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(Communicated by Mourad Ismail)

Dedicated to the memory of Professor Richard Askey

Abstract. In this article, we use identities found in N.J. Fine’s book Basic
hypergeometric series and its applications to derive a one-parameter gener-
alization of the product of two partial theta functions discovered by G.E.
Andrews and S.O. Warnaar. We also give two different proofs of this general-
ization, one of which is motivated by the work of A. Berkovich and the other
is given by M.E.H. Ismail.

1. Introduction

Around 2003, S.O. Warnaar discovered a very beautiful formula [9, Theorem 1.5]
given by

(1.1) 1 +

∞∑
j=1

(−1)jqj(j−1)/2(aj + bj) = (q)∞(a)∞(b)∞

∞∑
j=0

(ab/q)2jq
j

(q)j(a)j(b)j(ab)j
,

where (a)0 = (a; q)0 = 1 and for n ≥ 1,

(a)n = (a; q)n =

n∏
k=1

(1− aqk−1),

and

(a)∞ = (a; q)∞ =

∞∏
k=1

(1− aqk−1).

When b = q/a, the sum on the right hand side of (1.1) is 1 since for n ≥ 1,

(ab/q)n = (1)n = (1− 1)(1− q) · · · (1− qn−1) = 0.

The identity (1.1) then reduces to the famous Jacobi triple product identity which
states that for a, q ∈ C with a �= 0 and |q| < 1,

(1.2)
∞∑

j=−∞
(−1)jajqj(j−1)/2 = (q; q)∞(a; q)∞(q/a; q)∞.

Warnaar’s proof of (1.1) involves the simplification of a five-fold sum using q-Chu-
Vandermonde identity and appears to be the only available proof until 2007, when
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G.E. Andrews and Warnaar discovered another very beautiful formula for which
(1.1) follows as a corollary. The formula of Andrews and Warnaar is given by
(1.3)⎛
⎝ ∞∑

j=0

(−1)jajqj(j−1)/2

⎞
⎠

⎛
⎝ ∞∑

j=0

(−1)jbjqj(j−1)/2

⎞
⎠ = (q)∞(a)∞(b)∞

∞∑
j=0

(abqj−1)jq
j

(q)j(a)j(b)j
.

Andrews and Warnaar concluded their article showing that (1.3) follows from (1.1).
For a more detailed survey of (1.3) and (1.1), we refer the readers to the book by
Andrews and B.C. Berndt [1, p. 142].

In this short note, we will derive an extension of (1.3). The identity is given as
follows:

Theorem 1. Let a, b, q, t ∈ C with |q| < 1, |t| < 1, a �= 0 and b �= 0. Then⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jajqj(j−1)/2

⎞
⎠

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jbjqj(j−1)/2

⎞
⎠

= (t)∞(a)∞(b)∞

∞∑
j=0

(abqj−1)jt
j

(q)j(a)j(b)j
.

(1.4)

Note that the generalization (1.4) is surprisingly easy to remember if one has
(1.3). One simply inserts (t)j/(q)j on the two sums on the left hand side and replace
(q)∞ and qj by (t)∞ and tj on the right hand side, respectively. In the next section,
we will introduce Fine’s function and give a proof of Theorem 1.

In Section 3, we express (1.4) in terms of 2φ1 and 4φ3 and obtain (3.4). Identity
(3.4) is a generalization of an identity found by A. Berkovich [3, (2.5)]. We prove
(3.4) which in turn gives a second proof of Theorem 1. In Section 4, we present a
third proof of Theorem 1 due to M.E.H. Ismail [8]. We conclude the article with
Ismail’s interesting observation which identifies (3.4) as a q-analogue of an identity
involving a product of two Bessel functions.

2. Fine’s function and Theorem 1

The first chapter of N.J. Fine’s important book [5] is devoted to the study of the
function

F (a, b; t) = 1 +

∞∑
j=1

(aq)j
(bq)j

tj .

For the ease of reference to this function, we will call F (a, b; t) Fine’s function.
Many well-known identities such as the Rogers-Fine identity [5, Section 4], the
Jacobi triple product identity [5, Section 17] and the Ramanujan 1ψ1 summation
formula [5, Section 18] were featured and proved using Fine’s function. There are
many more lesser known, yet interesting identities in Fine’s book. A few of these
identities are related to (1.1). For example, one finds, with slight modifications,
that [5, (7.32)]

(2.1)
∞∑
j=0

qj

(c)j(q)j
=

1

(c)∞(q)∞

∞∑
j=0

(−1)jcjq(j
2−j)/2
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and [5, (20.52)]

∞∑
j=0

(t)j
(q)j

(−1)jcjq(j
2−j)/2 = (t)∞(c)∞

∞∑
j=0

tj

(q)j(c)j
(2.2)

= (c)∞

∞∑
j=0

(ct)jqj
2−j

(q)j(c)j
.(2.3)

Observe that the right hand side of (2.1) appears in (1.1) and (1.3). It is this
observation that motivated us to search for the connection between Fine’s function
F (a, b; q) and the Andrews-Warnaar identity. We were led to Theorem 1 using (2.2)
and (2.3). We now present the proof of Theorem 1, which is surprisingly identical
to the proof of (1.3) presented in [2].

Proof of Theorem 1. Applying (2.2) with c = a and (2.3) with c = b, we deduce
that

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jajqj(j−1)/2

⎞
⎠( ∞∑

�=0

(t)�
(q)�

(−1)�b�q�(�−1)/2

)

= (t)∞(a)∞(b)∞

∞∑
j=0

∞∑
�=0

tj+�q�
2−�b�

(q)j(a)j(q)�(b)�

= (t)∞(a)∞(b)∞

∞∑
m=0

tmbmqm
2−m

(q)m(b)m

m∑
j=0

qj
2−2mj+jb−j(qm−j+1)j(bq

m−j)j
(q)j(a)j

= (t)∞(a)∞(b)∞

∞∑
m=0

tmbmqm
2−m

(q)m(b)m

m∑
j=0

qj(q−m)j(q
1−m/b)j

(q)j(a)j

= (t)∞(a)∞(b)∞

∞∑
m=0

tm(abqm−1)m
(q)m(a)m(b)m

,

where we have used the q-Chu-Vandemonde identity [6, (1.5.3)] to show that

m∑
j=0

qj(q−m)j(q
1−m/b)j

(q)j(a)j
=

(abqm−1)m
(a)m

b−mqm−m2

. �

In [2], Andrews and Warnaar derived (1.1) from (1.3). It is natural to try and
derive an “analogue” of (1.1) from (1.4). In view of (1.1), it is therefore appropriate
to seek for an expression for

1 +
∞∑
j=1

(t)j
(q)j

(−1)jqj(j−1)/2
(
aj + bj

)
.
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We have not been able to find an alternate expression for the above. However, we
are able to derive an identity involving the one-variable extension of

(q)∞(a)∞(b)∞

∞∑
j=0

qj(ab/q)2j
(q)j(a)j(b)j(ab)j

,

which is the right-hand side of (1.1). The identity is stated as follows.

Theorem 2. Let a, b, q, t ∈ C with |q| < 1. Then

(t)∞(a)∞(b)∞

∞∑
j=0

tj(ab/q)2j
(q)j(a)j(b)j(ab)j

=

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jajqj(j−1)/2

⎞
⎠( ∞∑

�=0

(t)�
(q)�

(−1)�b�q�(�−1)/2

)(2.4)

− t

q

⎛
⎝ ∞∑

j=1

(t)j−1

(q)j−1
(−1)jajqj(j−1)/2

⎞
⎠( ∞∑

�=1

(t)�−1

(q)�−1
(−1)�b�q�(�−1)/2

)
.

Proof. We follow the steps in the proof of (1.3) given in [2] and write

(t)∞(a)∞(b)∞

∞∑
j=0

(ab/q)2j
(q)j(a)j(b)j(ab)j

tj

= (t)∞(a)∞(b)∞

∞∑
j=0

(1− ab/q)(abqj)j−1

(q)j(a)j(b)j
tj

= (t)∞(a)∞(b)∞

∞∑
j=0

(1− abqj−1 − ab/q(1− qj))(abqj)j−1

(q)j(a)j(b)j
tj

= (t)∞(a)∞(b)∞

∞∑
j=0

(abqj−1)j
(q)j(a)j(b)j

tj

− (t)∞(a)∞(b)∞ab
∞∑
j=1

(abqj)j−1

(q)j−1(a)j(b)j

tj

q

= (t)∞(a)∞(b)∞

∞∑
j=0

(abqj−1)j
(q)j(a)j(b)j

tj

− (t)∞(aq)∞(bq)∞
abt

q

∞∑
�=0

(abq�+1)�
(q)�(aq)�(bq)�

t�.(2.5)
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By (1.4) and (2.5), we deduce that

(t)∞(a)∞(b)∞

∞∑
j=0

tj(ab/q)2j
(q)j(a)j(b)j(ab)j

=

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jajqj(j−1)/2

⎞
⎠

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jbjqj(j−1)/2

⎞
⎠

− abt

q

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)j(aq)jqj(j−1)/2

⎞
⎠

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)j(bq)jqj(j−1)/2

⎞
⎠

(2.6)

=

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jajqj(j−1)/2

⎞
⎠

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jbjqj(j−1)/2

⎞
⎠

− t

q

⎛
⎝ ∞∑

j=1

(t)j−1

(q)j−1
(−1)jajqj(j−1)/2

⎞
⎠

⎛
⎝ ∞∑

j=1

(t)j−1

(q)j−1
(−1)jbjqj(j−1)/2

⎞
⎠ . �

When t = q, the term (t)n−1/(q)n−1 is 1 and (2.4) reduces to

(q)∞(a)∞(b)∞

∞∑
j=0

(ab/q)2j
(q)j(a)j(b)j(ab)j

qj

=

⎛
⎝ ∞∑

j=0

(−1)jajqj(j−1)/2

⎞
⎠( ∞∑

�=0

(−1)�b�q�(�−1)/2

)

−

⎛
⎝ ∞∑

j=1

(−1)jajqj(j−1)/2

⎞
⎠( ∞∑

�=1

(−1)�b�q�(�−1)/2

)
.

Writing

A =
∞∑
j=1

(−1)jajqj(j−1)/2 and B =
∞∑
�=1

(−1)�b�q�(�−1)/2

yields

(q)∞(a)∞(b)∞

∞∑
j=0

(ab/q)2j
(q)j(a)j(b)j(ab)j

qj

= (1 +A)(1 +B)−AB = 1 +A+B,

which is Warnaar’s identity (1.1). This is how Andrews and Warnaar derived (1.1)
from (1.3).

Let

M(a, b, t : q) =

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jajqj(j−1)/2

⎞
⎠( ∞∑

�=0

(t)�
(q)�

(−1)�b�q�(�−1)/2

)
.
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Then by (2.6), we rewrite (2.4) as

(t)∞(a)∞(b)∞

∞∑
j=0

(ab/q)2j
(q)j(a)j(b)j(ab)j

tj = M(a, b, t : q)− abt

q
M(aq, bq, t : q).

This is the generalization of

(q)∞(a)∞(b)∞

∞∑
j=0

(ab/q)2j
(q)j(a)j(b)j(ab)j

qj = M(a, b, q : q)− abM(aq, bq, q : q),

which appears in the proof of (1.1) in [2].

3. Basic hypergeometric series and (1.3)

It was known from [2] that

(q)∞(a)∞(b)∞

∞∑
j=0

(abqj−1)j
(q)j(a)j(b)j

qj =
∞∑
j=0

(ab/q)2j
(q)j(a)j(b)j(ab/q)j

qj

= (q)∞(a)∞(b)∞ 4φ3

(√
ab/q,−

√
ab/q,

√
ab,−

√
ab

a, b, ab/q
; q, q

)
,

where for r ∈ Z+,

rφr−1

(
a1, a2, · · · , ar
b1, b2, · · · , br−1

; q, z

)
=

∞∑
j=0

(a1)j(a2)j · · · (ar)j
(b1)j(b2)j · · · (br−1)j

zj

(q)j
.

This motivated Berkovich [3] to show that

(3.1)
∞∑
j=0

(−1)jqj(j−1)/2aj = lim
ρ→∞ 2φ1

(
ρ, q
1/ρ

; q, a/ρ

)
= (q)∞(a)∞ 2φ1

(
0, 0
a
; q, q

)
,

where the last equality follows from Heine’s transformation formula

2φ1

(
a, b
c
; q, z

)
=

(b)∞(az)∞
(c)∞(z)∞

2φ1

(
c/b, z
az

; q, b

)
.

He then concluded that (1.3) is equivalent to

2φ1

(
0, 0
a
; q, q

)
2φ1

(
0, 0
b
; q, q

)

=
1

(q)∞
4φ3

(√
ab/q,−

√
ab/q,

√
ab,−

√
ab

a, b, ab/q
; q, q

)
(3.2)

and deduced (3.2) from the Gasper-Rahman product formula [6, (8.8.18)]

2φ1

(
a, b
c
; q, z

)
2φ1

(
a, aq/c
aq/b

; q, z

)

=
(az)∞(abz/c)∞
(z)∞(bz/c)∞

6φ5

(
a, c/b,

√
ac/b,−

√
ac/b,

√
acq/b,−

√
acq/b

aq/b, c, ac/b, az, cq/(bz)
; q, q

)

+
(a)∞(c/b)∞(az)∞(bz)∞(azq/c)∞
(c)∞(aq/b)∞(z)∞(z)∞(c/bz)∞

× 6φ5

(
z, abz/c, z

√
ab/c,−z

√
ab/c, z

√
abq/c,−z

√
abq/c

az, bz, azq/c, bzq/c, abz2/c
; q, q

)
,

(3.3)

where |z| < 1.
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Using exactly the same argument as in (3.1), we deduce that

∞∑
j=0

(−1)j
(t)j
(q)j

qj(j−1)/2aj = lim
ρ→∞ 2φ1

(
ρ, t
1/ρ

; q, a/ρ

)

= lim
ρ→∞

(t)∞(a)∞
(1/ρ)∞(a/ρ)∞

2φ1

(
1/ρt, a/ρ

a
; q, t

)

= (t)∞(a)∞ 2φ1

(
0, 0
a
q, t

)
.

This shows that (1.4) is equivalent to the following identity.

Theorem 3. For |t| < 1,

2φ1

(
0, 0
a
; q, t

)
2φ1

(
0, 0
b
; q, t

)

=
1

(t)∞
4φ3

(√
ab/q,−

√
ab/q,

√
ab,−

√
ab

a, b, ab/q
; q, t

)
.(3.4)

Identity (3.4) is an example of a q-analogue of Clausen’s identities (see [6,
(8.8.1)]) for hypergeometric series. We now give a proof of (3.4) using (3.3), which
yields the second proof of (1.4).

Proof. Let a = bd/q and let b → 0. Then the left-hand side of (3.3) yields

(3.5) 2φ1

(
0, 0
c
; q, t

)
2φ1

(
0, 0
d
; q, t

)
.

The first term of the right-hand side of (3.3) gives

(3.6)
1

(z)∞
lim
b→0

6φ5

(
bd/q, c/b,

√
cd/q,−

√
cd/q,

√
cd,−

√
cd

d, c, cd/q, bdz/q, cq/(bz)
; q, q

)
.

Since

lim
b→0

(c/b)n
(cq/(bz))n

qn = lim
b→0

(b− c)(b− cq) · · · (b− cqn−1)zn

(bz − cq)(bz − cq2) · · · (bz − cqn−1)(bz − cqn)
qn = zn,

we deduce from (3.6) that the first term of the right-hand side of (3.3) is

(3.7)
1

(z)∞
4φ3

(√
cd/q,−

√
cd/q,

√
cd,−

√
cd

c, d, cd/q
; q, z

)
.

For the second term of the right-hand side of (3.3), we observe that

lim
b→0

(c/b)∞
(c/(bz))∞

= lim
n→∞

lim
b→0

(b− c)(b− cq) · · · (b− cqn−1)

(bz − c)(bz − cq) · · · (bz − cqn−1)
zn = 0,

since |z| < 1.
Combining (3.7) and the vanishing of the second term of the right-hand side of

(3.3), we obtain (3.4) after replacing (c, d, z) by (a, b, t). �

It is easy to remember (3.4) if we are given (3.2). The left-hand side of (3.4)
is simply the left-hand side of (3.2) with q in the last argument of the two 2φ1

replaced by t and the right-hand side of (3.4) is the right-hand side of (3.2) with
(q)∞ by (t)∞ and q in the last argument of 4φ3 by t.
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4. Third proof of (1.4)

In this section, we give a third proof of (1.4). This proof is due to Ismail [8] and
it is independent of (2.2), (2.3) and (3.3). We first divide (1.4) by (t)∞ on both
sides to arrive at

⎛
⎝ ∞∑

j=0

(t)j
(t)∞(q)j

(−1)jajqj(j−1)/2

⎞
⎠

⎛
⎝ ∞∑

j=0

(t)j
(q)j

(−1)jbjqj(j−1)/2

⎞
⎠

= (a)∞(b)∞

∞∑
j=0

(abqj−1)jt
j

(q)j(a)j(b)j
.

(4.1)

The left hand side of (4.1) is

⎛
⎝ ∞∑

j=0

(t)j
(t)∞(q)j

(−1)jajqj(j−1)/2

⎞
⎠( ∞∑

k=0

(t)k
(q)k

(−1)kbkqk(k−1)/2

)

=

⎛
⎝ ∞∑

j=0

1

(q)j
(−1)jajqj(j−1)/2 1

(tqj)∞

⎞
⎠

( ∞∑
k=0

1

(q)k
(−1)kbkqk(k−1)/2 (t)∞

(tqk)∞

)
.

(4.2)

By Euler’s theorem (see [6, Eq. (II.1), p. 354]),

(4.3)
1

(tqj)∞
=

∞∑
r=0

trqjr

(q)r

and by the q-binomial theorem [6, Eq. (II.3), p. 354]

∞∑
n=0

(a)n
(q)n

zn =
(az)∞
(z; q)∞

with a = q−k and z = tqk, we have

(t)∞
(tqk)∞

=

∞∑
s=0

(q−k)s
(q)s

tsqks

=
k∑

s=0

(qk+1−s)s
(q)s

(−1)stsqs(s−1)/2(4.4)

since

(q−k)s = (1− q−k)(1− q1−k) · · · (1− qs−1−k) = (−1)kqs(s−1)/2−ks(qk+1−s)s.
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Substituting (4.3) and (4.4) into (4.2), we see that the left hand side of (4.1) is
equivalent to⎛

⎝ ∞∑
j=0

1

(q)j
(−1)jajqj(j−1)/2

∞∑
r=0

trqjr

(q)r

⎞
⎠

×
( ∞∑

k=0

1

(q)k
(−1)kbkqk(k−1)/2

k∑
s=0

(qk+1−s)s
(q)s

(−1)stsqs(s−1)/2

)

=

⎛
⎝ ∞∑

r=0

tr

(q)r

∞∑
j=0

(−1)jajqjr+j(j−1)/2

(q)j

⎞
⎠

×
( ∞∑

s=0

(−1)stsqs(s−1)/2

(q)s

∞∑
k=s

1

(q)k−s
(−1)kbkqk(k−1)/2

)

=

⎛
⎝ ∞∑

r=0

tr

(q)r

∞∑
j=0

(−1)jajqjr+j(j−1)/2

(q)j

⎞
⎠

×
( ∞∑

s=0

bstsqs(s−1)

(q)s

∞∑
k=0

(−1)kbkqks+k(k−1)/2

(q)k

)

=

( ∞∑
r=0

tr

(q)r
(aqr)∞

)( ∞∑
s=0

bstsqs(s−1)

(q)s
(bqs)∞

)

= (a)∞(b)∞

∞∑
r=0

∞∑
s=0

bsqs(s−1)

(a)r(q)r(b)s(q)s
tr+s

= (a)∞(b)∞

∞∑
m=0

tm
m∑
s=0

bsqs(s−1)

(a)m−s(q)m−s(b)s(q)s
,(4.5)

where in the third equation, we applied Euler’s Theorem [6, Eq. (II.2), p. 354]
∞∑

n=0

qn(n−1)/2

(q)n
zn = (−z)∞

once in each of the parentheses, and in the final equality, we sum over m = r + s.
The inner sum in (4.5) is

m∑
s=0

bsqs(s−1)

(a)m−s(q)m−s(b)s(q)s
=

m∑
s=0

(aqm−s)s(q
m−s+1)sb

sqs(s−1)

(a)m(q)m(b)s(q)s

=
1

(a)m(q)m

m∑
s=0

(q1−m/a)s(q
−m)sa

sbsq(2m−1)s

(b)s(q)s

=
(abqm−1)m

(a)m(b)m(q)m
,(4.6)

where in the last equality, we used the q-Chu-Vandermonde sum [6, Eq. (II.7),
p. 354 ]

m∑
n=0

(d)n(q
−m)n

(c)n(q)n
(cqm/d)n =

(c/d)m
(c)m

with c = b and d = q1−m/a.
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Substituting (4.6) into (4.5), we obtain the right hand side of (4.1), and this
completes Ismail’s proof of (1.4).

5. Ismail’s important observation

In this final section, we share an important observation by Ismail [8]. First, we
recall that the shifted factorial is

(a)0 = 1,

(a)n = a(a+ 1) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
, n = 1, 2, . . . .

Note that these share the same notation as the q-shifted factorial given in Section
1. To avoid ambiguity, for this section, (a)n is used exclusively for the shifted
factorial, while we add in the base q and use the notation (a; q)n when referring to
the q-products.

The Bessel function of the first kind [4, Eqs. (2), (3), p. 4] is given by

Jν(z) =

∞∑
n=0

(−1)n
(z
2

)2n+ν 1

m!Γ(m+ ν + 1)

=
(z/2)ν

Γ(ν + 1)
0F1

(
—

ν + 1
;−z2

4

)
,(5.1)

where

rFs(a1, a2, . . . , ar; b1, . . . , bs; z) = rFs

(
a1, a2, . . . , ar
b1, . . . , bs

; z

)

=
∞∑

n=0

(a1)n(a2)n · · · (ar)n
(b1)n · · · (bs)n

zn,

and the — in (5.1) indicates the absence of the numerator.
The q-analog of Jν(z) introduced by Jackson, as given in Ismail’s article [7,

Eq. (14.1.16)], is

J (1)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∞∑
n=0

(−1)n(z/2)ν+2n

(qν+1; q)n(q; q)n
.

Ismail observed that 2φ1(0, 0; a; q, t) is essentially a q-Bessel function J
(1)
ν (z; q).

Indeed, setting a = qν+1 and t = −z2/4 gives

2φ1

(
0, 0
qν+1; q,−

z2

4

)
=

(q; q)∞
(qν+1; q)∞

(
2

z

)ν

J (1)
ν (z; q).

Thus Theorem 3 is a theorem on a product of two q-Bessel functions.
Ismail also showed us that (3.4) is precisely the q-analog of the following identity

involving Bessel functions [4, Eq. (49), p. 11].

Corollary 1. We have
(5.2)

Γ(ν + 1)Γ(μ+ 1)Jν(z)Jμ(z) = (z/2)ν+μ
2F3

(
(ν + μ+ 1)/2, (ν + μ)/2 + 1

ν + 1, μ+ 1, ν + μ+ 1
;−z2

)
.
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Proof. Replacing t by t(1− q)2 and setting (a, b) = (qν+1, qμ+1), we find that (3.4)
becomes

2φ1

(
0, 0
qν+1; q, t(1− q)2

)
2φ1

(
0, 0
qμ+1; q, t(1− q)2

)

=
1

(t(1− q)2; q)∞

× 4φ3

(
q(ν+μ+1)/2,−q(ν+μ+1)/2, q(ν+μ)/2+1,−q(ν+μ)/2+1

qν+1, qμ+1, qν+μ+1 ; q, t(1− q)2
)
.

(5.3)

Note that in taking the limit q → 1−,

lim
q→1−

(qa; q)n
(1− q)n

= (a)n and lim
q→1−

(−qa; q)n = 2n.

Therefore, letting q → 1− in equation (5.3) and setting t = −z2/4, we obtain

0F1

(
—

ν + 1
;−z2

4

)
0F1

(
—

μ+ 1
;−z2

4

)
= 2F3

(
(ν + μ+ 1)/2, (ν + μ)/2 + 1

ν + 1, μ+ 1, ν + μ+ 1
;−z2

)
.

(5.4)

Applying (5.1) twice on the left hand side of (5.4), and rearranging, we obtain (5.2).
This completes the proof of the corollary. �
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