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Abstract
Around 1991, J. M. Borwein and P. B. Borwein introduced three cubic theta functions
a(q), b(q) and c(q) and discovered many interesting identities associated with these
functions. The cubic theta functions b(q) and c(q) have product representations and
these representations were first established using the theory of modular forms. The
first elementary proof of the product representation of b(q) was discovered in 1994
by the Borweins and F. G. Garvan using one of Euler’s identity. They then derived the
product representation of c(q) using transformation formulas of Dedekind’s η(τ) and
some elementary identities satisfied by a(q), b(q) and c(q). In this note, we present
three proofs of the product representation of c(q)without the use of the transformation
of Dedekind’s η-function. We also discuss the connections between these proofs and
the works of Baruah and Nath (Proc Am Math Soc 142:441–448, 2014) and Ye (Int J
Number Theory 12(7):1791–1800, 2016). We also adopt the idea of the Borweins and
Garvan to derive the product representation of Jacobi theta function ϑ4(0|τ) which
leads to a proof of the Jacobi triple product identity.
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1 Introduction

Three of the most important functions discovered by C. G. J. Jacobi are

ϑ2(q) =
∞∑

j=−∞
q( j+1/2)2 , ϑ3(q) =

∞∑

j=−∞
q j2 and

ϑ4(q) =
∞∑

j=−∞
(−1) j q j2 . (1.1)

These functions satisfy the elegant “Pythagorean-type” identity

ϑ4
3 (q) = ϑ4

4 (q) + ϑ4
2 (q). (1.2)

The above identity can be rewritten as

( ∞∑

m=−∞

∞∑

n=−∞
qm

2+n2
)2

=
( ∞∑

m=−∞

∞∑

n=−∞
(−1)m+nqm

2+n2
)2

+
( ∞∑

m=−∞

∞∑

n=−∞
q(m+1/2)2+(n+1/2)2

)2

. (1.3)

One way of proving (1.3) is to first express ϑ j (q) in terms of infinite products using
the Jacobi triple product identity, namely,

ϑ2(q) = 2q1/4
∞∏

j=1

(1 − q4 j )2

(1 − q2 j )
,

ϑ3(q) =
∞∏

j=1

(1 − q2 j )5

(1 − q j )2(1 − q4 j )2
and

ϑ4(q) =
∞∏

j=1

(1 − q j )2

(1 − q2 j )
.

Identity (1.3) then follows from the identity

η24(2τ)

η24(τ )
= η8(4τ)

η8(τ )
+ 16

η16(4τ)

η16(τ )
. (1.4)

Here η(τ) is the Dedekind η-function given by

η(τ) = e2π iτ/24
∞∏

n=1

(1 − e2π inτ ), Im τ > 0. (1.5)
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Identity (1.4) follows from the fact that η8(4τ)/η8(τ ) is a Hauptmodul for �0(4) and

η24(2τ)/η24(τ ) is invariant under �0(2).
In 1991, J. M. Borwein and P. B. Borwein [7, (2.3)] discovered an identity which

is amazingly similar to (1.2). Their identity is given by

⎛

⎝
∞∑

�,m=−∞
q�2+�m+m2

⎞

⎠
3

=
⎛

⎝
∞∑

�,m=−∞
e2π i(�−m)/3q�2+�m+m2

⎞

⎠
3

+
⎛

⎝
∞∑

�,m=−∞
q

(
�+ 1

3

)2+
(
�+ 1

3

)(
m+ 1

3

)
+

(
m+ 1

3

)2
⎞

⎠
3

. (1.6)

A proof of (1.6) in a similar way as in the proof of (1.3) would be to first express the
theta series

a(q) =
∞∑

�,m=−∞
q�2+�m+m2

,

b(q) =
∞∑

�,m=−∞
e2π i(�−m)/3q�2+�m+m2

and

c(q) =
∞∑

�,m=−∞
q

(
�+ 1

3

)2+
(
�+ 1

3

)(
m+ 1

3

)
+

(
m+ 1

3

)2

in terms of infinite products or linear combinations of infinite products. Such repre-
sentations exist and they are given by

a(q) =
∞∏

j=1

(1 − q j )3

(1 − q3 j )
+ 3q

∞∏

j=1

(1 − q9 j )3

(1 − q3 j )
, (1.7)

b(q) =
∞∏

j=1

(1 − q j )3

(1 − q3 j )
(1.8)

and

c(q) = 3q1/3
∞∏

j=1

(1 − q3 j )3

(1 − q j )
. (1.9)

Identity (1.6) then follows from the identity

1 + 27
η12(3τ)

η12(τ )
=

(
1 + 9

η3(9τ)

η3(τ )

)3

. (1.10)
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Identity (1.10) follows from the fact that η3(9τ)/η3(τ ) is a Hauptmodul of �0(9) and
that η12(3τ)/η12(τ ) is a modular function invariant under �0(9).

The most elementary proof of (1.8) is due to Borwein et al. [8]. The proof involves
Euler’s identity

(z; q)∞ =
∞∑

k=0

(−1)k zkqk(k−1)/2

(q; q)k
,

where

(a; q)∞ =
∞∏

j=1

(1 − aq j ), |q| < 1,

(a; q)k = (a; q)∞
(aqk; q)∞

.

We reproduce Borweins–Garvan’s proof of (1.8) in Sect. 2. To obtain (1.9), they used
a transformation formula for the series representations of b(q) and c(q). Although
they asserted that (1.9) can also be obtained using Euler’s identity, but instead of
proving (1.9) using idea similar to the proof of (1.8), they gave a proof which requires
transformation formulas satisfied by η(τ) and some identities satisfied by a(q) and
c(q).

In this note, we will provide the proof of (1.9) along the same line as Borweins–
Garvan’s proof of (1.8) and independent of the transformation formula of η(τ). As a
key step in this proof, we establish the following representation for c(q):

c(q) = 3
∞∑

m,n=−∞
q3m

2+3n2+3mn+m+2n+1. (1.11)

This identity can be found in the work of Ye [12] and the book of Cooper [9, Lemma
3.13]. We shall give two new proofs for it as well as two new representations for c(q)

(see Theorem 2).
The product representation (1.9) relates c(q) closely to 3-core partitions. A partition

is said to be a t-core if it has no hook numbers that are multiples of t . The number of
t-core partitions of n is denoted by at (n). Garvan et al. [10] found that

∞∑

n=0

at (n)qn =
∞∏

j=1

(1 − qt j )t

1 − q j
. (1.12)

The product representation of c(q) given in (1.9) showed that

∞∑

n=0

a3(n)qn = 1

3
q−1/3c(q). (1.13)
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This identity shows that a3(n) is closely related to the representations of integers
by quadratic forms. Indeed, using Ramanujan’s theta function identities and series
manipulations, Baruah and Nath [4] proved the following relation:

Theorem 1 Let u(n) denote the number of representations of a nonnegative integer n
in the form x2 + 3y2 with x, y ∈ Z. Then

u(12n + 4) = 6a3(n). (1.14)

In one of our proofs for (1.11), we divide the set

M(n) = {(x, y) ∈ Z
2|n = x2 + 3y2, 3 � x, x ≡ y (mod 2)}

into six equinumerous subclasses. Moreover, for such subclasses of M(12n + 4),
we show that each of them has cardinality a3(n). This together with the fact that
u(12n + 4) = |M(12n + 4)| give a “combinatorial” proof for Theorem 1.

Finally,we also apply themethod ofBorweins andGarvan to give a proof of Jacobi’s
triple product identity.

2 Euler’s identity and product formula for c(q)

In this section, we reproduce the proof of (1.8) given by Borwein et al. We first recall
Euler’s identity

(−z; q)∞ =
∞∑

k=0

zkqk(k−1)/2

(q; q)k
. (2.1)

Observe that if ω = e2π i/3 then

(−z3; q3)∞ = (−z; q)∞(−zω; q)∞(−zω2; q)∞. (2.2)

Using (2.1), we deduce from (2.2) that

∞∑

k=0

z3kq3k(k−1)/2

(q3; q3)k =
∑

n0,n1,n2≥0

ωn1+2n2qn0(n0−1)/2+n1(n1−1)/2+n2(n2−1)/2

(q; q)n0(q; q)n1(q; q)n2
zn0+n1+n2 .

Equating the coefficients of z3k on both sides of the above identity yields

q3k(k−1)/2

(q3; q3)k =
∑

n0+n1+n2=3k

ωn1+2n2 q
n0(n0−1)/2+n1(n1−1)/2+n2(n2−1)/2

(q; q)n0(q; q)n1(q; q)n2
. (2.3)
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Let mi = ni − k. Observe that the condition n0 + n1 + n2 = 3k is now replaced by
m0 + m1 + m2 = 0 and

n0(n0 − 1)

2
+ n1(n1 − 1)

2
+ n2(n2 − 1)

2
= m2

0 + m2
1 + m2

2

2
+ 3k(k − 1)

2
.

This implies that (2.3) may be written as

1

(q3; q3)k =
∑

m0,m1,m2≥−k
m0+m1+m2=0

ωm1−m2q(m2
0+m2

1+m2
2)/2

(q; q)m0+k(q; q)m1+k(q; q)m2+k
.

Letting k → ∞, we complete the proof of (1.8).
Next, instead of using (2.2), we start with the identity

(−zq; q)∞ = (−zq; q3)∞(−zq2; q3)∞(−zq3; q3)∞. (2.4)

Using (2.1), we deduce that

∞∑

k=0

zkqkqk(k−1)/2

(q; q)k

=
∑

n0,n1,n2≥0

zn0+n1+n2qn0+2n1+3n2+3(n0(n0−1)/2+n1(n1−1)/2+n2(n2−1)/2)

(q3; q3)n0(q3; q3)n1(q3; q3)n2
. (2.5)

Comparing the coefficients of zk on both sides of (2.5), we conclude that

qk(k+1)/2

(q; q)k
=

∑

n0,n1,n2≥0
n0+n1+n2=k

qn0+2n1+3n2+3(n0(n0−1)/2+n1(n1−1)/2+n2(n2−1)/2)

(q3; q3)n0(q3; q3)n1(q3; q3)n2
. (2.6)

Replacing k by 3k and using the substitutions ni = mi + k, we deduce that

1

(q; q)3k
=

∑

m0,m1,m2≥−k
m0+m1+m2=0

q3(m
2
0+m2

1+m2
2)/2+3k(m0+m1+m2)/2+(−m0+m1+3m2)/2

(q3; q3)m0+k(q3; q3)m1+k(q3; q3)m2+k
.

Letting k → ∞, we deduce that

∞∑

m1,m2=−∞
q3m

2
1+3m2

2+3m1m2+m1+2m2 = (q3; q3)3∞
(q; q)∞

.
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Hence,

q1/3
∞∑

m,n=−∞
q3m

2+3n2+3mn+m+2n = q1/3
(q3; q3)3∞
(q; q)∞

.

In order to derive (1.9), it suffices to show that

c(q3) = 3
∞∑

m,n=−∞
q9m

2+9n2+9mn+3m+6n+1. (2.7)

We will establish (2.7) in the next section.

3 The product representation of Borweins’ c(q)

In this section, we present three proofs of (2.7). The first proof of (2.7) we present is
due to Ye [12, Lemma 2.4]. Ye discovered (2.7) and used it to show that

∞∑

m,n=−∞
qm

2+mn+7n2 = 1

3
a(q) − 1

3
a(q3) + a(q9).

Ye’s proof of (2.7) Note that

c(q3) =
∞∑

m,n=−∞
q3(m

2+mn+n2+m+n)+1.

Now, we split the series into three series according to the congruences

n − m ≡ 0, 1,−1 (mod 3).

Suppose n−m ≡ 0 (mod 3). Let n−m = 3k. Now we may rearrange the above and
obtain

n − 2k = m + k = ν.

This gives n = 2k + ν and m = ν − k. Hence, we deduce that

∞∑

n,m=−∞
n−m≡0 (mod 3)

q3(m
2+mn+n2+m+n)+1 =

∞∑

ν,k=−∞
q9ν

2+9νk+9k2+6ν+3k+1.

For n−m ≡ 1 (mod 3), we write n−m = 3k + 1 and introduce ν using the relation

n − k = m + 2k + 1 = −ν,
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which yields n = k − ν and m = −ν − 2k − 1. This gives

∞∑

n,m=−∞
n−m≡1 (mod 3)

q3(m
2+mn+n2+m+n)+1 =

∞∑

ν,k=−∞
q9ν

2+9νk+9k2+6k+3ν+1.

The last case follows from the fact that

∞∑

n,m=−∞
n−m≡1 (mod 3)

q3(m
2+mn+n2+m+n)+1 =

∞∑

n,m=−∞
m−n≡−1 (mod 3)

q3(m
2+mn+n2+m+n)+1.

Collecting our observations, we find that

c(q3) = 3
∞∑

ν,k=−∞
q9ν

2+9νk+9k2+6ν+3k+1.

��
We now give another proof of (2.7). This proof is longer but we obtain the following
identities involving c(q3):

c(q3) =
∞∑

h,k=−∞
h+2k≡2 (mod 3)

qh
2+hk+k2 (3.1)

= 3
∞∑

m,n=−∞
m≡1 (mod 3)
n≡0 (mod 3)

qN (m+ωn) (3.2)

= 3
∞∑

m,n=−∞
q9m

2+9n2+9mn+3m+6n+1, (3.3)

where ω = eπ i/3 and

N (a + bω) = a2 + ab + b2. (3.4)

Second proof of (2.7) Let

A = {(m, n)|m, n ∈ Z},

and

B = {(x, y)|x, y ∈ Z, x ≡ y (mod 2)}.
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The maps f : A → B and g : B → A defined by

f (m, n) = (2m + n, n) and g(x, y) = ((x − y)/2, y), (3.5)

set up a one to one correspondence between A and B.
Now,

q−4/3c(q4) =
∞∑

m,n=−∞
q(2m+n)2+3n2+4(m+n)

=
∞∑

x,y=−∞
x≡y (mod 2)

qx
2+3y2+2(x+y) := L(q).

Hence,

c(q12) = q4L(q3) =
∞∑

x,y=−∞
x≡y (mod 2)

q3(x+1)2+(3y+1)2 =
∞∑

s,t=−∞
s≡t (mod 2)

q3s
2+(3t+2)2

=
∞∑

ν,μ=−∞
ν≡μ (mod 2)
μ≡2 (mod 3)

q3ν
2+μ2 =

∞∑

h,k=−∞
h+2k≡2 (mod 3)

q4(h
2+hk+k2), (3.6)

where we have used (3.5) in the last equality. This immediately yields a different
representation of c(q3), namely,

c(q3) =
∞∑

h,k=−∞
h+2k≡2 (mod 3)

qh
2+hk+k2 .

Now, the condition x + 2y ≡ 2 (mod 3) if and only if

(x, y) ≡ (0, 1), (1, 2) or (2, 0) (mod 3).

Hence,

∞∑

h,k=−∞
h+2k≡2 (mod 3)

qh
2+hk+k2 = S1 + S2 + S3, (3.7)
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64 H. H. Chan, L. Wang

where

S1 =
∞∑

h,k=−∞
(h,k)≡(0,1) (mod 3)

qh
2+hk+k2 ,

S2 =
∞∑

h,k=−∞
(h,k)≡(1,2) (mod 3)

qh
2+hk+k2

and

S3 =
∞∑

h,k=−∞
(h,k)≡(2,0) (mod 3)

qh
2+hk+k2 .

Now, with s = −h and t = −k, we find that

S1 =
∞∑

h,k=−∞
(h,k)≡(0,1) (mod 3)

qh
2+hk+k2 =

∞∑

s,t=−∞
(s,t)≡(0,−1) (mod 3)

qs
2+st+t2 = S3.

To complete the proof of (3.2), it remains to show that S1 = S2.
Note that ω is a sixth root of unity and satisfies ω2 −ω +1 = 0. We have N (ω2) =

N (ω − 1) = 1. Using the definition of N (·) given in (3.4), we deduce that

S2 =
∞∑

m,n=−∞
(m,n)≡(1,2) (mod 3)

qm
2+mn+n2 =

∞∑

m,n=−∞
(m,n)≡(1,2) (mod 3)

qN (m+ωn)

=
∞∑

m,n=−∞
(m,n)≡(1,2) (mod 3)

qN (ω2(m+ωn)) =
∞∑

m,n=−∞
(m,n)≡(1,2) (mod 3)

qN (−m−n+ωm)

=
∞∑

m,n=−∞
(m,n)≡(0,1) (mod 3)

qN (m+ωn) = S1.

Hence,

c(q3) = 3
∞∑

m,n=−∞
m≡1 (mod 3)
n≡0 (mod 3)

qN (m+ωn) = 3
∞∑

m,n=−∞
q9m

2+9n2+9mn+6m+3n+1.

��
To give the third proof of (2.7), we first establish the following result, which is of
independent interest.
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Lemma 1 Let

M(n) = {(x, y) ∈ Z
2|n = x2 + 3y2, 3 � x, x ≡ y (mod 2)},

A1(n) = {(x, y) ∈ M(n)|(x, y) ≡ (1, 0) (mod 3)},
A2(n) = {(x, y) ∈ M(n)|(x, y) ≡ (1, 1) (mod 3)},
A3(n) = {(x, y) ∈ M(n)|(x, y) ≡ (1, 2) (mod 3)},
A4(n) = {(x, y) ∈ M(n)|(x, y) ≡ (2, 0) (mod 3)},
A5(n) = {(x, y) ∈ M(n)|(x, y) ≡ (2, 1) (mod 3)},
A6(n) = {(x, y) ∈ M(n)|(x, y) ≡ (2, 2) (mod 3)}.

Then

|A1(n)| = |A2(n)| = |A3(n)| = |A4(n)| = |A5(n)| = |A6(n)| = 1

6
|M(n)|. (3.8)

Proof It is immediate that

M(n) =
6⋃

i=1

Ai (n).

Using the bijection (x, y) → (−x,−y) we deduce that

|A1(n)| = |A4(n)|, |A2(n)| = |A6(n)|, |A3(n)| = |A5(n)|. (3.9)

Using the bijection (x, y) → (x,−y) we get

|A2(n)| = |A3(n)|. (3.10)

It remains to show that

|A3(n)| = |A4(n)|. (3.11)

Note that

(
x − 3y

2

)2

+ 3

(
x + y

2

)2

= x2 + 3y2. (3.12)

It is not difficult to see that (x, y) → (
x−3y
2 ,

x+y
2 ) gives a bijection between A3(n)

and A4(n). Thus (3.11) holds and the lemma is proved. ��
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We now use Lemma 1 to deduce the following:

Theorem 2 The following identities hold:

∞∑

m=−∞

∞∑

n=−∞
qm

2+mn+n2+m+n

= 3
∞∑

m=−∞

∞∑

n=−∞
q3m

2+3mn+3n2+m+2n (3.13)

= 3
∞∑

m=−∞

∞∑

n=−∞
q3m

2+3mn+3n2+2m+4n+1 (3.14)

= 3
∞∑

m=−∞

∞∑

n=−∞
q3m

2+3mn+3n2+4m+5n+2. (3.15)

Proof Let

H(q) := q−1/3c(q) =
∞∑

m=−∞

∞∑

n=−∞
qm

2+mn+n2+m+n . (3.16)

Replacing q by q4, we find that

H(q4) =
∞∑

m,n=−∞
q(m+2n)2+3m2+4(m+n)

=
∞∑

s,t=−∞
s≡t (mod 2)

q3s
2+t2+2(s+t)

=
∞∑

s,t=−∞
s≡t (mod 2)

q3s
2+2s−1+(t+1)2 , (3.17)

where we have used the bijection (3.5) in the second equality.
Hence,

q4H(q12) =
∞∑

s,t=−∞
s≡t (mod 2)

q(3s+1)2+3(t+1)2 (x = 3s + 1, y = t + 1)

=
∞∑

x,y=−∞
x≡y (mod 2)
x≡1 (mod 3)

qx
2+3y2 . (3.18)
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By Lemma 1, we deduce that

q4H(q12) = 3
∞∑

x,y=−∞
x≡y (mod 2)

(x,y)≡(2,0) (mod 3)

qx
2+3y2 . (3.19)

Now we substitute (x, y) = (3m + 6n + 2, 3m) in (3.19). It follows that

q4H(q12) = 3q4
∞∑

m,n=−∞
q12(3m

2+3mn+3n2+m+2n). (3.20)

This proves (3.13).
Similarly, using Lemma 1 and (3.18) we deduce that

q4H(q12) = 3
∞∑

x,y=−∞
x≡y (mod 2)

(x,y)≡(2,2) (mod 3)

qx
2+3y2 . (3.21)

Making the substitution (x, y) = (3m + 6n + 2, 3m + 2) we arrive at (3.14).
In the similar way, using Lemma 1 and (3.18) we deduce that

q4H(q12) = 3
∞∑

x,y=−∞
x≡y (mod 2)

(x,y)≡(1,2) (mod 3)

qx
2+3y2 . (3.22)

Making the substitution (x, y) = (3m + 6n + 4, 3m + 2) we deduce (3.15). ��
Remark 1 The identity (3.13) proves (2.7). The identities (3.13)–(3.15) are equivalent
to S1 = S2 = S3 where S1, S2, S3 are given in (3.7). Identity (3.18) is the same as
(3.6).

We now present a new proof of Theorem 1 using Lemma 1.

Proof of Theorem 1 From (1.13) we find that

∞∑

n=0

a3(n)qn = 1

3
H(q). (3.23)

From (3.19), we deduce that

a3(n) = |A4(12n + 4)|. (3.24)
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We note that 12n + 4 = x2 + 3y2 implies that x 	≡ 0 (mod 3) and x ≡ y (mod 2).
Therefore, we find that

u(12n + 4) = |M(12n + 4)|.

Hence by Lemma 1, we conclude that

u(12n + 4) = 6|A4(12n + 4)|. (3.25)

Combining this with (3.24), we deduce that u(12n + 4) = 6a3(n). ��

4 A proof of the Jacobi triple product identity using elliptic functions

One of the several expressions of the Jacobi triple product is given by

∞∑

j=−∞
(−1) j q j2e2iu j =

∞∏

j=1

(1 − q2 j )(1 − e2iuq2 j−1)(1 − e−2iuq2 j−1). (4.1)

In [5, p. 42, Theorem 6], R. Bellman stated the above identity and remarked that “There
are no simple proofs known of the complete result, but there are a number of fairly
straightforward ways of deriving the partial result

∞∑

j=−∞
(−1) j q j2e2iu j = G(q)

∞∏

j=1

(1 − e2iuq2 j−1)(1 − e−2iuq2 j−1), (4.2)

where G(q) is independent of u”. In 1965, motivated by Bellman’s remark, G.E.
Andrews [1] gave an elementary proof of (4.1). Andrews’ proof, unlike the proofs that
Bellman had in mind, does not involve (4.2) as an intermediate step.

There are now many proofs of (4.1) and most of these proofs involve first deriving
(4.2), followed by determining G(q). For examples of such proofs, see [11, Theorem
352] and [6, Theorem 3.1]. In this section, we illustrate an example of such proofs
that involve elliptic functions.

Let q = eπ iτ with Im τ > 0 throughout this section. The left-hand side of (4.1) is
usually denoted by

ϑ4(u|τ) :=
∞∑

j=−∞
(−1) j q j2e2iu j .

Let

P(u|τ) =
∞∏

j=1

(1 − e2iuq2 j−1)(1 − e−2iuq2 j−1),
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and observe that both ϑ4(u|τ) and P(u|τ) satisfy the functional equations

F(u + π |τ) = F(u|τ) and F(u + πτ |τ) = −q−1e−2iu F(u|τ).

This implies thatϑ4(u|τ)/P(u|τ) is an elliptic function with periodsπ andπτ with no
pole. By Liouville’s Theorem, we deduce that there exists a function G(q) for which
(4.2) holds.

It now remains to determine G(q). Using the identity

(z; q)∞(−z; q)∞ = (z2; q2)∞,

and (2.1), we find that

∞∑

k=0

∞∑

j=0

(−1) j
qk(k−1)/2q j( j−1)/2

(q; q)k(q; q) j
zk+ j =

∞∑

�=0

(−1)�q�(�−1)

(q2; q2)� z2�.

We write the above identity as

∑∞
k=−∞

∑∞
j=−∞(−1) j qk(k−1)/2q j( j−1)/2 (qk+1; q)∞(q j+1; q)∞

(q; q)∞(q; q)∞
zk+ j

= ∑∞
�=0

(−1)�q�(�−1)

(q2; q2)� z2�.

Comparing the coefficients of z2� on both sides of the above and replacing k and j by
� + t and � + s, respectively, we deduce that

∞∑

s,t=−∞
s+t=0

(−1)sqs
2 (q�+t+1; q)∞(q�+s+1; q)∞

(q; q)∞(q; q)∞
= 1

(q2; q2)� ,

or

�∑

s=−�

(−1)sqs
2

(q; q)s+�(q; q)�−s
= 1

(q2; q2)� , (4.3)

since (q�−s+1; q)∞(q�+s+1; q)∞ = 0 for s < −� and s > �. Letting � → ∞ yields

∞∑

s=−∞
(−1)sqs

2 = (q; q)2∞
(q2; q2)∞ . (4.4)

The left-hand side of (4.4) is the left-hand side of (4.2) with u = 0. Comparing the
right-hand side of (4.4) and (4.2) with u = 0 yields

G(q) = (q2; q2)∞. (4.5)
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Remark 2 G.E. Andrews informed us that (4.3) follows from the finite form of the
Jacobi triple product identity [2, p. 49, Example 1]. He shared with us the evaluation
of G(q) (see (4.5)) he liked best, which is the one given in [3, Section 3], where the
Frobenius symbol for partitions arises naturally.
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