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1. Introduction

Let rk(n) denote the number of representations of the non-negative integer n as a sum of k squares. The 
Gauss circle problem asks for the number of integer lattice points contained in a circle of radius m centered 
at the origin. A good approximation to the answer is given by the area of the circle πm2. The circle problem 
can therefore be reformulated as finding a good estimate of the error term

E(m) =

∣∣∣∣∣∣
∑

0≤n≤m2

r2(n) − πm2

∣∣∣∣∣∣
as m → ∞. Hardy was one of the first few mathematicians who made significant contributions to the 
estimate of the error term E(m). In his study of this problem [11], he discovered the identity
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∞∑
n=1

r2(n)exp
(
−s

√
n
)

= 2π
s2 − 1 + 2πs

∞∑
n=1

r2(n)
(s2 + 4π2n)3/2

. (1)

Here and throughout, we use exp(x) to denote the exponential function. Hardy proved (1) using the trans-
formation formula for Jacobi’s theta function

ϑ3(τ) =
∞∑

k=−∞
exp

(
πiτk2)

and the integral

exp
(
−s

√
μ2 + ν2

)
= 2√

π

∞∫
0

exp
(
−ω2 − s2(μ2 + ν2)

4ω2

)
dω. (2)

At the end of his paper [11, p. 283], Hardy gave the following statement: “Mr S. Ramanujan has indicated 
to me an interesting formula which contains (1) as a special case.” The formula that Hardy referred to is 
the following:

Theorem 1. For any positive real numbers α and β,

∞∑
n=0

r2(n)
exp

(
−2π

√
(n + α)β

)
√
n + α

=
∞∑

n=0
r2(n)

exp
(
−2π

√
(n + β)α

)
√
n + β

. (3)

The symmetry in α and β in (3) is particularly striking. On multiple occasions—including in New Zealand 
in 2004, in Singapore in 2017 and most recently in the USA in 2018—B.C. Berndt highlighted the “beauty” 
of (3). According to Berndt (see [2, p. 126]), this identity does not appear in any of Ramanujan’s published 
papers nor in his notebooks.

Hardy showed that his identity (1) is a consequence of (3) by first differentiating both sides of (3) with 
respect to β, letting α → 0, and replacing 2π

√
β with s. Hardy then presented a generalization of (3), 

also due to Ramanujan, where the quantity r2(n) was replaced by the number of representations of n by 
a general positive definite binary quadratic form ax2 + bxy + cy2. Hardy concluded his article by stating 
that both (3) and its generalization may be deduced from “the formulae for the linear transformation of 
the double Theta-functions.” In the next section, we fill in the details of the proof suggested by Hardy. We 
surmise that our approach is likely to be similar to that of Ramanujan. In Section 3, we further generalize 
(3) to one involving 2	 + 1 copies of a quadratic form, as well as another generalization involving powers of 
the Dedekind eta function.

2. The proof of Theorem 1

There are two key results involved in the proof of (3). The first is the following integral evaluation [8, 
Formula 3.325]:

Theorem 2. Let ξ and η be positive real numbers. Then

∞∫
0

exp
(
−ξt2 − η

t2

)
dt = 1

2

√
π

ξ
exp

(
−2

√
ξη

)
.
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Proof. We follow the proof given in [3, p. 172]. For real positive c, define the integral

I(c) =
∞∫
0

exp
(
−s2 − c

s2

)
ds. (4)

Let s =
√
c

ν and deduce that

I(c) =
∞∫
0

exp
(
−ν2 − c

ν2

) √
c

ν2 dν. (5)

Replacing the variable ν in (5) by s and adding the resulting identity to (4), we find that

2I(c) =
∞∫
0

exp
(
−s2 − c

s2

)(
1 +

√
c

s2

)
ds.

Setting μ = s −
√
c
s , we deduce that

2I(c) =
∞∫

−∞

exp
(
−μ2 − 2

√
c
)
dμ = exp

(
−2

√
c
)√

π, (6)

since

∞∫
−∞

exp
(
−μ2) dμ =

√
π.

Now, consider the integral

J(ξ, η) =
∞∫
0

exp
(
−ξt2 − η

t2

)
dt.

Let t = ω√
ξ
. Then

J(ξ, η) = 1√
ξ

∞∫
0

exp
(
−ω2 − ξη

ω2

)
dω = 1√

ξ
I(ξη) = 1

2

√
π

ξ
exp

(
−2

√
ξη

)
,

where we have used (6) in our last equality. �
The second result we require is the transformation formula for theta functions alluded to by Hardy. There 

are several versions of the transformation formula in the literature. The proof of the following version can 
be found in [12, pp. 204–205].

Theorem 3. Let h, k be rational numbers, a, b, c be integers such that a > 0 and D = 4ac − b2 > 0. Let 
Q(x, y) = ax2 + bxy + cy2. Then for any positive real number t,
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∑
(m,n)∈Z2

exp
(
−2πtQ(m + h, n + k)√

D

)

= 1
t

∑
(m,n)∈Z2

exp
(
−2πQ(m,n)

t
√
D

)
exp (2πi(mk − nh)) .

We are now ready to establish the following:

Theorem 4. Let Q(x, y), D, h and k be defined as in Theorem 3. Then for any positive real numbers α
and β,

∑
(m,n)∈Z2

exp
(
−4π

√
(Q(m+h,n+k)+α)β

D

)
√

Q(m + h, n + k) + α

=
∑

(m,n)∈Z2

exp (2πi(mk − nh)) exp
(
−4π

√
(Q(m,n)+β)α

D

)
√

Q(m,n) + β
.

Proof. Let

ξ = 2π√
D

(Q(m + h, n + k) + α) and η = 2πβ√
D
.

Using Theorem 2, we deduce that

D1/4

2
√

2

exp
(
−4π

√
(Q(m+h,n+k)+α)β

D

)
√

Q(m + h, n + k) + α

=
∞∫
0

exp
(
−2πt2(Q(m + h, n + k) + α)√

D
− 2πβ

t2
√
D

)
dt

=
∞∫
0

exp
(
− 2π√

D

(
αt2 + β

t2

))
exp

(
−2πt2Q(m + h, n + k)√

D

)
dt.

Hence

D1/4

2
√

2

∑
(m,n)∈Z2

exp
(
−4π

√
(Q(m+h,n+k)+α)β

D

)
√

Q(m + h, n + k) + α

=
∞∫
0

exp
(
− 2π√

D

(
αt2 + β

t2

)) ∑
(m,n)∈Z2

exp
(
−2πt2Q(m + h, n + k)√

D

)
dt

=
∞∫
0

exp
(
− 2π√

D

(
αt2 + β

t2

))
1
t2

∑
(m,n)∈Z2

exp (2πi(mk − nh)) exp
(
−2πQ(m,n)

t2
√
D

)
dt, (7)

where we have used Theorem 3 in the last equality. Letting s = 1 , we deduce from (7) and Theorem 2 that
t
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∞∫
0

exp
(
− 2π√

D

(
αt2 + β

t2

))
1
t2

∑
(m,n)∈Z2

exp (2πi(mk − nh)) exp
(
−2πQ(m,n)

t2
√
D

)
dt

=
∞∫
0

exp
(
− 2π√

D

( α

s2 + βs2
)) ∑

(m,n)∈Z2

exp (2πi(mk − nh)) exp
(
−2πs2Q(m,n)√

D

)
ds

=
∑

(m,n)∈Z2

exp (2πi(mk − nh))
∞∫
0

exp
(
− 2πα
s2
√
D

− 2πs2(Q(m,n) + β)√
D

)
ds

= D1/4

2
√

2

∑
(m,n)∈Z2

exp (2πi(mk − nh))
exp

(
−4π

√
(Q(m,n)+β)α

D

)
√
Q(m,n) + β

. (8)

Equating the last expression of (8) with the first expression of (7), we conclude the proof of the theorem. �
Substituting h = k = 0, we obtain Ramanujan’s generalization of (3) that was quoted by Hardy, namely,

∑
(m,n)∈Z2

exp
(
−4π

√
(Q(m,n)+α)β

D

)
√
Q(m,n) + α

=
∑

(m,n)∈Z2

exp
(
−4π

√
(Q(m,n)+β)α

D

)
√

Q(m,n) + β
.

Theorem 1 follows from setting Q(m, n) = m2 + n2 and rewriting the sum in terms of r2(n).
If we take h = k = 1

2 , and Q(m, n) = m2+n2 in Theorem 4, we have the following analogue of Theorem 1, 
where the generating function ϑ2

3(τ) in the left and right sides of Ramanujan’s identity is replaced by ϑ2
2(τ)

and ϑ2
4(τ) respectively.

Corollary 2.1. For any positive real numbers α and β,

∑
(m,n)∈Z2

exp
(
−2π

√((
m + 1

2
)2 +

(
n + 1

2
)2 + α

)
β

)
√(

m + 1
2
)2 +

(
n + 1

2
)2 + α

=
∑

(m,n)∈Z2

(−1)m+nexp
(
−2π

√
(m2 + n2 + β)α

)
√

m2 + n2 + β
.

In addition, by taking h = k = 1
3 and Q(m, n) = m2 + mn + n2, we obtain another analogue of 

Ramanujan’s identity that relates the cubic theta functions c(q) and b(q). (See [4] for the definitions and 
properties satisfied by these functions.)

Corollary 2.2. For any positive real numbers α and β,

∑
(m,n)∈Z2

exp
(
−4π

√((
m+ 1

3
)2+(

m+ 1
3
)(
n+ 1

3
)
+
(
n+ 1

3
)2+α

)
β

3

)
√(

m + 1
3
)2 +

(
m + 1

3
) (

n + 1
3
)

+
(
n + 1

3
)2 + α

=
∑

(m,n)∈Z2

exp
(

2πi(m−n)
3

)
exp

(
−4π

√
(m2+mn+n2+β)α

3

)
√

m2 + mn + n2 + β
.
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3. Further generalizations of Ramanujan’s identity (3)

Let (v)0 = 1 and (v)k = (v)(v + 1) · · · (v + k − 1) for k ∈ Z+. Define

2F0 (a, b; z) =
∞∑
k=0

(a)k(b)k
k! zk.

We are interested in the special case where either a or b is a negative integer so that the above hypergeometric 
series terminates into a polynomial. We now generalize Ramanujan’s identity (3) to one involving 2	 + 1
copies of Q(x, y). With Q(x, y) fixed, let rQ,k(n) denote the number of representations of n as a sum of k
integers of the form Q(x, y). Our generalization is as follows:

Theorem 5. Let 	 be a non-negative integer and let Q(x, y) and D be defined as in Theorem 3. Then

∑
n∈Z

rQ,2�+1(n) exp
(
−4π

√
(n + α)β

D

)√
β�

(n + α)�+1 · 2F0

⎛
⎝−	, 	 + 1; −1

8π
√

(n+α)β
D

⎞
⎠

=
∑
n∈Z

rQ,2�+1(n) exp
(
−4π

√
(n + β)α

D

)√
α�

(n + β)�+1 · 2F0

⎛
⎝−	, 	 + 1; −1

8π
√

(n+β)α
D

⎞
⎠ .

We consider the case of Theorem 5 where Q(x, y) = x2 + y2. We observe that when 	 = 0 the identity 
reduces to (3). When 	 = 1, 2F0 (−1, 2; z) = 1 − 2z. Since rx2+y2,3(n) is equivalent to the number of 
representations of n by a sum of six squares, we deduce the following corollary.

Corollary 3.1. For any positive real numbers α and β,

∞∑
n=0

r6(n) exp
(
−2π

√
(n + α)β

) 1 + 2π
√

(n + α)β√
(n + α)3

=
∞∑

n=0
r6(n) exp

(
−2π

√
(n + β)α

) 1 + 2π
√

(n + β)α√
(n + β)3

.

For other values of 	, we obtain an identity symmetric in α and β for rk(n) when k is of the form 
4	 + 2. This is surprising since historically, identities associated with rk(n) with k of the form 4	 tend to 
be more elegant. (See for example [7].) Our identity involving r4�+2(n) is equivalent to [2, (8.17)] with k
specialized to 4	 + 2. The identity given in [2, (8.17)] is a consequence of [1, Theorem 9.1] and instead of 
using transformation formulae satisfied by theta functions, the proof requires the knowledge of the functional 
equation satisfied by the Dirichlet series corresponding to the theta functions.

Before we prove Theorem 5, we recall a few facts about the modified Bessel functions Iν(z) and Kν(z). 
Following [13, pp. 77–80], define

Iν(z) =
∞∑
k=0

(z
2

)ν+2k

k! Γ(ν + k + 1)

and

Kν(z) = π
I−ν(z) − Iν(z)

,
2 sin πν
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where the gamma function is defined by

Γ(z) =
∞∫
0

tz−1exp(−t) dt.

It can be shown directly from the definition of Iν(z) that

d

dz
(zνIν(z)) = zνIν−1(z) (9)

and

d

dz

(
z−νIν(z)

)
= z−νIν+1(z). (10)

By (9) and (10), it follows that

d

dz

(
z−νKν(z)

)
= −z−νKν+1(z). (11)

We now introduce a new function

κν(x) = (−1)ν2ν+ 1
2
Kν+ 1

2
(2
√
x)

(2
√
x)ν+ 1

2
. (12)

Using (11), we immediately deduce that

dκν(x)
dx

= κν+1(x). (13)

Now, it can be shown from the definition of Kν(z) that [13, p. 80, (13)]

K 1
2
(z) =

√
π

2z exp(−z).

This implies, by Theorem 2, that

∞∫
0

exp
(
−xs2 − 1

s2

)
ds =

K 1
2
(2
√
x)

(
√
x) 1

2
= κ0(x). (14)

Differentiating (14) ν times with respect to x, we deduce from (13) that

∞∫
0

(−1)νs2νexp
(
−xs2 − 1

s2

)
ds = κν(x). (15)

In the previous section, we proved Theorem 4 using Theorem 2 and the transformation formula given in 
Theorem 3. The same method can be used to prove Theorem 5.

Proof of Theorem 5. For any non-negative integer 	 in (15), we apply the transformation formula to 2	 + 1
copies of the theta function associated with Q(m, n), namely,
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⎛
⎝ ∑

(m,n)∈Z2

exp
(
−2πt2Q(m,n)√

D

)⎞⎠
2�+1

=
∑

(	m,	n)∈Z4�+2

exp

⎛
⎝−2πt2

2�+1∑
j=1

Q(mj , nj)√
D

⎞
⎠

=
(

1
t2

)2�+1 ∑
(	m,	n)∈Z4�+2

exp

⎛
⎝−2π

2�+1∑
j=1

Q(mj , nj)
t2
√
D

⎞
⎠ , (16)

where 
m = (m1, · · · , m2�+1) and 
n = (n1, · · · , n2�+1). We now multiply

(−1)�t2�exp
(
− 2π√

D

(
αt2 + β

t2

))

to both sides of (16) and integrate (with a change of variables on one side) to obtain

∞∫
0

(−1)�t2�
∑

(	m,	n)∈Z4�+2

exp

⎛
⎝− 2π√

D

(
αt2 + β

t2

)
− 2πt2

2�+1∑
j=1

Q(mj , nj)√
D

⎞
⎠ dt

=
∞∫
0

(−1)�t2�
∑

(	m,	n)∈Z4�+2

exp

⎛
⎝− 2π√

D

( α

t2
+ βt2

)
− 2πt2

2�+1∑
j=1

Q(mj , nj)√
D

⎞
⎠ dt. (17)

Using (15) in (17) with a suitable change of variables on each side, we deduce that

∑
(	m,	n)∈Z4�+2

(
2πβ√
D

) 2�+1
2

κ�

⎛
⎝4π2β

D

⎛
⎝α +

2�+1∑
j=1

Q(mj , nj)

⎞
⎠
⎞
⎠

=
∑

(	m,	n)∈Z4�+2

(
2πα√
D

) 2�+1
2

κ�

⎛
⎝4π2α

D

⎛
⎝β +

2�+1∑
j=1

Q(mj , nj)

⎞
⎠
⎞
⎠ . (18)

It remains to connect κ�(z) with 2F0(−	, 	 +1; z). We note that for non-negative integers 	, the expression

z� 2F0

(
−	, 	 + 1;− 1

2z

)
(19)

defines a family of polynomials studied by Grosswald [9]. (Grosswald denotes these as θ�(z) and they are 
sometimes known as the reverse Bessel polynomials.) A result from [9, p. 34, (1)] connects these polynomials 
to the modified Bessel functions.

2F0

(
−	, 	 + 1;− 1

2z

)
=

√
2z
π

exp(z)K�+ 1
2
(z). (20)

Using (12) and (20), we deduce that

κ�(x) = (−1)�
√
π

2
exp (−2

√
x)

(
√
x)�+1 2F0

(
−	, 	 + 1;− 1

4
√
x

)
. (21)

Substituting (21) in (18) and simplifying, we complete the proof of Theorem 5. �
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Remark 3.1. It is interesting to note that although Grosswald wrote a book on representing integers as 
sums of squares [10] and another book on Bessel polynomials [9], neither Theorem 5 nor its specialization 
to r4�+2(n) were mentioned in either of his books. Theorem 5 definitely serves as a good bridge between the 
two books of Grosswald.

We would like to point out that other analogues of Theorem 5 can be obtained with rQ,2�+1(n) replaced 
by some arithmetic function that satisfy a transformation formula analogous to Theorem 3. For example, 
the Dedekind eta function is defined as

η(τ) = exp
(
πiτ

12

) ∞∏
n=1

(1 − exp(2πinτ)) ,

for some τ in the complex upper half plane. If we take τ = it for some positive real number t, it is known 
that

η2(it) = 1
t
η2

(
i

t

)
. (22)

So if we define the following function using q = exp(2πiτ)

∞∑
n=0

f4�+2(n)qn =
∞∏

n=1
(1 − qn)4�+2, (23)

we can then obtain in a similar fashion the following analogue of Theorem 5.

Theorem 6. Let 	 be a non-negative integer. Then

∑
n∈Z

f4�+2(n)
exp

(
−4π

√(
n + 2�+1

12 + α
)
β

)√
β�

√(
n + 2�+1

12 + α
)�+1 2F0

⎛
⎝−	, 	 + 1; −1

8π
√

(n + 2�+1
12 + α)β

⎞
⎠

=
∑
n∈Z

f4�+2(n)
exp

(
−4π

√(
n + 2�+1

12 + β
)
α

)√
α�

√(
n + 2�+1

12 + β
)�+1 2F0

⎛
⎝−	, 	 + 1; −1

8π
√

(n + 2�+1
12 + β)α

⎞
⎠ .

Since we have already given examples of Theorem 5 for 	 = 0 and 	 = 1, we shall end by giving an 
example of Theorem 6 in the case 	 = 2. Now

2F0(−2, 3; z) = 12z2 − 6z + 1.

From [6, Th 4.2], a two variable series representation for η10(τ) is given by

η10(τ) = q5/12
∞∑

n=0
f10(n)qn = 1

6
∑

m≡1 (mod 6)
n≡4 (mod 6)

mn(m2 − n2)q
m2+n2

12 .

Other two variable representations for η2(τ), η6(τ), η14(τ) and η26(τ) can also be found in [6,5]. For η10(τ), 
the following holds.
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Corollary 3.2. For any positive real numbers α and β,

∑
m≡1 (mod 6)
n≡4 (mod 6)

mn(m2 − n2)
exp

(
−4π

√(
m2+n2

12 + α
)
β

)
√(

m2+n2

12 + α
)5

×
(

3 + 12π

√(
m2 + n2

12 + α

)
β + 16π2

(
m2 + n2

12 + α

)
β

)

=
∑

m≡1 (mod 6)
n≡4 (mod 6)

mn(m2 − n2)
exp

(
−4π

√(
m2+n2

12 + β
)
α

)
√(

m2+n2

12 + β
)5

×
(

3 + 12π

√(
m2 + n2

12 + β

)
α + 16π2

(
m2 + n2

12 + β

)
α

)
.
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