ )

η(τ )

∣∣∣ (k� −1
�2 0

)
=

i(�−1)/2

√
�

�−1∑
k=1

(
k′

�

)
e−2πimk′/� +O(q)

=
i(�−1)/2

√
�

(
−m

�

) �−1∑
n=1

(n
�

)
e2πin/� +O(q)

= i(�−1)/2

(
−m

�

){
1 +O(q) if � ≡ 1 mod 4,

i+O(q) if � ≡ 3 mod 4

=

(
8

�

)(
−m

�

)
+O(q)

=

(
12

�

)
+O(q),

(4.8)

where we have used Gauss’ result [4, Section 9.10] in our third equality. Combining
(4.4), (4.5), and (4.8), we find that

(f�(τ )− g�(τ ))
∣∣∣(0 −1

� 0

)
=

1

�
q−(�2−1)/24(q; q)∞

(
B�(τ )

(q�; q�)�∞
− 1

(q�2 ; q�2)∞

)

−
(
12

�

)
− 1 +O(q).

(4.9)

We now claim that

(4.10) B�(τ ) = 1 + 2�q(�−1)/2 + · · · ,
so that

B�(τ )

(q�; q�)�∞
− 1

(q�2 ; q�2)∞
= 2�q(�−1)/2 + · · · .

Recall that B�(τ ) is defined to be the theta series associated to the lattice whose
Gram matrix is �A−1

�−1, where A−1
n is given by (2.2). In other words, we have

B�(τ ) =
∑

m1,...,m�−1∈Z

qQ
′(m1,...,m�−1), q = e2πiτ ,

where

Q′(m1, . . . ,m�−1) =
�− 1

2
(m2

1 + · · ·+m2
�−1)−

1

2

∑
i �=j

mimj

=
1

2

(
�(m2

1 + · · ·+m2
�−1)− (m1 + · · ·+m�−1)

2
)
.

For each (m1, . . . ,m�−1) ∈ Z�−1\{0}, let r be the number of non-zero entries in the
tuple. By the Cauchy-Schwarz inequality, we have

(m1 + · · ·+m�−1)
2 ≤ r(m2

1 + · · ·+m2
�−1).

Then

Q′(m1, . . . ,m�−1) ≥
1

2
(�− r)(m2

1 + · · ·+m2
�−1) ≥

1

2
(�− r)r ≥ �− 1

2
.

Therefore, the coefficient of qj in B�(τ ) vanishes for j = 1, . . . , (�−1)/2−1. Also, the
contribution to the q(�−1)/2 term comes from the cases where r = 1 or r = �−1 and
equality holds for each of the inequalities above. In other words, the contribution
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to q(�−1)/2 comes from the tuples where exactly one of mj is ±1 and all the others

are 0 or (m1, . . . ,m�−1) = ±(1, . . . , 1). We conclude that the coefficient of q(�−1)/2

in B�(τ ) is 2�. This proves the claim (4.10).
For the cases � = 5 and � = 7, we have (�2 − 1)/24 < (�− 1)/2 and

(
12
�

)
= −1.

Therefore,

(4.11) (f�(τ )− g�(τ ))
∣∣∣ (0 −1

� 0

)
= O(q).

When � = 11, we have (�2 − 1)/24 = (�− 1)/2 and
(
12
�

)
= 1. Again, (4.9) implies

that (4.11) holds in this case. For other cases, we note that in general we have

B�(τ ) = 1 + 2�q(�−1)/2 + �(�− 1)q�−2 + · · · ,

and hence

q−(�2−1)/24(q; q)∞

(
B�(τ )

(q�; q�)�∞
− 1

(q�2 ; q�2)∞

)
= 2�q−(�2−1)/24+(�−1)/2(1−q−q2+· · · )

for � ≥ 11. When � = 13, we have −(�2 − 1)/24 + (� − 1)/2 = −1 and
(
12
13

)
= 1.

Then from (4.9), we deduce that

(f�(τ )− g�(τ ))
∣∣∣ (0 −1

� 0

)
= 2q−1 − 4 +O(q).

For other primes � ≥ 17, (4.9) yields

(f�(τ )− g�(τ ))
∣∣∣ (0 −1

� 0

)
= 2q−(�2−1)/24+(�−1)/2(1− q +O(q2))

instead. This completes the proof of the lemma. �

Theorem 4.1. Let � ≥ 5 be a prime. Let

f�(τ ) = (q�; q�)∞CΦ�(q)

and

g�(τ ) = 1 + �(q�; q�)∞

∞∑
n=1

p

(
�n− �2 − 1

24

)
qn.

(a) If � = 5, 7, 11, then f�(τ ) = g�(τ ).
(b) If � = 13, then

f13(τ ) = g13(τ ) + 26
η2(13τ )

η2(τ )
.

(c) If � ≥ 17, then

(4.12) h�(τ ) = f�(τ )− g�(τ )− 2�(�−11)/2

(
η(�τ )

η(τ )

)�−11

is a modular function on Γ0(�) with a zero at ∞ and a pole of order
(�+ 1)(�− 13)/24 at 0, and

h�(τ )(η(τ )η(�τ ))
�−13

is a holomorphic modular form of weight � − 13 with a zero of order
(�− 1)(�− 11)/24 at ∞.
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(d) We have

h�(τ ) ≡ 0 mod

⎧⎪⎨
⎪⎩
170 when � = 17,

266 when � = 19,

506 when � = 23.

(e) For any prime � > 11,

h�(τ ) ≡ �F�(τ ) (mod �2),

where F�(τ ) is a non-zero modular form of weight �− 1 on SL(2,Z).

Proof. We first remark that the functions f�(τ ) and g�(τ ) are both holomorphic
on the upper half-plane. Thus, to prove that f�(τ ) = g�(τ ) for the cases � =
5, 7, 11, we only need to verify that f�(τ ) − g�(τ ) does not have poles at cusps
and f�(τ )− g�(τ ) vanishes at one particular point in these three cases. Indeed, by
Lemma 4.1, f�(τ )−g�(τ ) vanishes at both cusps in the three cases since p(�−δ�) = �
for � = 5, 7, and 11. This proves (a). We remark that in fact it suffices to know
that f�(τ )− g�(τ ) has no pole at the cusp 0 since it would mean that f�(τ )− g�(τ )
is a constant. Since the expansion at ∞ begins with � (�− p(�− δ�)) q, the only
possibility that f�(τ ) − g�(τ ) is a constant is when p(� − δ�) = �. In other words,
without listing out the partitions of 5, 7, and 11, we know that p(4) = 5, p(5) = 7,
and p(6) = 11.

We next consider the case � = 13. By Lemma 4.1, the Fourier expansion of
f�(τ )− g�(τ ) at 0 is

2q−1 − 4 + · · · .
Now we observe that η(13τ )2/η(τ )2 is also a modular function on Γ0(13) and sat-
isfies

η2(13τ )

η2(τ )

∣∣∣ ( 0 −1
13 0

)
=

1

13

η2(τ )

η2(13τ )
=

1

13
(q−1 − 2 + · · · ).

Therefore, f�(τ )−g�(τ )−26η(13τ )2/η(τ )2 is a modular function on Γ0(13) that has
no poles and vanishes at the cusps. We conclude that f�(τ )−g�(τ )−26η(13τ )2/η(τ )2

is identically 0, and the proof of (b) is complete.
Similarly, for primes � ≥ 17, using Lemma 4.1 and the transformation formula

of η(τ ), we find that

h�(τ )
∣∣∣ (0 −1

� 0

)
= 2q−(�2−1)/24+(�−1)/2((1− q +O(q2))− (1− (�− 11)q +O(q2)))

= 2(�− 12)q−(�+1)(�−13)/24 + · · · .
Therefore, h�(τ ) has a pole of order (� + 1)(� − 13)/24 for � ≥ 17. From Lemma
4.1, it is clear that h�(τ ) has a zero at ∞. It follows that h�(τ )(η(τ )η(�τ ))

�−13 is a
holomorphic modular form of weight �− 13 on Γ0(�), and this completes the proof
of (c).

The congruences in (d) can be verified using Sturm’s criterion [39].
Next, observe from (1.19) that

f�(τ ) ≡ 1 (mod �2).

For � > 13,

h�(τ ) ≡ f�(τ )− g�(τ ) ≡ −�(q�; q�)∞

∞∑
j=1

p

(
�j − �2 − 1

24

)
qj (mod �2).
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It is known that (see [3, Corollary 5.15.1, p. 157] for a proof given by J.P. Serre)

(q�; q�)∞

∞∑
j=1

p

(
�j − �2 − 1

24

)
qj = F�(τ ) + �E�(τ ),

where F�(τ ) is a cusp form on SL(2,Z) of weight �− 1. This implies that

h�(τ ) ≡ −�F�(τ ) (mod �2).

The fact that F�(τ ) is non-zero follows from the result of S. Ahlgren and M. Boylan
[1, Theorem 1]. �

We now give another representation for CΦ17(q). Let

h1(τ ) = η8(17τ )
7∑

k=0

E−1
3k

(τ )E−2
2·3k(τ )E

−1
5·3k(τ ) = q4 + 3q5 + 8q6 + 5q7 + · · ·

and

h2(τ ) = η8(17τ )
7∑

k=0

E7·3k(τ )E−2
3k

(τ )E−1
3k+1(τ )E−1

5·3k(τ )E
−1
8·3k(τ ) = q4 + q5 + 8q6 + · · · ,

where Ea(τ ) is given by (3.27). Then

h17(τ )η
4(τ )η4(17τ ) = 595h1(τ )− 425h2(τ ).

This gives the identity

CΦ17(q) =
1

(q17; q17)∞
+ 17

∞∑
j=1

p(17j − 12)qj + 2 · 173q4 (q
17; q17)5∞
(q; q)6∞

+
1

q3(q; q)4∞(q17; q17)5∞
(595h1(τ )− 425h2(τ )) .(4.13)

Note the simplicity of (4.13) as compared to (3.28). Identities similar to (4.13)
exist for k = 19, 23, and other primes. These identities involve the function Ea(τ ).

5. Generating function of cφk(n) for k = 9 and 15

There are two cases to consider in this section, namely, k = 9 and 15.

5.1. Case k = 9.
Let

E9,1 =
1

240
+

∞∑
k=1

k3qk

1− qk
,

E9,2 =
1

240
+

∞∑
k=1

k3q3k

1− q3k
,

E9,3 =
1

240
+

∞∑
k=1

k3q9k

1− q9k
,

and

E9,4 =

∞∑
n=1

(n
3

)∑
d|n

d3qn.

These are Eisenstein series of M4(Γ0(9)).
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Theorem 5.1. We have

CΦ9(q) = 324q
(q3; q3)8∞
(q; q)9∞

+ 19683q4
(q9; q9)12∞

(q; q)9∞(q3; q3)4∞
− 240q

(q9; q9)3∞
(q3; q3)4∞

(5.1)

− 1458q2
(q9; q9)6∞

(q; q)3∞(q3; q3)4∞
+

(q; q)3∞
(q3; q3)4∞

=
1

(q; q)9∞

(
81E9,1 − 84E9,2 + 243E9,3 − 3E9,4 − 6q(q3; q3)8∞

)
.(5.2)

Proof. By Theorem 2.1, we find that A9(q) ∈ M4(Γ0(9)). Next, from [31, Theorem
1.34], we find that dimM4(Γ0(9)) = 5 and the basis is given by

B9,1 = η8(3τ ), B9,2 =
η12(9τ )

η4(3τ )
, B9,3 =

η9(τ )η3(9τ )

η4(3τ )
,

B9,4 =
η6(τ )η6(9τ )

η4(3τ )
, B9,5 =

η12(τ )

η4(3τ )
.

By comparing Fourier coefficients of A9(q) and B9,j , 1 ≤ j ≤ 5, we deduce that

A9(q) = 324B9,1 + 19683B9,2 − 240B9,3 − 1458B9,4 +B9,5.(5.3)

This proves (5.1).
We can replace the basis {B9,j |1 ≤ j ≤ 5} by {B9,1, E9,j |1 ≤ j ≤ 4}. Using

these modular forms as a basis for M4(Γ0(9)), we deduce (5.2). �

Theorem 5.2. For any integer n ≥ 0, we have

cφ9(9n+ 3) ≡ cφ9(9n+ 6) ≡ 0 (mod 9),(5.4)

cφ9(3n+ 1) ≡ 0 (mod 81),(5.5)

and

cφ9(3n+ 2) ≡ 0 (mod 729).(5.6)

Proof. From [40, Lemma 2.5], we find that

(q; q)3∞ = S(q3)− 3q(q9; q9)3∞,(5.7)

where

S(q) = (q; q)∞
(
Θ3(q)Θ3(q

3) + Θ2(q)Θ2(q
3)
)
.(5.8)

From (5.1), we deduce that

∞∑
n=0

cφ9(n)q
n ≡ 22 · 34q (q

3; q3)8∞
(q; q)9∞

− 240q
(q9; q9)3∞
(q3; q3)4∞

+
(q; q)3∞
(q3; q3)4∞

(mod 729)

≡ 22 · 34q(q3; q3)5∞ − 240q
(q9; q9)3∞
(q3; q3)4∞

+
S(q3)

(q3; q3)4∞
− 3q

(q9; q9)3∞
(q3; q3)4∞

(mod 729).

(5.9)

Comparing the coefficients of q3n+2 on both sides, we deduce that

cφ9(3n+ 2) ≡ 0 (mod 729).
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Extracting the terms of the form q3n+1 on both sides of (5.9), dividing by q, and
replacing q3 by q, we deduce that

∞∑
n=0

cφ9(3n+ 1)qn ≡ 22 · 34(q; q)5∞ − 240
(q3; q3)3∞
(q; q)4∞

− 3
(q3; q3)3∞
(q; q)4∞

(mod 729)

≡ 22 · 34(q; q)5∞ − 243
(q3; q3)3∞
(q; q)4∞

(mod 729)

≡ 22 · 34(q; q)5∞ − 35(q; q)5∞ (mod 729)

≡ 34(q; q)5∞ (mod 729),(5.10)

which implies (5.5).
Extracting the terms of the form q3n on both sides of (5.9) and replacing q3 by

q, we find that

∞∑
n=0

cφ9(3n)q
n ≡ S(q)

(q; q)4∞
(mod 729)

≡ 1

(q; q)3∞

(
Θ3(q)Θ3(q

3) + Θ2(q)Θ2(q
3)
)

(mod 729).(5.11)

From [40, Lemma 2.6], we deduce that

1

(q; q)3∞
=

(q9; q9)3∞
(q3; q3)12∞

(
S2(q3) + 3qS(q3)(q9; q9)3∞ + 9q2(q9; q9)6∞

)
.(5.12)

From [8, Corollaries (i) and (ii), p. 49], we find that

Θ3(q) = Θ3(q
9) + 2qf(q3, q15)(5.13)

and

Θ2(q) = Θ2(q
9) + 2q1/4f(q6, q12),(5.14)

where

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Substituting (5.12)–(5.14) into (5.11), we deduce that

∞∑
n=0

cφ9(3n)q
n ≡ (q9; q9)3∞

(q3; q3)12∞

(
S2(q3) + 3qS(q3)(q9; q9)3∞

)

×
(
Θ3(q

3)
(
Θ3(q

9) + 2qf(q3, q15)
)
+Θ2(q

3)
(
Θ2(q

9) + 2q1/4f(q6, q12)
))

(mod 9).

(5.15)
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Extracting the terms of the form q3n+1 on both sides of (5.15), dividing by q,
and replacing q3 by q, applying (5.8), we deduce that

∞∑
n=0

cφ9(9n+ 3)qn

≡ S2(q)
(q3; q3)3∞
(q; q)12∞

(
3
(q3; q3)3∞
(q; q)∞

+2
(
Θ3(q)f(q, q

5)+q−1/4Θ2(q)f(q
2, q4)

))
(mod 9)

≡ S2(q)
(q3; q3)3∞
(q; q)12∞

×
(
3
(q3; q3)3∞
(q; q)∞

+2
(q2; q2)7∞(q3; q3)∞(q12; q12)∞
(q; q)3∞(q4; q4)3∞(q6; q6)∞

+4
(q4; q4)3∞(q6; q6)2∞
(q2; q2)2∞(q12; q12)∞

)
(mod 9),

(5.16)

where the last congruence follows by converting

Θ3(q)f(q, q
5) + q−1/4Θ2(q)f(q

2, q4)

to infinite products.
From [41, (3.75), (3.38)], we find that

(q3; q3)∞
(q; q)3∞

=
(q4; q4)6∞(q6; q6)3∞
(q2; q2)9∞(q12; q12)2∞

+ 3q
(q4; q4)2∞(q6; q6)∞(q12; q12)2∞

(q2; q2)7∞
(5.17)

and

(q3; q3)3∞
(q; q)∞

=
(q4; q4)3∞(q6; q6)2∞
(q2; q2)2∞(q12; q12)∞

+ q
(q12; q12)3∞
(q4; q4)∞

.(5.18)

By (5.17), we find that

2
(q2; q2)7∞(q3; q3)∞(q12; q12)∞
(q; q)3∞(q4; q4)3∞(q6; q6)∞

(5.19)

= 2
(q2; q2)7∞(q12; q12)∞
(q4; q4)3∞(q6; q6)∞

( (q4; q4)6∞(q6; q6)3∞
(q2; q2)9∞(q12; q12)2∞

+ 3q
(q4; q4)2∞(q6; q6)∞(q12; q12)2∞

(q2; q2)7∞

)

= 2
(q4; q4)3∞(q6; q6)2∞
(q2; q2)2∞(q12; q12)∞

+ 6q
(q12; q12)3∞
(q4; q4)∞

,

(5.20)

and this implies that

2
(q2; q2)7∞(q3; q3)∞(q12; q12)∞
(q; q)3∞(q4; q4)3∞(q6; q6)∞

+ 4
(q4; q4)3∞(q6; q6)2∞
(q2; q2)2∞(q12; q12)∞

= 6
(q4; q4)3∞(q6; q6)2∞
(q2; q2)2∞(q12; q12)∞

+ 6q
(q12; q12)3∞
(q4; q4)∞

= 6
(q3; q3)3∞
(q; q)∞

,(5.21)

where we have used (5.18) in the last equality. Substituting (5.21) into (5.16), we
deduce that

cφ9(9n+ 3) ≡ 0 (mod 9).
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Extracting the terms of the form q3n+2 on both sides of (5.15), dividing by q2, and
replacing q3 by q, we deduce that

∞∑
n=0

cφ9(9n+ 6)qn

≡S(q)
(q3; q3)6∞
(q; q)12∞

(
6
(q2; q2)7∞(q3; q3)∞(q12; q12)∞
(q; q)3∞(q4; q4)3∞(q6; q6)∞

+3
(q4; q4)3∞(q6; q6)2∞
(q2; q2)2∞(q12; q12)∞

)
(mod 9)

≡0 (mod 9),

where we have used (5.20) to deduce the last congruence. Hence

cφ9(9n+ 6) ≡ 0 (mod 9).

�

Congruences (5.4) and (5.5) can also be established using congruences discovered
by Kolitsch. In [22], Kolitsch generalized Andrews’ congruence (3.29) and proved
that ∑

d|(k,n)
μ(d)cφ k

d
(
n

d
) ≡ 0 (mod k2),(5.22)

where μ(n) is the Möbius function (see for example [4, Section 2.2]). We now
prove a generalization of (5.4) and (5.5). For any non-negative integer k, we set
cφk(x) = 0 whenever x �∈ Z. We can then rewrite (5.22) as∑

d|k
μ(d)cφ k

d

(n
d

)
≡ 0 (mod k2).(5.23)

Theorem 5.3. Let p be a prime and let N be a positive integer which is not divisible
by p. For any integers α ≥ 1 and n ≥ 0, we have

(5.24) cφpαN (n) ≡ cφpα−1N (n/p) (mod p2α)

or, equivalently,

cφpαN (pn+ r) ≡ 0 (mod p2α), 1 ≤ r ≤ p− 1,(5.25)

and

cφpαN (pn) ≡ cφpα−1N (n) (mod p2α).(5.26)

Proof. Let Ω(N) be the number of prime divisors of N (counting multiplicities).
We proceed by induction on Ω(N). If Ω(N) = 0, then N = 1. Setting k = pα in
(5.23), we deduce that

cφpα(n) ≡ cφpα−1(n/p) (mod p2α).(5.27)

Thus, (5.24) is true if Ω(N) = 0. Assume that (5.24) is true if Ω(N) < h, where h
is a positive integer. When Ω(N) = h, we set k = pαN in (5.23). Since p does not
divide N , any positive divisor of pαN has the form pjd where 0 ≤ j ≤ α and d|N .
In particular, if j ≥ 2, then μ(pjd′) = 0. Hence by (5.23), we obtain

(5.28)
∑
d|N

(
μ(d)cφ pαN

d

(n
d

)
+ μ(pd)cφ pα−1N

d

( n

pd

))
≡ 0 (mod p2α).
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According to d = 1 or d > 1, we separate the summands on the left hand side of
(5.28) and deduce that

cφpαN (n)− cφpα−1N

(n
p

)
(5.29)

+
∑

d|N,d>1

μ(d)
(
cφ pαN

d

(n
d

)
− cφ pα−1N

d

( n

pd

))
≡ 0 (mod p2α).

Note that in the summand, since d > 1, we have Ω(Nd ) < h, and hence by assump-
tion

(5.30) cφ pαN
d

(n
d

)
− cφ pα−1N

d

( n

pd

)
≡ 0 (mod p2α).

From (5.30) and (5.29), we deduce that

cφpαN (n)− cφpα−1N

(n
p

)
≡ 0 (mod p2α).

Hence (5.24) is true when Ω(N) = h. This completes the proof of (5.24).
Replacing n in (5.24) by pn+ r, where 0 ≤ r ≤ p− 1, and observing that

cφpα−1N

(
pn+ r

p

)
= 0, 1 ≤ r ≤ p− 1,

we deduce (5.25) and (5.26). �
Let (p, α,N) = (3, 2, 1) in Theorem 5.3. By (5.25), we deduce that

cφ9(3n+ 1) ≡ cφ9(3n+ 2) ≡ 0 (mod 81),

and this gives another proof of (5.5). Similarly, by (5.26), we deduce that

cφ9(3n) ≡ cφ3(n) (mod 81).(5.31)

By (3.29), we find that

cφ3(3n+ 1) ≡ cφ3(3n+ 2) ≡ 0 (mod 9).

Substituting these congruences into (5.31), we complete the proof of (5.4).

5.2. Case k = 15.
Let

f15(τ ) =
η2(τ )η2(15τ )

η(3τ )η(5τ )
,

h15(τ ) = η4(τ )η4(5τ )− 9η4(3τ )η4(15τ ),

g15,1(τ ) = −1

8
(E2(τ ) + 3E2(3τ )− 5E2(5τ )− 15E2(15τ )) ,

g15,2(τ ) = − 1

12
(E2(τ )− 3E2(3τ ) + 5E2(5τ )− 15E2(15τ )) ,

g15,3(τ ) = η(τ )η(3τ )η(5τ )η(15τ ),

and

g15,4(τ ) =
1

8
(E2(τ )− 3E2(3τ )− 5E2(5τ ) + 15E2(15τ )) ,

where

E2(τ ) = 1− 24
∞∑
k=1

kqk

1− qk
.
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Using dimension formula [31, Theorem 1.34], we find that

dimM7

(
Γ0(15),

(−15

·
))

= 14.

The modular forms

B15,1 = f15g
3
15,1, B15,2 = f15g

2
15,1g15,2,

B15,3 = f15g15,1g
2
15,2, B15,4 = f15g

3
15,2,

B15,5 = f15g
2
15,1g15,3, B15,6 = f15g

2
15,1g15,4,

B15,7 = f15g15,1g15,2g15,3, B15,8 = f15g15,1g15,2g15,4,

B15,9 = f15g
2
15,2g15,3, B15,10 = f15g

2
15,2g15,4,

B15,11 = f15g15,1h15, B15,12 = f15g15,2h15,

B15,13 =
η14(3τ )η14(5τ )

η7(τ )η7(15τ )
, and B15,14 =

η17(τ )η2(5τ )

η4(3τ )η(15τ )

form a basis for M7

(
Γ0(15),

(−15
·
))

.

Using the fact that A15(q) ∈ M7

(
Γ0(15),

(−15
·
))
, we deduce the following.

Theorem 5.4. For |q| < 1,

CΦ15(q) =
1

(q; q)15∞

(18125225
1156

B15,1 −
845079

34
B15,2 −

87564447

1156
B15,3

+
2491641

34
B15,4 +

147166525

1156
B15,5 +

341957

68
B15,6

− 483081

17
B15,7 −

28623

4
B15,8 −

9784683

68
B15,9

− 1168839

34
B15,10 +

7263781

68
B15,11 −

97629

4
B15,12

+ 3375B15,13 − 3374B15,14

)
.

6. Generating function of cφk(n) for even integer 2 < k < 16

In this section, we derive alternative expressions for CΦk(n) when k > 2 is even.

6.1. Case k = 4.

Theorem 6.1. We have

CΦ4(q) =
1

(q; q)4∞

(
Θ3

3(q
2) + 3Θ3(q

2)Θ2
2(q

2)
)

(6.1)

=
Θ4

3(q)

(q; q)4∞Θ3(q2)
+

Θ2
3(−q)Θ2

2(q
2)

(q; q)4∞Θ3(q2)
.(6.2)

Proof. Let k = 4 in Theorem 2.1. We deduce that A4(q)Θ3(q) ∈ M2

(
Γ0(8),

(
2
·
))
.

From [31, Theorem 1.34], we deduce that

dimM2

(
Γ0(8),

(2
·
))

= 3.

It can be verified that

Θ3(q)Θ
3
3(q

2), Θ3(q)
3Θ3(q

2), and Θ3(q
2)Θ2

2(q
2)Θ3(q)
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form a basis of M2

(
Γ0(8),

(
2
·
))
. Comparing the Fourier coefficients of A4(q)Θ3(q)

and the given basis of M2

(
Γ0(8),

(
2
·
))
, we deduce that

A4(q)Θ3(q) =
(
Θ3

3(q
2) + 3Θ3(q

2)Θ2
2(q

2)
)
Θ3(q),

which proves (6.1).
Theorem 2.1 also implies that Θ3(q

2)A4(q) ∈ M2

(
Γ0(16)

)
. From [31, Theorem

1.34], we find that dimM2

(
Γ0(16)

)
= 5. Identity (6.2) then follows from the fact

that

Θ4
3(q), Θ4

3(q
2), Θ4

3(q
4), Θ2

3(−q)Θ2
3(−q2), and Θ2

3(−q)Θ2
2(q

2)

form a basis of M2

(
Γ0(16)

)
. �

Remark 6.1. The representation (6.2) was first deduced by W. Zhang and C. Wang
[43] from (6.1), where they used it to give an elementary proof of the congruence

cφ4(7n+ 5) ≡ 0 (mod 7).

6.2. Case k = 6.

Theorem 6.2. We have

CΦ6(q) =
4

9

(q; q)5∞(q4; q4)2∞
(q2; q2)5∞(q3; q3)3∞

− 1

3

(q2; q2)4∞(q4; q4)2∞
(q; q)4∞(q6; q6)3∞

+
8

9

(q4; q4)11∞
(q; q)4∞(q2; q2)5∞(q12; q12)3∞

+ 36q
(q4; q4)2∞(q3; q3)9∞
(q; q)7∞(q2; q2)5∞

+ 27q2
(q4; q4)2∞(q6; q6)9∞
(q; q)4∞(q2; q2)8∞

+ 72q4
(q12; q12)9∞

(q; q)4∞(q2; q2)5∞(q4; q4)∞
.(6.3)

Proof. Let k = 6 in Theorem 2.1. We deduce that Θ3(q)A6(q) ∈ M3

(
Γ0(12),

(−12
·
))
.

From [31, Theorem 1.34], we deduce that

dimM3

(
Γ0(12),

(−12

·
))

= 7.

Let

B6,1 =
η9(τ )

η3(3τ )
, B6,2 =

η9(2τ )

η3(6τ )
, B6,3 =

η9(4τ )

η3(12τ )
, B6,4 =

η9(3τ )

η3(τ )
,

B6,5 =
η9(6τ )

η3(2τ )
, B6,6 =

η9(12τ )

η3(4τ )
, and B6,7 = η3(2τ )η3(6τ ).

The set {B6,j |1 ≤ j ≤ 7} forms a basis of M3

(
Γ0(12),

(−12
·
))
, and by comparing

the Fourier coefficients of Θ3(q)A6(q) and modular forms in {B6,j |1 ≤ j ≤ 7}, we
deduce that

Θ3(q)A6(z) =
4

9
B6,1 −

1

3
B6,2 +

8

9
B6,3 + 36B6,4 + 27B6,5 + 72B6,6.(6.4)

This proves (6.3). �

Congruences for cφ6(n) have drawn much attention in recent years. For example,
Baruah and Sarmah [7] established 3-dissections of CΦ6(q) and proved that

cφ6(3n+ 1) ≡ 0 (mod 9)(6.5)
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and

cφ6(3n+ 2) ≡ 0 (mod 9).(6.6)

We remark here that the congruences above follow directly from (5.25) with (p, α,N)
= (3, 1, 2). Moreover, setting (p, α,N) = (2, 1, 3) in (5.25), we deduce that

cφ6(2n+ 1) ≡ 0 (mod 4).(6.7)

Congruence (6.7) appeared in [7] as Corollary 3.1.
For more congruences satisfied by cφ6(n), see a recent paper of C. Gu, L. Wang,

and E.X.W. Xia [18] and their list of references.

6.3. Case k = 8.

Theorem 6.3. We have

CΦ8(q) =
1

(q; q)8∞

(
Θ7

3(q
4) + 28Θ6

3(q
4)Θ2(q

4) + 105Θ5
3(q

4)Θ2
2(q

4)

(6.8)

+ 112Θ4
3(q

4)Θ3
2(q

4) + 147Θ3
3(q

4)Θ4
2(q

4) + 84Θ2
3(q

4)Θ5
2(q

4) + 35Θ3(q
4)Θ6

2(q
4)
)
.

Proof. Let k = 8 in Theorem 2.1. We deduce that Θ3(q)A8(q) ∈ M4(Γ0(16)). From
[31, Theorem 1.34], we find that

dimM4(Γ0(16)) = 9,

and one can verify that

B8,1 = Θ3(q)Θ
7
3(q

4), B8,2 = Θ3(q)Θ
6
3(q

4)Θ2(q
4),

B8,3 = Θ3(q)Θ
5
3(q

4)Θ2
2(q

4), B8,4 = Θ3(q)Θ
4
3(q

4)Θ3
2(q

4),

B8,5 = Θ3(q)Θ
3
3(q

4)Θ4
2(q

4), B8,6 = Θ3(q)Θ
2
3(q

4)Θ5
2(q

4),

B8,7 = Θ3(q)Θ
7
2(q

4), B8,8 = Θ8
2(q

4),

and B8,9 = Θ3(q)Θ3(q
4)Θ6

2(q
4)

form a basis for M4(Γ0(16)). By comparing the Fourier coefficients of the basis and
those of Θ3(q)A8(q), we find that

Θ3(q)A8(q) =B8,1 + 28B8,2 + 105B8,3 + 112B8,4 + 147B8,5 + 84B8,6 + 35B8,9.

(6.9)

This completes the proof of (6.8). �
By (5.27), we find that

cφ8(n) ≡ cφ4(n/2) (mod 64).(6.10)

In [6], Baruah and Sarmah proved that

cφ4(2n+ 1) ≡ 0 (mod 42),(6.11)

cφ4(4n+ 2) ≡ 0 (mod 4),(6.12)

and

cφ4(4n+ 3) ≡ 0 (mod 44).(6.13)

Combining (6.11)–(6.13) with (6.10), we obtain the following congruences for
cφ8(n).
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Theorem 6.4. For any integer n ≥ 0,

cφ8(2n+ 1) ≡ 0 (mod 64),(6.14)

cφ8(4n+ 2) ≡ 0 (mod 16),(6.15)

cφ8(8n+ 4) ≡ 0 (mod 4),(6.16)

and

cφ8(8n+ 6) ≡ 0 (mod 64).(6.17)

6.4. Case k = 10.
By Theorem 2.1, we have Θ3(q)A10(q) ∈ M5

(
Γ0(20), (

−20
· )

)
. From [31, Theorem

1.34], we deduce that

dimM5

(
Γ0(20), (

−20

· )
)
= 14.

Let

B10,1 = Θ9
3(q)Θ3(q

5), B10,2 = Θ3(q)Θ
3
2(q

1/2)Θ3
2(q)Θ

3
2(q

5/2),

B10,3=Θ3(q)Θ
3
3(q

5)Θ2
2(q

1/2)Θ2
2(q)Θ

2
2(q

5/2), B10,4=Θ3(q)Θ3(q
5)Θ2

2(q
1/2)Θ6

2(q
5/2),

B10,5 = Θ3(q)Θ3(q
5)Θ8

2(q), B10,6 = Θ7
3(q)Θ

3
3(q

5),

B10,7 = Θ6
3(q

5)Θ3
2(q

1/2)Θ2(q
5/2), B10,8 = Θ3(q)Θ

5
3(q

5)Θ4
2(q),

B10,9 = Θ3
3(q

5)Θ2(q
1/2)Θ5

2(q)Θ2(q
5/2), B10,10 = Θ6

3(q)Θ
3
2(q)Θ2(q

5),

B10,11 = Θ3(q)Θ3(q
5)Θ8

2(q
1/2), B10,12 = Θ3(q)Θ3(q

5)Θ6
2(q)Θ

2
2(q

5),

B10,13 = Θ5
3(q)Θ

5
3(q

5), and B10,14 = Θ3
3(q)Θ

3
3(q

5)Θ3
2(q

1/2)Θ2(q
5/2).

The set {B10,j |1 ≤ j ≤ 14} forms a basis of M5

(
Γ0(20), (

−20
· )

)
, and we deduce the

following.

Theorem 6.5. We have

CΦ10(q) =
1

Θ3(q)(q; q)10∞

(13
8
B10,1 +

435

32
B10,2 +

9275

128
B10,3 +

175

32
B10,4

− 31

8
B10,5 −

15

4
B10,6 +

225

4
B10,7 −

775

32
B10,8 +

221

32
B10,10 −

857

512
B10,11

+
155

8
B10,12 +

25

8
B10,13

)
.

(6.18)

Let

f10 =
η(τ )η(2τ )η(10τ )η(20τ )

η(4τ )η(5τ )
,

f10,1 = Θ3(q)Θ3(q
5)

η10(τ )

η2(5τ )
,

and

f10,2 = Θ6
3(q

5)
η5(20τ )

η(4τ )
.
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Let

g10,1 =
1

6
(E2(τ )− 4E2(2τ ) + 4E2(4τ ) + 5E2(5τ )− 20E2(10τ ) + 20E2(20τ )) ,

g10,2 = Θ2
3(q)Θ

2
3(q

5),

g10,3 =
1

4
(−E2(2τ ) + 5E2(10τ )) ,

g10,4 = − 1

24
(E2(τ ) + E2(2τ ) + 4E2(4τ )− 5E2(5τ )− 5E2(10τ )− 20E2(20τ )) ,

g10,5 = η2(2τ )η2(10τ ),

and

g10,6 =
5

4
Θ4

3(q
5)− 1

4
Θ4

3(q).

Let

B∗
10,1 = f10g

2
10,1, B∗

10,2 = f10g10,1g10,2,

B∗
10,3 = f10g

2
10,2, B∗

10,4 = f10g10,1g10,3,

B∗
10,5 = f10g10,1g10,4, B∗

10,6 = f10g10,1g10,5,

B∗
10,7 = f10g10,1g10,6, B∗

10,8 = f10g10,2g10,3,

B∗
10,9 = f10g10,2g10,4, B∗

10,10 = f10g10,2g10,5,

B∗
10,11 = f10g10,2g10,6, B∗

10,12 = f10g
2
10,3,

B∗
10,13 = f10,1, and B∗

10,14 = f10,2.

We can replace the basis {B10,j |1 ≤ j ≤ 14} by the basis {B∗
10,j |1 ≤ j ≤ 14} and

deduce that

CΦ10(q) =
1

Θ3(q)(q; q)10∞

(5075
2

B∗
10,1 +

4525

4
B∗

10,2 +
29375

4
B∗

10,3 +
4525

2
B∗

10,4

− 4525B∗
10,5 − 6525B∗

10,6 +
6275

4
B∗

10,7 − 4950B∗
10,8 + 2300B∗

10,9

− 22375B∗
10,10 +

10325

4
B∗

10,11 − 10150B∗
10,12 +B∗

10,13 + 200000B∗
10,14

)
.(6.19)

Identity (6.19) leads immediately to

CΦ10(q) ≡
Θ3(q

5)

(q5; q5)2∞
(mod 52).(6.20)

Remark 6.2. Congruence (6.20) is the motivation behind the discovery of Theorem
5.3. Theorem 5.3, when interpreted in terms of generating functions, yields the
congruence

(6.21) CΦp�(q) ≡ CΦ�(q
p) (mod p2)

for any distinct primes p and �. Congruence (6.20) is a special case of (6.21) once
we identify the right hand side of (6.20) with CΦ2(q

5) (see (3.1)).

Theorem 6.6. For any integer n ≥ 0, we have

cφ10(2n+ 1) ≡ 0 (mod 4),(6.22)

cφ10(5n+ r) ≡ 0 (mod 52), 1 ≤ r ≤ 5,(6.23)
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and

cφ10(25n+ 15) ≡ 0 (mod 5).(6.24)

Proof. Congruences (6.22) and (6.23) follow from Theorem 5.3 by setting (p, α,N)
= (2, 1, 5) and (5, 1, 2), respectively. Congruence (6.23) also follows from (6.20).
Furthermore, from (6.20), we deduce that

∞∑
n=0

cφ10(5n)q
n ≡ Θ3(q)

(q; q)2∞
≡ Θ3(q)(q; q)

3
∞

(q; q)5∞
(mod 5)(6.25)

≡ 1

(q5; q5)∞

⎛
⎝ ∞∑

i=−∞

∞∑
j=0

(−1)j(2j + 1)qi
2+j(j+1)/2

⎞
⎠ (mod 5).

Note that

n = i2 +
j(j + 1)

2
if and only if 8n+ 1 = 8i2 + (2j + 1)2.

Since

(
−8

5

)
= −1, we find that 8n+ 1 ≡ 0 (mod 5) or, equivalently, that

n ≡ 3 (mod 5) if and only if i ≡ 2j + 1 ≡ 0 (mod 5).

Hence, by (6.25), we deduce that

cφ10(5(5n+ 3)) ≡ 0 (mod 5).

�

Remark 6.3. One can prove (6.24) by first observing that (6.20) implies that

cφ10(5n) ≡ cφ2(n) (mod 52).

Using (3.17), we deduce (6.24).

6.5. Case k = 12.
By Theorem 2.1, we have Θ3(q)A12(q) ∈ M6

(
Γ0(24), (

24
· )

)
. By [31, Theorem

1.34], we deduce that

dimM6

(
Γ0(24), (

24

· )
)
= 22.

Let

B12,1 = Θ3
3(q)Θ

9
3(q

6), B12,2 = Θ11
3 (q)Θ3(q

6),

B12,3 = Θ3(q
2)Θ3(q

3)Θ10
2 (q2), B12,4 = Θ2

3(q)Θ3(q
2)Θ3(q

3)Θ4
2(q)Θ

4
2(q

3),

B12,5 = Θ2
3(q)Θ3(q

2)Θ5
3(q

3)Θ2
2(q)Θ

2
2(q

3), B12,6 = Θ2
3(q)Θ3(q

2)Θ9
3(q

3),

B12,7 = Θ3(q)Θ
3
3(q

6)Θ4
2(q

2)Θ4
2(q

6), B12,8 = Θ3(q)Θ
5
3(q

2)Θ3
2(q

2)Θ3
2(q

6),

B12,9 = Θ3(q)Θ3(q
2)Θ5

2(q
2)Θ5

2(q
6), B12,10 = Θ3(q)Θ

5
3(q

2)Θ3
2(q)Θ

3
2(q

3),

B12,11 = Θ3(q)Θ3(q
2)Θ5

2(q)Θ
5
2(q

3), B12,12 = Θ3(q)Θ
7
3(q

6)Θ2
2(q)Θ

2
2(q

3),

B12,13=Θ3(q)Θ
3
3(q

6)Θ4
2(q)Θ

4
2(q

3), B12,14=Θ3(q)Θ
5
3(q

2)Θ2(q)Θ
2
2(q

2)Θ2(q
3)Θ2

2(q
6),

B12,15 = Θ3(q)Θ3(q
2)Θ2(q)Θ

8
2(q

2)Θ2(q
3), B12,16 = Θ3(q)Θ

3
3(q

2)Θ2(q)Θ
6
2(q

2)Θ2(q
3),

B12,17 = Θ3(q)Θ
5
3(q

2)Θ2(q)Θ
4
2(q

2)Θ2(q
3), B12,18 = Θ3(q)Θ

9
3(q

2)Θ2(q)Θ2(q
3),

B12,19 = Θ3(q)Θ
2
3(q

2)Θ3(q
6)Θ8

2(q
2), B12,20 = Θ3(q)Θ

6
3(q

2)Θ3(q
6)Θ4

2(q
2),

B12,21 = Θ3(q)Θ
8
3(q

2)Θ3(q
6)Θ2

2(q
2), and B12,22 = Θ3(q)Θ

10
3 (q2)Θ3(q

6).
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The set {B12,j |1 ≤ j ≤ 22} forms a basis of M6(Γ0(24), (
24
· )). Using the above

basis, we deduce the following identity.

Theorem 6.7. We have

CΦ12(q) =
1

Θ3(q)(q; q)12∞

(
− 36207

160
B12,1 +

923091

4000
B12,4 +

35829

100
B12,5 +

891

4
B12,6

− 1485

8
B12,7 −

143247

1000
B12,8 −

891

4
B12,9 −

8109

160
B12,10

− 582717

4000
B12,11 +

227691

200
B12,12 +

714249

8000
B12,13 +

8109

80
B12,14

+
33

8
B12,15 +

1179561

4000
B12,16 −

16503

400
B12,17 −

99

8
B12,18 +

10559

200
B12,19

− 128807

100
B12,20 +

25647

160
B12,21 +

727

160
B12,22

)
.(6.26)

Next, we give some congruences satisfied by cφ12(n).

Theorem 6.8. We have

cφ12(2n+ 1) ≡ 0 (mod 16),(6.27)

cφ12(3n+ 1) ≡ 0 (mod 9),(6.28)

and

cφ12(3n+ 2) ≡ 0 (mod 9).(6.29)

Proof. This follows directly from Theorem 5.3 by setting (p, α,N) = (2, 2, 3) and
(3, 1, 4). �

6.6. Case k = 14.
By Theorem 2.1, we know that Θ3(q)A14(q) ∈ M7

(
Γ0(28), (

−28
· )

)
. By [31, The-

orem 1.34], we deduce that

dimM7

(
Γ0(28), (

−28

· )
)
= 27.
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Let

B14,1 = Θ13
3 (q)Θ3(q

7), B14,2 = Θ7
3(q)Θ

3
3(q

7)Θ2
2(q

1/2)Θ2
2(q

7/2),

B14,3 = Θ5
3(q)Θ3(q

7)Θ4
2(q

1/2)Θ4
2(q

7/2), B14,4 = Θ3(q)Θ
5
3(q

7)Θ4
2(q

1/2)Θ4
2(q

7/2),

B14,5 = Θ5
3(q)Θ

3
3(q

7)Θ2
2(q)Θ

4
2(q

7/2), B14,6 = Θ3
3(q)Θ

7
3(q

7)Θ2
2(q

1/2)Θ2
2(q

7/2),

B14,7 = Θ11
3 (q)Θ3

3(q
7), B14,8 = Θ12

3 (q)Θ2(q
1/2)Θ2(q

7/2),

B14,9 = Θ8
3(q)Θ

3
2(q

1/2)Θ3
2(q

7/2), B14,10 = Θ4
3(q)Θ

5
2(q

1/2)Θ5
2(q

7/2),

B14,11 = Θ3(q)Θ3(q
5)Θ8

2(q
1/2), B14,12 = Θ12

3 (q)Θ2(q)Θ2(q
7),

B14,13 = Θ8
3(q)Θ

3
2(q)Θ

3
2(q

7), B14,14 = Θ4
3(q)Θ

5
2(q)Θ

5
2(q

7),

B14,15 = Θ7
2(q)Θ

7
2(q

7), B14,16 = Θ8
3(q)Θ3(q

7)Θ2
2(q

1/2)Θ3
2(q),

B14,17 = Θ6
3(q)Θ

3
3(q

7)Θ2
2(q

1/2)Θ3
2(q), B14,18 = Θ8

3(q)Θ2(q)Θ
4
2(q

2)Θ2(q
7),

B14,19 = Θ2
3(q)Θ

7
3(q

7)Θ2
2(q

1/2)Θ3
2(q), B14,20 = Θ9

3(q
7)Θ2

2(q
1/2)Θ3

2(q),

B14,21 = Θ10
3 (q)Θ3(q

7)Θ2(q)Θ
2
2(q

7/2), B14,22 = Θ4
3(q)Θ3(q

7)Θ3
2(q)Θ

6
2(q

7/2),

B14,23 = Θ2
3(q)Θ

3
3(q

7)Θ3
2(q)Θ

6
2(q

7/2), B14,24 = Θ5
3(q

7)Θ3
2(q)Θ

6
2(q

7/2),

B14,25 = Θ11
3 (q)Θ2(q

1/2)Θ2(q)Θ
3
2(q

7/2), B14,26=Θ2
3(q)Θ

4
3(q

7)Θ2(q
1/2)Θ2

2(q)Θ
5
2(q

7/2),

and

B14,27 = Θ4
3(q)Θ

2
3(q

7)Θ2(q
1/2)Θ2

2(q)Θ
5
2(q

7/2).

The set {B14,j |1 ≤ j ≤ 27} forms a basis of M7

(
Γ0(28), (

−28
· )

)
. This basis allows

us to derive the following identity.

Theorem 6.9. We have

CΦ14(q) =
1

Θ3(q)(q; q)14∞

(
− 3

4
B14,1 −

332339

1024
B14,2 +

255927

4096
B14,3 −

197519

4096
B14,4

+
17325

64
B14,5 +

1407329

2048
B14,6 +

7

4
B14,7 +

3

4
B14,8 −

13765

256
B14,9

− 52045

1024
B14,10 +

3861

512
B14,12 +

429

16
B14,13 +

6623

64
B14,16 −

79799

512
B14,17

+
29407

512
B14,19 −

3989

64
B14,21 +

19803

128
B14,22 −

16807

256
B14,23

+
50421

256
B14,26 −

6895

256
B14,27

)
.(6.30)

By setting (p, α,N) = (7, 1, 2) in (5.24), we get

cφ14(n) ≡ cφ2(n/7) (mod 49).(6.31)

By (5.25), we deduce that

cφ14(7n+ r) ≡ 0 (mod 49), 1 ≤ r ≤ 6.(6.32)

Moreover, setting (p, α,N) = (2, 1, 7) in (5.25), we deduce that

cφ14(2n+ 1) ≡ 0 (mod 4).(6.33)
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6.7. Case k = 16.
By Theorem 2.1, we know that Θ3(q)A16(q) ∈ M8

(
Γ0(32), (

−2
· )

)
. By [31, Theo-

rem 1.34], we deduce that

dimM8

(
Γ0(32), (

−2

· )
)
= 32.

Let

B16,j = Θ3(q)Θ
j−1
3 (q2)Θ16−j

2 (q8), 1 ≤ j ≤ 15,

B16,j = Θ3
3(q)Θ

j−16
3 (q2)Θ29−j

2 (q8), 16 ≤ j ≤ 29,

B16,30 = Θ5
3(q)Θ

2
3(q

2)Θ9
3(q

8),

B16,31 = Θ9
3(q)Θ3(q

4)Θ6
3(q

8),

and

B16,32 = Θ3
3(q)Θ3(q

4)Θ3(q
8)Θ11

2 (q8).

The set {B16,j |1 ≤ j ≤ 32} forms a basis of M8

(
Γ0(32), (

−2
· )

)
. Hence, we deduce

the following identity.

Theorem 6.10. We have

CΦ16(q) =
1

Θ3(q)(q; q)15∞

(
− 16384B16,1 + 122880B16,2 − 431024B16,3

+ 10384B16,4 + 3956568B16,5 − 12663584B16,6

+ 21477101B16,7 − 23125005B16,8 + 15986724B16,9

− 6153988B16,10 + 108966B16,11 + 1259002B16,12 − 678464B16,13

+ 162042B16,14 − 15218B16,15 + 61440B16,18 − 337920B16,19

+ 844918B16,20 − 870438B16,21 − 327528B16,22 + 122540544B16,23

− 2366700B16,24 + 1511404B16,25 − 484664B16,26 + 34128B16,27

+ 20722B16,28 − 58B16,29 + 59B16,30

)
.(6.34)

By Theorem 5.3, we obtain

cφ16(2n+ 1) ≡ 0 (mod 256)(6.35)

and

cφ16(2n) ≡ cφ8(n) (mod 256).(6.36)

7. Möbius inversion and Kolitsch’s congruence (5.22)

In this section, we will use a different notation for k-colored generalized Frobenius
symbol λ. The color of a part will be placed on the left hand side of the part. In
other words, our symbol λ is now written as

λ =

(
c1(z1) c2(z2) · · · cd(zd)
c′1(z

′
1) c′2(z

′
2) · · · c′d(z

′
d)

)
,(7.1)

where cj and c′j denote colors from the set {1, 2, . . . , k} and zj , z
′
j denote the parts.

For example, the 2-colored generalized Frobenius symbol(
22 21
12 01

)
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is now written as (
2(2) 1(2)
2(1) 1(0)

)
.

Let σk be the k-cycle (1 2 · · · k). Let the symbol(
· · · · · ·
· · · · · ·

)sort

denote sorting the resulting rows to be strictly decreasing according to (1.1). We
say that λ has order � with respect to σk if � is the smallest positive integer for
which the equality of the following symbols holds:(
c1(z1) c2(z2) · · · cd(zd)
c′1(z

′
1) c′2(z

′
2) · · · c′d(z

′
d)

)
=

(
σ�
k(c1)(z1) σ�

k(c2)(z2) · · · σ�
k(cd)(zd)

σ�
k(c

′
1)(z

′
1) σ�

k(c
′
2)(z

′
2) · · · σ�

k(c
′
d)(z

′
d)

)sort

.

For example, with respect to the 4-cycle σ4 = (1 2 3 4), the 4-colored general-
ized Frobenius symbol (

3(1) 1(1)
4(2) 2(2)

)
has order 2, while (

2(1) 1(1)
4(2) 2(2)

)
has order 4.

Let Ψk,�(n) be the number of k-colored generalized Frobenius symbols of n that

have order �. When � = k, we follow Kolitsch and denote Ψk,k(n) by cφk(n). For

example, we have cφ2(2) = 8 since there are eight 2-colored generalized Frobenius
symbols of 2 that have order 2:(

1(1)
1(0)

)
,

(
2(1)
1(0)

)
,

(
1(1)
2(0)

)
,

(
2(1)
2(0)

)
,(

1(0)
1(1)

)
,

(
1(0)
2(1)

)
,

(
2(0)
1(1)

)
,

(
2(0)
2(1)

)
.

The function cφk(n) is implicitly mentioned by Kolitsch in [22], and the following
identity was later given by him in [23, p. 220].

Theorem 7.1. Let k and n be positive integers. Then

(7.2) cφk(n) =
∑

�|(k,n)
μ(�)cφ k

�

(n
�

)
.

With (7.2), (5.22) can be written as

(7.3) cφk(n) ≡ 0 (mod k2).

Congruence (7.3) provides an elegant analogue of Andrews’ original congruence
(3.29), which states that

cφp(n) ≡ 0 (mod p2)

for primes p not dividing n. Using the definition of cφk(n), we can rewrite (1.13),
(1.14), and (1.15) [26, Theorem 3] as

cφ5(n) = 5p(5n− 1), cφ7(n) = 7p(7n− 2) and cφ11(n) = 11p(11n− 5),

where n is any positive integer.

Licensed to National University of Singapore. Prepared on Wed Jan 15 01:45:52 EST 2020 for download from IP 137.132.123.69.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2198 HENG HUAT CHAN, LIUQUAN WANG, AND YIFAN YANG

In this section, we prove the following.

Theorem 7.2. Let k and n be positive integers. Then

(7.4) cφk(n) =
∑
�|k

cφ�

(
n

(k/�)

)
=

∑
�|k

cφk/�

(n
�

)
.

We then establish (7.2) using Theorem 7.2. We will also take this opportunity to
present Kolitsch’s proof of (7.3) (see Theorem 7.3). Our presentation of Kolitsch’s
proof contains more details than that given in [25]. We feel that it is important
for us (and perhaps the reader) to fully understand Koltisch’s proof as it is an
important congruence and it is essential in our proof of Theorem 5.3.

We now begin our proof of Theorem 7.2.

Proof of Theorem 7.2. Every k-colored generalized Frobenius symbol has an order
� with respect to σk. We first show that the order of a k-colored generalized
Frobenius symbol λ must divide k. Suppose not. Let m = ds be the order of λ
with d = (m, k) and s > 1. Observe that σd

k splits into a product of d disjoint

cycles Cj , 1 ≤ j ≤ d, of length k/d. Since (s, k/d) = 1,
(
σd
k

)s
is again a product of

d disjoint cycles C ′
j , 1 ≤ j ≤ d, and the integers in Cs

j are the same as those in Cj .

Hence, if σm
k leaves λ invariant, it would have been left invariant under σd

k, but this
contradicts the minimality of m. Therefore, the order of λ must be a divisor of k,
and we deduce that

cφk(n) =
∑
�|k

Ψk,�(n).

To prove (7.4), it suffices to show that

(7.5) Ψk,�(n) = cφ�

(
n

(k/�)

)
.

For �|k, we know that σ�
k splits into � disjoint cycles Cj , j = 1, 2, . . . , � of length k/�.

Now, if λ is a k-colored generalized Frobenius symbol of order �, then it means that
if an entry cν(z), with cν appearing in Cj , appears in λ, then cμ(z) must appear in
λ for every color cμ that appears in the cycle Cj . We now replace all the colors in
this cycle where cν belongs by the color represented by the smallest integer, which
can be chosen to be less than �. In this way, we will obtain an �-colored generalized
Frobenius symbol where each entry cj(z) appears k/� times. In other words, from

n = d+

d∑
i=1

ci(zi) +

d∑
i=1

c′i(z
′
i),

we obtain an �-colored generalized Frobenius symbol giving rise to the partition

n = d+
k

�

⎛
⎝d/(k/�)∑

i=1

cji(zi) +

d/(k/�)∑
i=1

c′ji(z
′
i)

⎞
⎠ ,

which implies that

n

(k/�)
=

d

(k/�)
+

d/(k/�)∑
i=1

cji(zi) +

d/(k/�)∑
i=1

c′ji(z
′
i).
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We have thus constructed from λ the �-colored generalized Frobenius symbol of
n/(k/�), which we denote as λ∗. We claim that λ∗ has order � with respect to

γ = (1 2 · · · �).

If λ∗ is of order m less than �, then this means that

γm =

m∏
j=1

C ′
j ,

where each C ′
j is an �/m cycle, leaves λ∗ invariant. Since m < �, at least two of the

integers u and v between 1 and � are in some cycle C ′
j . When we reverse the above

process of obtaining an �-colored generalized Frobenius symbol of n/(k/�) from a
k-colored generalized Frobenius symbol of n of order �, we would obtain a symbol
λ which is fixed by a cycle that includes both u and v. But u and v are in disjoint
cycles in the decomposition of σ�

k, and this contradicts the fact that λ has order �.
Hence, λ∗ cannot have order strictly less than � and its order must be �.

Conversely, given an �-colored generalized Frobenius symbol of n/(k/�) of order �
with respect to γ, we reverse the process to obtain a k-colored generalized Frobenius
symbol of n of order �. Hence, we have (7.5), and the proof of Theorem 7.2 is
complete. �

Theorem 7.1 now follows from Theorem 7.2 by using the following lemma with
F (n, k) = cφk(n) and G(n, k) = cφk(n).

Lemma 7.1. Let F (n, k) and G(n, k) be two-variable arithmetical functions. Then

F (n, k) =
∑

�|(n,k)
G(n/�, k/�)(7.6)

if and only if

G(n, k) =
∑

�|(n,k)
μ(�)F (n/�, k/�).(7.7)

Proof. To prove (7.7), we set n = dn′ and k = dk′ where d = (n, k). From (7.6),
we have

F (n′d, k′d) =
∑
�|d

G(n′d/�, k′d/�).

Using the Möbius inversion formula, we deduce that

G(n′d, k′d) =
∑
�|d

μ(�)F (n′d/�, k′d/�)

or

G(n, k) =
∑
�|d

μ(�)F (n/�, k/�).

The converse follows in a similar way from the Möbius inversion formula. �

Remark 7.1. We observe that using the above inversion, we can find an expression
of Möbius function in terms of Ramanujan’s sum cq(n). We will write Ramanujan’s
sum as c(q, n). It is known that [4, Section 8.3]

c(q, n) =
∑

�|(q,n)
μ(q/�)�.
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Now, we observe that
c(q, n)

(q, n)
=

∑
�|(q,n)

μ(q/�)
�

(q, n)
.

Using the inversion formula with

F (q, n) =
c(q, n)

(q, n)
and G(q, n) =

μ(q)

(q, n)
,

we deduce that
μ(q)

(q, n)
=

∑
�|(q,n)

c(q/�, n/�)

(q, n)
�μ(�)

or

μ(q) =
∑

�|(q,n)
c(q/�, n/�)�μ(�).

Theorem 7.3. Let k and n be positive integers. Then

cφk(n) ≡ 0 (mod k2).

We will next prove Theorem 7.3.

Proof of Theorem 7.3. Given a k-colored generalized Frobenius symbol λ repre-
sented by (7.1), we say that the color difference of λ is m when m is the sum of
the numerical values of the colors on the first row minus the sum of the numerical
values of the colors on the second row of λ. In other words,

m = c1 + c2 + · · ·+ cd − (c′1 + c′2 + · · ·+ c′d).

Let cφk(m,n) denote the number of k-colored generalized Frobenius symbols λ of n
with color difference m and order k. Let cφk(m,n) denote the number of k-colored
generalized Frobenius symbols λ of n with color difference m. These functions
satisfy the following analogue of (7.4):

(7.8) cφk(m,n) =
∑
�|k

cφ�

(
m

k/�
,
n

k/�

)
.

The proof of (7.8) is the same as (7.4) by checking that there is a one-to-one
correspondence between a k-colored generalized Frobenius symbol of n with color
difference m and order � and an �-colored generalized Frobenius symbol of n/(k/�)
with color difference m/(k/�) and order �. The only additional step we need to
observe is that under our previous construction, when we replace the k-colored
generalized Frobenius symbol λ of n with a k-colored generalized Frobenius symbol
λ† with only colors j with 1 ≤ j ≤ � (by identifying colors belonging to the cycle
containing j), the color difference of λ† becomes m/(k/�). This is because if a color
j appears in λ, then the rest of the colors belonging to the cycle containing j are
of the form j + w�, 1 ≤ w < k/�.

Using an inversion formula similar to Lemma 7.1 with two-variable arithmetical
functions replaced by three-variable arithmetical functions, we deduce from (7.8)
that

(7.9) cφk(m,n) =
∑
�|k

μ(�)cφk/�

(m
�
,
n

�

)
.
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Now, the function
∞∑

m=−∞

∞∑
n=0

cφk(m,n)tmqn

is the constant term, i.e., coefficient of z0 of the function

k∏
j=1

(ztjq; q)∞(z−1t−j ; q)∞,

which we shall write as

(7.10)

∞∑
m=−∞

∞∑
n=0

cφk(m,n)tmqn = CT

⎛
⎝ k∏

j=1

(ztjq; q)∞(z−1t−j ; q)∞

⎞
⎠ .

See [2, Theorems 5.1 and 5.2, pp. 4–6] for examples of expressing generating func-
tions of various partition functions as constant terms of infinite products involving z.

From (7.9) and (7.10), we deduce that

∞∑
m=−∞

∞∑
n=0

cφk(m,n)tmqn =
∑
�|k

μ(�)
∞∑

m=−∞

∞∑
n=0

cφk/�

(m
�
,
n

�

)
tmqn

=
∑
�|k

μ(�)

∞∑
m=−∞

∞∑
n=0

cφk/� (m,n) t�mq�n

=
∑
�|k

μ(�)CT

⎛
⎝k/�∏

j=1

(zt�jq�; q�)∞(z−1t−�j ; q�)∞

⎞
⎠

=
∑
�|k

μ(�)CT

⎛
⎝k/�∏

j=1

(z�t�jq�; q�)∞(z−�t−�j ; q�)∞

⎞
⎠ ,(7.11)

where the last equality follows from the fact that (7.10) holds with z replaced by
za for any positive integer a.

Next, we rewrite the left hand side of (7.10) as

∞∑
m=−∞

∞∑
n=0

cφk(m,n)tmqn =

k−1∑
j=0

∞∑
s=−∞

∞∑
n=0

cφk(sk + j, n)tsk+jqn

=

∞∑
n=0

⎛
⎝k−1∑

j=0

∞∑
s=−∞

cφk(sk + j, n)tsk+j

⎞
⎠ qn.(7.12)

Let

ck(j, n) =

∞∑
m=−∞

m≡j (mod k)

cφk(m,n).

Let t = 1 in (7.12). Note that

cφk(n) =
∞∑

m=−∞
cφk(m,n).
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We find that

(7.13)

k−1∑
j=0

ck(j, n) = cφk(n).

Next, if t = ζ �= 1 is a primitive r-th root of unity with r|k, then from (7.12), we
deduce that

(7.14)

∞∑
m=−∞

∞∑
n=0

cφk(m,n)ζmqn =

∞∑
n=0

k−1∑
j=0

ck(j, n)ζ
jqn.

To complete the proof of (7.3), we need the following lemma.

Lemma 7.2. Let ζk be a primitive k-th root of unity. Then ζsk is a root of

Pn(t) :=
k−1∑
j=0

ck(j, n)t
j

for all 1 ≤ s ≤ k − 1.

Assume that Lemma 7.2 is true. It would imply that Pn(t) is divisible by Q(t) =
1 + t + · · · + tk−1, and since the degrees of Pn(t) and Q(t) are the same, we must
conclude that ck(j, n) = ck(0, n) are all equal for 1 ≤ j ≤ k − 1. From (7.13), we
conclude that

cφk(n) = kck(0, n).

Let S0 be the set of k-colored generalized Frobenius symbols of n of order k with
color difference divisible by k. Note that |S0| = ck(0, n). If π ∈ S0, then π under

the action of σj
k, 1 ≤ j ≤ k− 1, is also in S0 since the residue of the color difference

is invariant modulo k under the action of σ and the order of π is k. This implies
that S0 can be grouped into disjoint sets containing k elements in each set, which
implies that k divides ck(0, n). Therefore,

cφk(n) ≡ 0 (mod k2),

and this completes the proof of (7.3). �

It remains to prove Lemma 7.2.

Proof of Lemma 7.2. Given any integer j between 1 and k − 1, there exists an
integer r|k such that ζjk is a primitive r-th root of unity. Therefore, to prove
Lemma 7.2, it suffices to prove that Pn(ζ) = 0 for any primitive r-th root of unity
with r|k. From (7.11) and (7.14), we deduce that

(7.15)

∞∑
n=0

Pn(ζ)q
n =

∑
�|k

μ(�)CT

⎛
⎝k/�∏

j=1

(z�ζ�jq�; q�)∞(z−�ζ−�j ; q�)∞

⎞
⎠ .

The presence of the factor μ(�) in (7.15) shows that we only need to consider divisors
of the squarefree part of k. Fix a prime p which divides r and separate the sum
in (7.15) into a sum over divisors of the form d where (p, d) = 1 and a sum over
divisors of the form pd. We only need to show that the term corresponding to d
cancels with the term corresponding to pd.
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Observe that since d is squarefree and (d, p) = 1, we can write d = ww′ where
w|r and (w′, r) = 1. Note that the term corresponding to d = ww′ is

CT

⎛
⎝μ(ww′)

k/(ww′)∏
j=1

(zww′
ζww′jqww′

; qww′
)∞(z−ww′

ζ−ww′j ; qww′
)∞

⎞
⎠

= μ(ww′)CT
(
(zrw

′
qrw

′
; qrw

′
)k/(rw

′)
∞ (z−rw′

; qrw
′
)k/(rw

′)
∞

)
since ζw is an r/w-th primitive root of unity and

ν∏
j=0

(1− zζjν) = (1− zν).

Similarly, the term corresponding to pd = pww′ is

CT

⎛
⎝μ(pww′)

k/(pww′)∏
j=1

(zpww′
ζpww′jqpww′

; qpww′
)∞(z−pww′

ζ−pww′j ; qpww′
)∞

⎞
⎠

= μ(pww′)CT
(
(zrw

′
qrw

′
; qrw

′
)k/(rw

′)
∞ (z−rw′

; qrw
′
)k/(rw

′)
∞

)
.

Clearly these two terms cancel as μ(pww′) = −μ(ww′). This completes the proof
of the lemma. �
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