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Fractional powers of the generating
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1. Introduction. A partition of a positive integer n is a finite nonin-
creasing sequence of positive integers λ1, . . . , λr such that

r∑
i=1

λi = n.

We denote the number of partitions of n by p(n). By convention, we set
p(0) = 1. It is well known (see [13, Section 19.3]) that the generating function
of p(n) is

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where

(a; q)∞ =

∞∏
n=0

(1− aqn), |q| < 1.

It was observed by S. Ramanujan [21] that p(n) satisfies the congruences

p(5n+ 4) ≡ 0 (mod 5),(1.1)

p(7n+ 5) ≡ 0 (mod 7),(1.2)

p(11n+ 6) ≡ 0 (mod 11).(1.3)

For Ramanujan’s discussion of (1.1)–(1.3), see [21, 22].

Let k be an integer and define pk(n) by
∞∑
n=0

pk(n)qn = (q; q)k∞.(1.4)
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Observe that p(n) = p−1(n). When k is a positive integer, p−k(n) enu-
merates the number of multipartitions with k components of n [1]. The
arithmetic properties of p−k(n) have been extensively studied. For example,
A. O. L. Atkin [2] gave a list of congruences modulo arbitrary powers of 2, 3,
5 and 7 satisfied by p−k(n). B. Gordon [12] established congruences modulo
arbitrary powers of 11 for p−k(n) for k ∈ Z. From their work, we know that
there are many congruences of the form

p−k(`n+ r) ≡ 0 (mod `),(1.5)

where ` is a prime and 0 ≤ r ≤ ` − 1. I. Kiming and J. Olsson [17] proved
that if ` ≥ 5 is a prime, 1 ≤ k ≤ `−1 and k /∈ {`−3, `−1}, then a congruence
of the form (1.5) exists only if k is an odd integer and 24r− k ≡ 0 (mod `).
M. Boylan [5] has found all possible congruences of the form (1.5) when k
is a positive odd integer not exceeding 47. Recently, by using the theory of
modular forms, M. Locus and I. Wagner [19] obtained some congruences of
the form (1.5) for positive integer k with some restrictions on ` and r.

Around 2003, S. T. Ng [20], following a suggestion of the first author,
considered pk(n) defined in (1.4) when k is a negative rational number. He
proved, using the theory of modular forms, that for any n ≥ 0,

(1.6) p−2/3(19n+ 9) ≡ 0 (mod 19).

It was also mentioned in [20, 26] that Y. F. Yang showed in an unpublished
work that for any n ≥ 0,

(1.7) p−1/2(17n+ 11) ≡ 0 (mod 17).

In this article, we prove numerous congruences satisfied by pk(n) when k
is a rational number. We first introduce some notations. For any real num-
ber x, we denote by bxc the integer part of x. For any integer n and prime p,
we use ordp(n) to denote the integer m such that pm |n and pm+1 - n. For
any rational number x, we write it in reduced form x = u/v with u, v ∈ Z,
gcd(u, v) = 1 and v ≥ 1, and we call denom(x) = v the denominator of x.
In the following theorem, we determine the denominator of pk(n).

Theorem 1.1. Let k = a/b, where a, b ∈ Z, b ≥ 1 and gcd(a, b) = 1. We
have

denom(pk(n)) = bn
∏
p|b

pαp(n)(1.8)

where

αp(n) = ordp(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · .(1.9)

This theorem implies that b and the denominator of pa/b(n) share the
same prime divisors. For instance, from the series expansions
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(1.10) (q; q)−1/2∞ = 1 + 1
2q + 7

8q
2 + 17

16q
3 + 203

128q
4 + 455

256q
5 + 2723

1024q
6 + 6001

2048q
7

+ 133107
32768 q

8 + 312011
65536 q

9 + 1613529
262144 q

10 + · · ·
and

(1.11) (q; q)1/3∞ = 1− 1
3q −

4
9q

2 − 23
81q

3 − 82
243q

4 − 34
729q

5 − 1711
6561q

6 + 2254
19683q

7

− 5117
59049q

8 + 124025
1594323q

9 + 183415
4782969q

10 + · · · ,
we observe that the denominators of p−1/2(n) and p1/3(n) are powers of 2
and 3, respectively.

From Theorem 1.1, we know that it is meaningful to study congru-
ences modulo m satisfied by pa/b(n) for any positive integer m such that

gcd(m, b) = 1. By using the known series expansion of (q; q)d∞ where d ∈
{1, 3, 4, 6, 8, 10, 14, 26}, we obtain the following result:

Theorem 1.2. Suppose a, b, d ∈ Z, b ≥ 1 and gcd(a, b) = 1. Let ` be a
prime divisor of a+ db and 0 ≤ r < `. Suppose d, ` and r satisfy any of the
following conditions:

(1) d = 1 and 24r + 1 is a quadratic non-residue modulo `;
(2) d = 3 and 8r + 1 is a quadratic non-residue modulo ` or 8r + 1 ≡ 0

(mod `);
(3) d ∈ {4, 8, 14}, ` ≡ 5 (mod 6) and 24r + d ≡ 0 (mod `);
(4) d ∈ {6, 10}, ` ≥ 5 and ` ≡ 3 (mod 4) and 24r + d ≡ 0 (mod `);
(5) d = 26, ` ≡ 11 (mod 12) and 24r + d ≡ 0 (mod `).

Then for n ≥ 0,

(1.12) p−a/b(`n+ r) ≡ 0 (mod `).

Let (a, b) = (1, 1) in Theorem 1.2. Then by setting (d, `, r) to be (4, 5, 4),
(6, 7, 5) and (10, 11, 6), we obtain Ramanujan’s congruences (1.1), (1.2)
and (1.3), respectively. Since the arithmetic properties of pk(n) when k ∈ Z
have already been extensively studied, we will concentrate on the cases when
k ∈ Q \ Z. In this direction, Theorem 1.2 gives many explicit congruences.
For example, we have

p1/2(11n+ 8) ≡ 0 (mod 11),(1.13)

p1/3(41n+ 37) ≡ 0 (mod 41),(1.14)

p3/5(59n+ 53) ≡ 0 (mod 59),(1.15)

p−1/2(29n+ 26) ≡ 0 (mod 29),(1.16)

p−1/3(31n+ 28) ≡ 0 (mod 31),(1.17)

p−3/4(43n+ 39) ≡ 0 (mod 43),(1.18)

p−1/5(71n+ 29) ≡ 0 (mod 71).(1.19)



62 H. H. Chan and L. Q. Wang

Besides congruences implied by Theorem 1.2, we also discover several con-
gruences modulo powers of primes. Here is a sample:

p1/5(7n+ 6) ≡ 0 (mod 49),(1.20)

p−1/2(49n+ r) ≡ 0 (mod 49), r ∈ {20, 34, 41, 48},(1.21)

p−2/3(49n+ r) ≡ 0 (mod 49), r ∈ {22, 29, 43}.(1.22)

The paper is organized as follows. In Section 2, we give proofs to The-
orems 1.1 and 1.2. In Section 3, we present many congruences satisfied by
pa/b(n) where 1 ≤ |a| < b ≤ 5 modulo primes or prime powers. Our study
of the functions pk(n), with negative rational numbers k, also leads to new
proofs of Ramanujan’s congruences (1.1) and (1.2).

The partition function p(n) satisfies congruences modulo powers of 5, 7
and 11. Our motivation in studying pk(n) is to find congruences modulo
prime powers `s with primes ` > 11. An example is, for any n ≥ 0,

p−1/2(289n+ 283) ≡ 0 (mod 289).(1.23)

Many other such congruences are presented as conjectures in Section 3.

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Note that

(2.1)
∞∑
n=0

pa/b(n)qn =
∞∏
m=1

(1− qm)a/b.

We deduce, using the generalized binomial theorem, that

(1− qm)a/b =
∞∑
n=0

ca/b(n)(−1)nqmn

where

ca/b(n) =
1

n!

a

b

(
a

b
− 1

)(
a

b
− 2

)
· · ·
(
a

b
− n+ 1

)
(2.2)

=
a(a− b)(a− 2b) · · · (a− (n− 1)b)

bnn!
.

We want to show that

(2.3) a(a− b)(a− 2b) · · · (a− (n− 1)b)bn−1 ≡ 0 (mod n!).

Let ν = ordp(n!). Since

ν =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · < n

2
+
n

4
+ · · · = n,

we conclude that ν ≤ n− 1. Therefore, if p | b, then pν | bn−1.
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If p - b, then for any integer m ≥ 0, the set

{a− ptm, a− (ptm+ 1)b, . . . , a− (pt(m+ 1)− 1)b}
forms a complete set of residues modulo pt. Therefore, if 0 ≤ r < pt, then r
will appear bn/ptc times when the integers in the set

S = {a, a− b, a− 2b, . . . , a− (n− 1)b}
are written in terms of their least non-negative residues modulo pt. So the
set S contains at least bn/ptc integers divisible by pt. This implies that

ordp

( n−1∏
i=0

(a− ib)
)
≥
∑
t≥1

⌊
n

pt

⌋
= ν.

Therefore, for any prime p, the order of p dividing n! cannot be greater than
the order of p dividing the left hand side of (2.3). Hence (2.3) holds.

From (2.2) and (2.3), we find that denom(ca/b(n)) divides b2n−1. Therefore,
any prime factor of denom(ca/b(n)) divides b. Moreover, since gcd(a, b) = 1,

we find that
∏n−1
i=0 (a− ib) is divisible by no prime p | b. By (2.2), we deduce

that

ordp(denom(ca/b(n))) = n ordp(b) + ordp(n!).(2.4)

From (2.1), we obtain

pa/b(n) =
∑

m1n1+···+mrnr=n
0<m1<···<mr, r≥1

ca/b(n1) · · · ca/b(nr)(−1)n1+···+nr .(2.5)

For each prime p | b, we deduce from (2.4) that

(2.6) ordp(denom(ca/b(n1) · · · ca/b(nr)))

= (n1 + · · ·+ nr) ordp(b) +

r∑
i=1

(⌊
ni
p

⌋
+

⌊
ni
p2

⌋
+ · · ·

)
≤ (n1 + · · ·+ nr) ordp(b) +

(⌊∑r
i=1 ni
p

⌋
+

⌊∑r
i=1 ni
p2

⌋
+ · · ·

)
≤ n ordp(b) +

(⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·

)
where for the second last inequality of (2.6), we have used the fact that

(2.7)
m∑
i=1

bxic ≤
⌊ m∑
i=1

xi

⌋
, x1, . . . , xm ∈ R,

and for the last inequality of (2.6), we have used the inequality

(2.8)

r∑
i=1

ni ≤
r∑
i=1

mini = n.
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We observe that equality holds in (2.6) only if equality holds in (2.8). Since
m1 < · · · < mr, this happens only if r = 1, m1 = 1 and n1 = n. In this case,
we do have

(2.9) ordp(denom(ca/b(n))) = n ordp(b) +

(⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·

)
.

Hence, in the sum on the right side of (2.5), the order of p of the denominator
of each term is at most n ordp(b) + ordp(n!), and exactly one term achieves
this maximal order. Therefore,

(2.10) ordp(denom(pa/b(n))) = n ordp(b) + ordp(n!).

This proves the theorem since any prime divisor of denom(pa/b(n)) also
divides b.

To prove Theorem 1.2, we need the following lemma.

Lemma 2.1. Let k = a/b, where a, b ∈ Z, b ≥ 1 and gcd(a, b) = 1. Let p
be a prime such that p - b. Then

(1− x)p
jk ≡ (1− xp)pj−1k (mod pj)(2.11)

and for any positive integer t,

(qt; qt)p
jk
∞ ≡ (qpt; qpt)p

j−1k
∞ (mod pj).(2.12)

Proof. It suffices to prove (2.11) since (2.12) follows from (2.11).
By the binomial theorem and the fact that for any 0 < j < p,(

p

j

)
≡ 0 (mod p),

we have

(1− x)p =

p∑
j=0

(
p

j

)
(−1)jxj ≡ 1− xp (mod p).(2.13)

By induction on j, we deduce that

(1− x)p
j ≡ (1− xp)pj−1

(mod pj).

Let
(1− x)p

j
= (1− xp)pj−1

+ pjF (x),

where F (x) is a power series in x with integer coefficients. From the proof
of Theorem 1.1, we know that the denominator of ca/b(n) (in reduced form)

divides b2n−1, and hence is not divisible by p. Therefore,

(1− x)p
ja/b =

(
(1− xp)pj−1

+ pjF (x)
)a/b

= (1− xp)pj−1a/b
∞∑
n=0

ca/b(n)pjn
(

F (x)

(1− xp)pj−1

)n
≡ (1− xp)pj−1a/b (mod pj).
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We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Since ` | (a+db), we may let a+db = `m for some
integer m. Next, gcd(a, b) = 1 and ` | (a+db) implies that gcd(`, b) = 1. Since
gcd(`, b) = 1, by Lemma 2.1 we find that

∞∑
n=0

p−a/b(n)qn =
(q; q)d∞

(q; q)
(a+db)/b
∞

≡ (q; q)d∞

(q`; q`)
m/b
∞

(mod `).(2.14)

We now divide our proof according to the values of d.

Case d = 1: By Euler’s pentagonal number theorem [3, Corollary 1.3.5],
we find that

(q; q)∞ =

∞∑
i=−∞

(−1)iqi(3i+1)/2.(2.15)

Note that

N = i(3i+ 1)/2(2.16)

is equivalent to

24N + 1 = (6i+ 1)2.(2.17)

Therefore, if 24N + 1 is a quadratic non-residue modulo `, then there are
no integers i satisfying (2.16). The congruence (1.12) follows by comparing
the coefficients of q`n+r on both sides of (2.14).

Case d = 3: By Jacobi’s identity [3, Theorem 1.3.9], we find that

(q; q)3∞ =
∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2.(2.18)

Note that

N = j(j + 1)/2(2.19)

is equivalent to

8N + 1 = (2j + 1)2.(2.20)

If 8N + 1 is a quadratic non-residue modulo `, then there are no integers
j satisfying (2.19). Hence from (2.14) we conclude that p−a/b(`n + r) ≡ 0
(mod `).

If 8N + 1 ≡ 0 (mod `), then (2.20) implies that 2j + 1 ≡ 0 (mod `).
Again by (2.18) and (2.14), we deduce (1.12).

Case d = 4: From (2.15) and (2.18), we find that

(q; q)4∞ =

∞∑
i=−∞

∞∑
j=0

(−1)i+j(2j + 1)qi(3i+1)/2+j(j+1)/2.(2.21)
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Now, observe that

N = i(3i+ 1)/2 + j(j + 1)/2

if and only if

24N + 4 = (6i+ 1)2 + 3(2j + 1)2.

If ` ≡ 5 (mod 6), then
(−3
`

)
= −1. This implies that

24N + 4 ≡ 0 (mod `)

if and only if

6i+ 1 ≡ 0 (mod `) and 2j + 1 ≡ 0 (mod `).

Using (2.21) and comparing the coefficients of q`n+r on both sides of (2.14),
we obtain (1.12).

Case d = 6: We deduce from (2.18) that

(q; q)6∞ =

∞∑
i=0

∞∑
j=0

(−1)i+j(2i+ 1)(2j + 1)qi(i+1)/2+j(j+1)/2.(2.22)

Observe that

N = i(i+ 1)/2 + j(j + 1)/2

is equivalent to

8N + 2 = (2i+ 1)2 + (2j + 1)2.

If ` ≡ 3 (mod 4), then
(−1
`

)
= −1. This implies that

8N + 2 ≡ 0 (mod `)

if and only if

2i+ 1 ≡ 0 (mod `) and 2j + 1 ≡ 0 (mod `).

Congruence (1.12) follows by comparing the coefficients of q`n+r on both
sides of (2.14).

Case d = 8: We need the following identity (see [18]):

(q; q)8∞ =
4

3

( ∞∑
m=−∞

(3m+ 1)3q3m
2+2m

)( ∞∑
n=−∞

qn
2

)
(2.23)

− 1

3

( ∞∑
m=−∞

(6m+ 1)3q3m
2+m

)( ∞∑
n=0

qn
2+n

)
.

Note that

N = 3m2 + 2m+ n2

is equivalent to

3N + 1 = (3m+ 1)2 + 3n2.
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Suppose 3m + 1 and n are non-zero modulo `. Then 3N + 1 ≡ 0 (mod `)
implies

u2 ≡ −3 (mod `)

for some integer u. But since ` ≡ 5 (mod 6), we have
(−3
`

)
= −1, and hence

such an integer u cannot exist. Therefore, if 3m + 1 and n are non-zero
modulo `, then 3N + 1 is non-zero modulo `. In other words,

3N + 1 ≡ 0 (mod `)

if and only if

3m+ 1 ≡ 0 (mod `) and n ≡ 0 (mod `).

Similarly,

N = 3m2 +m+ n2 + n

is equivalent to

4(3N + 1) = (6m+ 1)2 + 3(2n+ 1)2.

This identity implies, as in the previous case, that

3N + 1 ≡ 0 (mod `)

if and only if

6m+ 1 ≡ 0 (mod `) and 2n+ 1 ≡ 0 (mod `).

Therefore, from (2.14) and (2.23) we see that p−a/b(`n+ r) ≡ 0 (mod `).

Case d = 10: From [9, Corollary 4.2], we find that

(2.24) (q; q)10∞ =
4

3

( ∞∑
m=−∞

(3m+ 1)3q3m
2+2m

)
×
( ∞∑
n=−∞

(6n+ 1)q3n
2+n

)

−
( ∞∑
m=−∞

(3m+ 1)q3m
2+2m

)
×
( ∞∑
n=−∞

(6n+ 1)3q3n
2+n

)
.

Observe that

N = 3m2 + 2m+ 3n2 + n

is equivalent to

12N + 5 = (6m+ 2)2 + (6n+ 1)2.

If ` ≡ 3 (mod 4), then
(−1
`

)
= −1. We know that

12N + 5 ≡ 0 (mod `)

if and only if

3m+ 1 ≡ 0 (mod `) and 6n+ 1 ≡ 0 (mod `).

From (2.24), congruence (1.12) follows by comparing the coefficients of q`n+r

on both sides of (2.14).
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Case d = 14: Recall from [7, Theorem 5.3] that

(2.25) (q; q)14∞ = − 1

15

∞∑
m=−∞

∞∑
n=−∞

(−1)m(3m+ 1)(4n+ 1)(6m+ 4n+ 3)

× (6m− 4n+ 1)(6m+ 12n+ 5)(6m− 12n− 1)q(4(3m+1)2+3(4n+1)2−7)/12.

We observe that

N = (4(3m+ 1)2 + 3(4n+ 1)2 − 7)/12

is equivalent to

12N + 7 = 4(3m+ 1)2 + 3(4n+ 1)2.

If ` ≡ 5 (mod 6), then
(−3
`

)
= −1. We deduce that

12N + 7 ≡ 0 (mod `)

if and only if

3m+ 1 ≡ 0 (mod `) and 4n+ 1 ≡ 0 (mod `).

The congruence p−a/b(`n+ r) ≡ 0 (mod `) now follows from the comparison

of the coefficients of q`n+r on both sides of (2.14).

Case d = 26: Let

f(m,n) =

12∑
j=0

(
12

2j

)
(−1)jmjn6−j .(2.26)

From [6, Theorem 3], we find

(2.27) (q; q)26∞ =
q−13/12

16308864

×
( ∞∑
i=−∞

∞∑
j=−∞

(−1)i+jf

(
(6i+ 1)2

2
,
(6j + 1)2

2

)
q((6i+1)2+(6j+1)2)/24

+
∞∑

i=−∞

∞∑
j=−∞

(−1)i+jf(12i2, (6j + 1)2)qi
2+(6j+1)2/12

)
.

Observe that

N = 1
24

(
(6i+ 1)2 + (6j + 1)2 − 26

)
is equivalent to

24N + 26 = (6i+ 1)2 + (6j + 1)2.

If ` ≡ 11 (mod 12), then
(−1
`

)
= −1. Hence

24N + 26 ≡ 0 (mod `)

if and only if

6i+ 1 ≡ 0 (mod `) and 6j + 1 ≡ 0 (mod `),

in which case

f

(
(6i+ 1)2

2
,
(6j + 1)2

2

)
≡ 0 (mod `12).
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Similarly,

N = 1
12(12i2 + (6j + 1)2 − 13)

is equivalent to

12N + 13 = 12i2 + (6j + 1)2.

If ` ≡ 11 (mod 12), then
(−12

`

)
= −1. Hence

12N + 13 ≡ 0 (mod `)

if and only if

i ≡ 0 (mod `) and 6j + 1 ≡ 0 (mod `),

in which case
f(12i2, (6j + 1)2) ≡ 0 (mod `12).

Note that 16308864 = 27 · 34 · 112 · 13. Using (2.27) and comparing the
coefficients of q`n+r on both sides of (2.14), we obtain (1.12).

Remark 1. For d ∈ {2, 4, 6, 8, 10, 14, 26}, there are some other double
series expressions for (q; q)d∞. For example, formulas similar to (2.24) for
(q; q)10∞ can be found in works of B. C. Berndt et al. [4], S. H. Chan [8],
M. D. Hirschhorn [14, 16] and L. Winquist [25]. Formulas for (q; q)10∞ were
also discussed in [10].

3. Explicit congruences for pk(n) where k ∈ Q\Z. In this section,
we give explicit congruences for p−a/b(n) with 1 ≤ |a| < b ≤ 5. Most of
them are special cases of Theorem 1.2 but there are some congruences which
require more technical arguments.

First, we present some explicit congruences satisfied by p−a/b(n) where
1 ≤ −a < b ≤ 5.

Theorem 3.1. For any integer n ≥ 0,

p1/2(5n+ r) ≡ 0 (mod 5), r ∈ {2, 3, 4},(3.1)

p1/2(11n+ 8) ≡ 0 (mod 11),(3.2)

p1/2(19n+ 17) ≡ 0 (mod 19),(3.3)

p1/3(11n+ 9) ≡ 0 (mod 11),(3.4)

p1/3(17n+ 4) ≡ 0 (mod 17),(3.5)

p1/3(23n+ 15) ≡ 0 (mod 23),(3.6)

p1/3(41n+ 37) ≡ 0 (mod 41),(3.7)

p2/3(5n+ 4) ≡ 0 (mod 5),(3.8)

p2/3(7n+ r) ≡ 0 (mod 7), r ∈ {2, 4, 5, 6},(3.9)

p2/3(11n+ 7) ≡ 0 (mod 11),(3.10)
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p1/4(5n+ 4) ≡ 0 (mod 5),(3.11)

p1/4(11n+ r) ≡ 0 (mod 11), r ∈ {2, 4, 5, 7, 9, 10},(3.12)

p1/4(23n+ 17) ≡ 0 (mod 23),(3.13)

p3/4(7n+ 5) ≡ 0 (mod 7),(3.14)

p3/4(29n+ 19) ≡ 0 (mod 29),(3.15)

p3/4(53n+ 48) ≡ 0 (mod 53),(3.16)

p1/5(7n+ r) ≡ 0 (mod 7), r ∈ {2, 4, 5, 6},(3.17)

p1/5(7n+ 6) ≡ 0 (mod 49),(3.18)

p1/5(23n+ 9) ≡ 0 (mod 23),(3.19)

p2/5(7n+ 5) ≡ 0 (mod 7),(3.20)

p2/5(13n+ r) ≡ 0 (mod 13), r ∈ {4, 5, 7, 8, 9, 11, 12},(3.21)

p2/5(17n+ 15) ≡ 0 (mod 17),(3.22)

p3/5(17n+ 14) ≡ 0 (mod 17),(3.23)

p3/5(47n+ 27) ≡ 0 (mod 47),(3.24)

p3/5(59n+ 53) ≡ 0 (mod 59),(3.25)

p4/5(11n+ r) ≡ 0 (mod 11), r ∈ {2, 4, 5, 7, 8, 9},(3.26)

p4/5(23n+ 13) ≡ 0 (mod 23).(3.27)

Proof. Except for congruence (3.18), all congruences follow from Theo-
rem 1.2 with respective parameters given in Table 1.

Table 1

Eq. (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9)

a −1 −1 −1 −1 −1 −1 −1 −2 −2

b 2 2 2 3 3 3 3 3 3

d 3 6 10 4 6 8 14 4 3

` 5 11 19 11 17 23 41 5 7

Eq. (3.10) (3.11) (3.12) (3.13) (3.14) (3.15) (3.16) (3.17) (3.19)

a −2 −1 −1 −1 −3 −3 −3 −1 −1

b 3 4 4 4 4 4 4 5 5

d 8 4 3 6 6 8 14 3 14

` 11 5 11 23 7 29 53 7 23

Eq. (3.20) (3.21) (3.22) (3.23) (3.24) (3.25) (3.26) (3.27)

a −2 −2 −2 −3 −3 −3 −4 −4

b 5 5 5 5 5 5 5 5

d 6 3 14 4 10 26 3 10

` 7 13 17 17 47 59 11 23
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We now prove (3.18). By Lemma 2.1, we find that
∞∑
n=0

p1/5(n)qn =
(q; q)10∞

(q; q)
49/5
∞
≡ (q; q)10∞

(q7; q7)
7/5
∞

(mod 49).(3.28)

Observe that
N = 3m2 + 2m+ 3n2 + n

is equivalent to
12N + 5 = (6m+ 2)2 + (6n+ 1)2.

Since
(−1

7

)
= −1, we know that

12N + 5 ≡ 0 (mod 7)

if and only if

3m+ 1 ≡ 0 (mod 7) and 6n+ 1 ≡ 0 (mod 7).

Using (2.24) and comparing the coefficients of q7n+6 on both sides of (3.28),
we obtain (3.18).

Numerical evidence suggests that the following congruences hold.

Conjecture 3.1. For any integer n ≥ 0,

p1/2(125n+ r) ≡ 0 (mod 25), r ∈ {38, 63, 88, 113},(3.29)

p2/3(25n+ r) ≡ 0 (mod 25), r ∈ {19, 24},(3.30)

p2/3(121n+ 84) ≡ 0 (mod 121),(3.31)

p1/4(25n+ r) ≡ 0 (mod 25), r ∈ {14, 24},(3.32)

p1/4(25n+ 19) ≡ 0 (mod 125),(3.33)

p1/4(121n+ 92) ≡ 0 (mod 121),(3.34)

p1/5(49n+ r) ≡ 0 (mod 343), r ∈ {27, 34, 48},(3.35)

p2/5(49n+ 40) ≡ 0 (mod 49).(3.36)

Next, we present some explicit congruences satisfied by p−a/b(n) where
1 ≤ a < b ≤ 5.

Theorem 3.2. For any integer n ≥ 0,

p−1/2(7n+ r) ≡ 0 (mod 7), r ∈ {2, 4, 5, 6},(3.37)

p−1/2(49n+ r) ≡ 0 (mod 49), r ∈ {20, 34, 41, 48},(3.38)

p−1/2(17n+ 11) ≡ 0 (mod 17),(3.39)

p−1/2(29n+ 26) ≡ 0 (mod 29),(3.40)

p−1/3(5n+ r) ≡ 0 (mod 5), r ∈ {2, 3, 4},(3.41)

p−1/3(5n+ 3) ≡ 0 (mod 25),(3.42)

p−1/3(19n+ 14) ≡ 0 (mod 19),(3.43)



72 H. H. Chan and L. Q. Wang

p−1/3(31n+ 28) ≡ 0 (mod 31),(3.44)

p−2/3(5n+ r) ≡ 0 (mod 5), r ∈ {3, 4},(3.45)

p−2/3(11n+ r) ≡ 0 (mod 11), r ∈ {2, 4, 5, 7, 8, 9},(3.46)

p−1/4(5n+ r) ≡ 0 (mod 5), r ∈ {3, 4},(3.47)

p−1/4(13n+ r) ≡ 0 (mod 13), r ∈ {4, 5, 7, 8, 9, 11, 12},(3.48)

p−3/4(5n+ r) ≡ 0 (mod 5), r ∈ {2, 3, 4},(3.49)

p−3/4(43n+ 39) ≡ 0 (mod 43),(3.50)

p−3/4(59n+ 24) ≡ 0 (mod 59),(3.51)

p−3/4(107n+ 97) ≡ 0 (mod 107),(3.52)

p−1/5(31n+ 23) ≡ 0 (mod 31),(3.53)

p−1/5(71n+ 29) ≡ 0 (mod 71),(3.54)

p−1/5(131n+ 119) ≡ 0 (mod 131),(3.55)

p−2/5(7n+ r) ≡ 0 (mod 7), r ∈ {3, 4, 6},(3.56)

p−2/5(11n+ 9) ≡ 0 (mod 11),(3.57)

p−2/5(17n+ r) ≡ 0 (mod 17), r ∈ {2, 5, 7, 8, 9, 12, 13, 14, 16},(3.58)

p−3/5(11n+ 8) ≡ 0 (mod 11),(3.59)

p−4/5(11n+ 7) ≡ 0 (mod 11),(3.60)

p−4/5(19n+ r) ≡ 0 (mod 19),(3.61)

r ∈ {4, 5, 7, 8, 11, 12, 13, 14, 16, 18}.
Proof. Except for (3.38) and (3.42), all congruences follow directly from

Theorem 1.2 with respective parameters given in Table 2.
Now we prove (3.38). By Lemma 2.1,

∞∑
n=0

p−1/2(n)qn+1 =
q(q; q)24∞

(q; q)
49/2
∞

(3.62)

≡ 1

(q7; q7)
7/2
∞

∑
n≥0

τ(n)qn (mod 49),

where τ(n) is Ramanujan’s tau function.
For any prime p, it is known [23, Chapter VII] that

τ(pn) = τ(p)τ(n)− p11τ(n/p).

Hence,

(3.63) τ(7n) = −16744τ(n)− 711τ(n/7) ≡ 14τ(n) (mod 49).

Extracting the terms of the form q7n on both sides of (3.62), replacing
q7 by q and using(3.63), we deduce that
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Table 2

Eq. (3.37) (3.39) (3.40) (3.41) (3.43) (3.44) (3.45) (3.46)

a 1 1 1 1 1 1 2 2

b 2 2 2 3 3 3 3 3

d 3 8 14 3 6 10 1 3

` 7 17 29 5 19 31 5 11

Eq. (3.47) (3.48) (3.49) (3.50) (3.51) (3.52) (3.53) (3.54)

a 1 1 3 3 3 3 1 1

b 4 4 4 4 4 4 5 5

d 1 3 3 10 14 26 6 14

` 5 13 5 43 59 107 31 71

Eq. (3.55) (3.56) (3.57) (3.58) (3.59) (3.60) (3.61)

a 1 2 2 2 3 4 4

b 5 5 5 5 5 5 5

d 26 1 4 3 6 8 3

` 131 7 11 17 11 11 19

∞∑
n=0

p−1/2(7n+ 6)qn+1 ≡ 1

(q; q)
7/2
∞

∞∑
n=0

τ(7n)qn

≡ 14

(q; q)
7/2
∞

∞∑
n=0

τ(n)qn (mod 49),

which implies, by Lemma 2.1, that

∞∑
n=0

1

7
p−1/2(7n+ 6)qn+1 ≡ 2

(q; q)
7/2
∞

∞∑
n=0

τ(n)qn

≡ 2

(q7; q7)
1/2
∞

∞∑
n=0

τ(n)qn (mod 7).

Hence,

(3.64) (q7; q7)1/2∞

∞∑
n=0

p−1/2(7n+ 6)qn+1 ≡ 14
∞∑
n=0

τ(n)qn (mod 49).

We recall from [23, p. 97, Eq. (56)] that

τ(n) ≡ nσ3(n) (mod 7),(3.65)

where σ3(n) =
∑

d|n d
3. We claim that if the residue of n modulo 7 is 3, 5

or 6, then σ3(n) ≡ 0 (mod 7). Indeed, in these cases, n cannot be a square
and n3 ≡ −1 (mod 7). Therefore, when n ≡ 3, 5 or 6 (mod 7), we find that
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σ3(n) =
∑
d|n

d<
√
n

(
d3 +

(
n

d

)3)
=
∑
d|n

d<
√
n

d6 − 1

d3
≡ 0 (mod 7),

where the last congruence follows from Fermat’s little theorem.

By (3.65) we deduce that

τ(7n+ s) ≡ 0 (mod 7), s ∈ {0, 3, 5, 6}.
Using this result and (3.64), we deduce that

p−1/2(7(7n+ s− 1) + 6) ≡ 0 (mod 49), s ∈ {0, 3, 5, 6}.
The congruences in (3.38) are proved.

Next, we prove (3.42). By Lemma 2.1, we find that
∞∑
n=0

p−1/3(n)qn =
(q; q)8∞

(q; q)
25/3
∞
≡ (q; q)8∞

(q5; q5)
5/3
∞

(mod 25).(3.66)

Now we use the the expansion (2.23) of (q; q)8∞. Observe that

N = 3m2 + 2m+ n2

is equivalent to

3N + 1 = (3m+ 1)2 + 3n2.

Since
(−3

5

)
= −1, we find that

3N + 1 ≡ 0 (mod 5) (or equivalently N ≡ 3 (mod 5))

if and only if

3m+ 1 ≡ 0 (mod 5) and n ≡ 0 (mod 5).

Similarly,

N = 3m2 +m+ n2 + n

is equivalent to

4(3N + 1) = (6m+ 1)2 + 3(2n+ 1)2.

We know that

3N + 1 ≡ 0 (mod 5) (or equivalently N ≡ 3 (mod 5))

if and only if

6m+ 1 ≡ 0 (mod 5) and 2n+ 1 ≡ 0 (mod 5).

Therefore, (2.23) and (3.66) imply

p−1/3(5n+ 3) ≡ 0 (mod 25).

As an interesting application of the congruences in this section, using
(3.41) and (3.45) we can give a new proof of (1.1).
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Corollary 3.1. For any integer n ≥ 0,

p(5n+ 4) ≡ 0 (mod 5).

Proof. Since
∞∑
n=0

p(n)qn =
( ∞∑
n=0

p−1/3(n)qn
)( ∞∑

n=0

p−2/3(n)qn
)
,

we have

p(n) =

n∑
k=0

p−1/3(k)p−2/3(n− k).(3.67)

Note that for any integers k and n, either the least non-negative residue of k
modulo 5 belongs to {2, 3, 4} or the least non-negative residue of 5n+ 4− k
modulo 5 belongs to {3, 4}. Hence by (3.41) and (3.45), we always have

p−1/3(k)p−2/3(5n+ 4− k) ≡ 0 (mod 5).

This proves the corollary.

Similarly, by using (3.37) we give a new proof of (1.2).

Corollary 3.2. For any integer n ≥ 0,

p(7n+ 5) ≡ 0 (mod 7).

Proof. Since
∞∑
n=0

p(n)qn =
( ∞∑
n=0

p−1/2(n)qn
)2
,

we have

p(n) =
n∑
k=0

p−1/2(k)p−1/2(n− k).(3.68)

Note that for any integers k and n, at least one of k or 7n+ 5− k must be
congruent to 2, 4, 5 or 6. By (3.37) and (3.68), we conclude that p(7n+ 5)
is always divisible by 7.

Numerical evidence suggests that the following conjecture holds.

Conjecture 3.2. For any integer n ≥ 0, we have

p−1/2(343n+ 293) ≡ 0 (mod 343),(3.69)

p−1/2(2401n+ r) ≡ 0 (mod 2401), r ∈ {979, 1665, 2008, 2351},(3.70)

p−1/2(289n+ 283) ≡ 0 (mod 289),(3.71)

p−1/3(25n+ r) ≡ 0 (mod 125), r ∈ {18, 23},(3.72)

p−1/3(361n+ 356) ≡ 0 (mod 361),(3.73)

p−2/3(49n+ r) ≡ 0 (mod 7), r ∈ {22, 29, 43},(3.74)
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p−3/4(25n+ r) ≡ 0 (mod 25), r ∈ {13, 23},(3.75)

p−3/4(25n+ 18) ≡ 0 (mod 125),(3.76)

p−3/4(125n+ r) ≡ 0 (mod 3125), r ∈ {93, 118}.(3.77)

4. Modular approach to some congruences. It is possible to prove
some congruences in Conjectures 3.1 and 3.2 using the theory of modular
forms. We illustrate the method by proving (3.71). Let

SL2(Z) :=

{(
a b

c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

We denote by Mk(SL2(Z)) (resp. Sk(SL2(Z))) the space of modular forms
(resp. cusp forms) of weight k on SL2(Z). For any positive integer m, we
define the Hecke operator T (m) and the U -operator U(m) which send a
function

f(z) =
∞∑
n=0

a(n)qn

to

f(z)|T (m) :=

∞∑
n=0

( ∑
d|(m,n)

dk−1a

(
nm

d2

))
qn

and

f(z)|U(m) :=

∞∑
n=0

a(mn)qn,

respectively. It is known that if f(z) ∈ Mk(SL2(Z)), then f(z)|T (m) ∈
Mk(SL2(Z)).

Modular proof of (3.71). Let q = e2πiτ with Im τ > 0. Recall that the
discriminant modular form is

∆(τ) := q(q; q)24∞.(4.1)

It is clear that ∆6(τ) ∈ S72(SL2(Z)) is a cusp form. By Lemma 2.1, we
deduce that

∆6(τ) = q6
(q; q)

289/2
∞

(q; q)
1/2
∞

= (q; q)289/2∞

∞∑
n=0

p−1/2(n)qn+6(4.2)

≡ (q17; q17)17/2∞

∞∑
n=0

p−1/2(n)qn+6 (mod 172).
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Applying the Hecke operator T17 to both sides, and observing that applying
T17 is the same as applying U17 modulo 172, we obtain

∆6(τ)|T17 ≡ (q; q)17/2∞

∞∑
n=1

p−1/2(17n− 6)qn (mod 172).(4.3)

From (3.39), we know that p−1/2(17n − 6) ≡ 0 (mod 17). By Lemma 2.1,
we deduce from (4.3) that

1

17
∆6(τ)|T17 ≡ (q; q)17/2∞

∞∑
n=0

p−1/2(17n− 6)

17
qn

≡ (q17; q17)1/2∞

∞∑
n=0

p−1/2(17n− 6)

17
qn (mod 17),

or

(4.4) ∆6(τ)|T17 ≡ (q17; q17)1/2∞

∞∑
n=0

p−1/2(17n− 6)qn (mod 172).

Since ∆6(τ)|T17 ∈ S72(SL2(Z)), we apply the Hecke operator T17 to both
sides of (4.4) and deduce that

(∆6(τ)|T17)|T17 ≡ (q; q)1/2∞

∞∑
n=0

p−1/2(172n− 6)qn (mod 172).(4.5)

Now we recall the following Eisenstein series on SL2(Z):

E6 := 1− 504
∞∑
n=1

n5qn

1− qn
.(4.6)

Let

B1 := ∆6(τ), B2 := ∆5(τ)E2
6 , B3 := ∆4(τ)E4

6 ,

B4 := ∆3(τ)E6
6 , B5 := ∆2(τ)E8

6 , B6 := ∆(τ)E10
6 .

It is not difficult to see that {B1, B2, B3, B4, B5, B6} forms a basis of
S72(SL2(Z)). By comparing the Fourier coefficients we find that

(∆6(τ)|T17)|T17 =

6∑
i=0

aiBi,(4.7)

where

a1 = 2803266424444011486961793663394426123943306806893849573592292

186093616946565526483482308,

a2 = 1113231602545024595543146596204782142754892610829246238990919

796002850856740428953088,
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a3 = 4732834266810238479570385785097996159241875744074623451960104

36216861639045631744,

a4 = −1554074151888843490223291792047379113908229307924982050366

8479703217777938560,

a5 = −1604489154697352414421369082789170888441111798460125970130

1088310976672,

a6 = 216026225099443878192110703691596145681836890232383902466304.

It is easy to verify that

ord17(a1) = 3, ord17(ai) = 2, 2 ≤ i ≤ 6.

From (4.5) and (4.7) we can complete the proof of (3.71).

While we believe that this method is applicable to most of the congru-
ences in Conjectures 3.1 and 3.2, we are not sure if one can establish these
congruences without the use of modular forms.

5. Concluding remarks. Ramanujan’s original proofs of (1.1) and (1.2)
(see [21]) involve the fourth and sixth powers of (q; q)∞. In 1969, Winquist [25]
discovered an identity for (q; q)10∞ and gave a proof of (1.3) which is in the
spirit of Ramanujan’s proofs for (1.1) and (1.2). Recently, Hirschhorn [15]
gave a simple proof of (1.3) that relies only on (2.15) and (2.18). One common
feature of the identities used by Ramanujan and Winquist is that for d = 4, 6
and 10, (q; q)d∞ can be expressed in the form

(5.1)
∞∑

m,n=−∞
A(m,n)qQ(m,n),

where A(m,n) is a polynomial in m and n and Q(m,n) is a degree 2 polyno-
mial inm and n. In 1985, J.-P. Serre [24] showed that if d is even, then (q; q)d∞
can be expressed in the form given by (5.1) if and only if d = 2, 4, 6, 8, 10, 14
and 26. The proof of a series representation for (q; q)26∞ was given for the first
time in [24] although the identity in a different form was first discovered by
A. O. L. Atkin (see [11]). For alternative representations of (q; q)26∞, see the
works [6, 7] by Chan, S. Cooper and P. C. Toh. In this work, we return
to Ramanujan’s original idea and derive congruences satisfied by pk(n) for
a certain rational number k from the series representations for (q; q)d∞. In
particular, it seems that this is the first time that expansions of (q; q)14∞ and
(q; q)26∞ are associated to congruences analogous to Ramanujan’s partition
congruences (1.1)–(1.3).
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